Getting Started with RSL10

AND9697/D
Mar. 2018, Rev. P1

©scliLLc, 2018
Previous Edition © 2017
“All Rights Reserved”

ON Semiconductor®

GETTING STARTED WITH RSL10

Table of Contents

1. Introduction
1.1 Purpose .
1.2 Intended Audlence
1.3 Conventions .
1.4 Manual Organization
1.5 Further Reading

2. Connecting the Hardware .
2.1 Prerequisites .
2.2 Connecting the Hardware
2.2.1 Preloaded Sample

3. Installing the Software .
3.1 Prerequisite Software
3.2 Installation Procedure .
3.3 Optional RSL10 CMSIS-Pack Installatlon Procedure

4. Building Your First Sample Application

4.1 Launching the IDE

4.2 Import the Sample Code .
4.2.1 Importing Sample Code Without CMSIS Pack
4.2.2 Importing Sample Code With CMSIS-Pack

4.3 Build the Sample Code .

4.4 Debugging the Sample Code
4.4.1 Preparing J-Link for Debugging .
4.4.2 Debugging with the .elf File . . .
4.4.3 Peripheral Registers View with RSL10 IDE .
4.4.4 Arm® Cortex®-M3 Core Breakpoints .

4.5 Folder Structure of the RSL10 SDK Installation .

5. More Information
5.1 More Information
5.2 Other Relevant Documentatlon

A. Arm Toolchain Support
A.1 Basic Installation
A.2 Configuring the Arm Toolchaln in Ecllpse
A.3 Additional Settings .

Page

w

N 93 O W W W W

O N B T N T N T N e J SV
O OOV AR A BN W TATN W — ==

www.onsemi.com

2

CHAPTER 1

Introduction

1.1 PURPOSE

RSL10 is a multi-protocol, Bluetooth® 5 certified, radio System on Chip (SoC), with the lowest power
consumption in the industry. It is designed to be used in devices that require advanced wireless features, with minimal
system size and maximized battery life. The RSL10 Software Development Kit (SDK) includes firmware, software,
example projects, and documentation; which are all incorporated into an Integrated Development Environment (IDE) to
support the development of your applications.

Starting at version 2.0, the RSL10 IDE has been upgraded to the Eclipse Oxygen version with support for
CMSIS-Packs. The new environment is backward compatible with projects from RSL10 SDK 1.4, so the migration to
the CMSIS-Pack standard is not mandatory.

The RSL10 CMSIS-Pack is provided separately, and can be optionally imported into the RSL10 IDE 2.0. By using
the CMSIS-Pack, you can enjoy new features:

* Future releases of the RSL.10 CMSIS-Pack can be imported side-by-side on the RSL10 SDK 2.0, not requiring
the re-installation of the full SDK.

* Documentation can be accessed from inside the IDE.

e Sample projects can be imported more easily, through the pack manager.

e The setup of new projects is simplified by the RTE configuration wizard, where RSL10 software components,
such as libraries and source code, can be selected.

This document helps you to get started with the RSL10 SDK. It guides you through the process of connecting your
hardware, installing the software with the option of applying the CMSIS-Pack, configuring your environment, and
building and debugging your first RSL10 application.

1.2 INTENDED AUDIENCE

This manual is for people who intend to develop applications for RSL10. It assumes that you are familiar with
software development activities.

1.3 CONVENTIONS

The following conventions are used in this manual to signify particular types of information:

monospace Commands and their options, file and path names, error messages, code samples and code
snippets.
mono bold A placeholder for the specified information. For example, replace £ilename with the actual

name of the file.
bold Graphical user interface labels, such as those for menus, menu items and buttons.
italics File names and path names, or any portion of them.

1.4 MANUAL ORGANIZATION

Getting Started with RSL10 contains the following chapters and appendices:

www.onsemi.com
3

Getting Started with RSL10

1.5

Chapter 1: Introduction describes the purpose of this guide and how the book is organized, and gives a list of
suggested reading for more information.

Chapter 2: Connecting the Hardware explains how to connect the RSL10 Evaluation and Development
Board to a computer running Windows®.

Chapter 3: Installing the Software describes the steps for installing the RSL10 SDK, including the steps for
applying the CMSIS-Pack for Eclipse Oxygen.

Chapter 4: Building Your First Sample Application shows how to import and build a sample application,
with or without CMSIS-Pack, as a practical introduction to using the SDK.

Chapter 5: More Information lists additional sources of information about using the RSL10 SDK, and
additional tools.

Appendix A: Arm Toolchain Support explains what to do if your IDE cannot find the correct toolchain
because you have other versions of the GNU toolchain installed.

FURTHER READING

For more information, refer to the following documents:

See Chapter 5, “More Information” on page 26 for a list of additional information sources.

www.onsemi.com
4

CHAPTER 2

Connecting the Hardware

2.1 Prerequisites

The following items are needed before you can make connections:

* RSL10 Evaluation and Development Board and a USB to Micro-USB cable
* A computer running Windows

2.2 CONNECTING THE HARDWARE
To connect the Evaluation and Development Board to a computer:
1. Check the jumper positions:
Ensure that the jumper CURRENT is connected and POWER OPTIONS is selected for USB. Also, connect the

jumpers TMS, TCK and SWD. Finally, connect the headers P7, P8, P9 and P10 to 3.3 V, as highlighted in
Figure 1.

&

‘ [*E N P
e 5 n,,.=n3§c-3
' Hragaes

FA2RS0 " s

maio
x1 29 EP
5 S Pi

JTAG MCU

o

Figure 1. Evaluation and Development Board with Pins and Jumpers for Connection Highlighted

2. Once the jumpers are in the right positions, you can plug the micro USB cable into the socket on the board.
The LED close to the USB connector flashes green during the first time plugging in, then turns a steady green
once the process is finished.

www.onsemi.com
5

Getting Started with RSL10

2.2.1 Preloaded Sample

The Evaluation and Development Boards come with one of the following preloaded sample applications:

e “Peripheral Device with Sleep Mode” is on boards with a serial number lower than 1741xxxxx.
e “Peripheral Device with Server” is on boards with a serial number higher than 1741xxxxx.

The serial number is on a sticker on the back of every board.

Another way to tell the difference is that LED1 blinks about 5 to 10 times per second with “Peripheral Device with
Sleep Mode” loaded, and blinks about 2 times per second with “Peripheral Device with Server” loaded.

For more information about “Peripheral Device with Sleep Mode” or “Peripheral Device with Server”, go to the
source/samples folder and see the /peripheral_server_sleep/readme_peripheral_server_sleep.txt file or /
peripheral_server_sleep/readme_peripheral_server.txt available in the RSL10 software development tools, or refer to
the RSL10 Sample Code User’s Guide. Alternatively, you can load a simpler sample application as described in
Chapter 4, “Building Your First Sample Application” on page 11.

www.onsemi.com
6

CHAPTER 3

Installing the Software

3.1 PREREQUISITE SOFTWARE

» Install the 64-bit variant of the most recent Java version, choosing the Java Runtime Environment (JRE).
» Install J-Link version 6.20f or later. They are available from the SEGGER website: https://www.segger.com/
downloads/jlink.

3.2 INSTALLATION PROCEDURE

Install the RSL10 Software Development Kit (SDK) by running RSL10_SDK_Installer.msi. The RSL10 software
development tools are installed in this location by default: C:\Program Files (x86)\ON Semiconductor\RSL10 SDK. If
you have a previous RSL10 SDK version installed:

1. Uninstall it.
2. Check if the RSL10 SDK folder is still there; if it is, delete it.
3. Install your new RSL10 SDK.

The release version and build number are stored in the REVISION text file at the root of the installed RSL10 SDK
software development tools.

If you are going to work in this environment, see Chapter 4, “Building Your First Sample Application” on page 11
for the next steps. To work in a CMSIS-Pack environment, see Section 3.3, “Optional RSL10 CMSIS-Pack Installation
Procedure”.

3.3 OPTIONAL RSL10 CMSIS-PACK INSTALLATION PROCEDURE

If you want to take advantage of supporting code written in different future releases of the RSL10 SDK, you will
want to install the RSL10 CMSIS-Pack. It will allow you to develop and debug code written in different releases of
RSL10 starting with Release 2.0 and going forward.

NOTE: You must have done the procedure in Section 3.2, “Installation Procedure” first.

1. Open your IDE and choose the desired location for your new workspace — for example, c:\workspace — and
click OK.

2. Once the IDE is open, navigate to Window > Preferences. On the left panel, select CMSIS Packs. In the
CMSIS Pack root folder field, type/choose a location where you would like your CMSIS-Packs to be
installed — for example, c:\cmsis_packs — and click Apply and Close (Figure 2).

www.onsemi.com
7

Getting Started with RSL10

© Preferences = =
ype filter text 4 CMSIS Packs T

General
CfCes CMSIS Pack root falder: C\emsis_packs —
Changelog
CMSIS Packs Adtdl links 10 the sites where packages are published,
Help Type Name UL v
Install/Update CMSIS Pack Kl itk feew kel com/ packindex pidx '
Litarary Hover Edit
MCU
Mylyn Delete
Oomph

Remate Development
Remote Systems

RPM

Run/Debug

Team

Terminal

Tracing

Validation

XML

Check for Updates on first launch everyday

Proxy Settings
9 No Proxy () HTTP Proxy () SOCKS Proxy

Ackdress: Port:
User name: Password:
Restore Defaults || Apply

@ ® Apply and Close Cancel

Figure 2. Configuring the CMSIS-Pack root folder

3. On the top right corner, click on the Open Perspective icon, select CMSIS Pack Manager, and click OK (see
Figure 3).

£ Open Perspective l =) ﬁ

»

M@C/C++ (default)

E\@ @ CMSIS Pack Manager B

G [#aCVS Repository Exploring
4 Debug
Quick Access | |E || [Eg #5GDB Trace
[Git

Buil.. | Open Perspective & TTng Kernel

- 0S Tracing Overview
= %y Packs
ailable. (@ Planning
EHRemote System Explorer

[{5 Resource

£7Team Synchronizing

=

[Open] l Cancel

Figure 3. Opening the CMSIS-Pack Manager Perspective

4. Click on the Import existing packs icon, select your pack file ONSemiconductor.RSL10.2.0.0.pack, and click
Open (see Figure 4). The pack can be found in the RSL10 Release 2.0 zip file, RSL10_SDK_2.0.zip.

www.onsemi.com
8

ON Semiconductor

. - — ——

£ Import Packs

@Ov‘ | » Computer » SYSTEM (C:) » cmsis_packs » v‘&, H Search cmsis_packs ol
Organize ¥ New folder = - j Q
[e M Desktop “ [Name Date modified
¢ Downloads
R - I .Download
«» Recent Places
Quick Access | B | @t} . | Web
= -
= = = o 5 | | ONSemiconductor 1 £
: 7 = O = pack Properties & O 7 Libraries - -]
e |[¥] 3 ONSemiconductor.RSL10.1.2.0.pack 8/29/2017 3:52 P
Import existing packs BEE® T ‘.. Documents — —
4. Music b
& Pictures
; Videos
& Computer
& SYSTEM (C) k=T 1 | b
File name: ONSemiconductorRSL10.1.2.0.pack - |PackFiIes(*‘pack) "
[Open }V] \ Cancel I

Figure 4. Installing the RSL10 CMSIS-Pack

The IDE prompts you to read and accept our license agreement, and then installs the RSL10 CMSIS-Pack in

5.
the specified pack root folder.
6. After installation, click on the Reload Packs icon (see Figure 5) to update your list of installed packs.
E=R =N~
G Quick Access || [| T (@ 4

installed packs | ‘ < B¢ T T O = PackProperties 3 T O

IRe‘;oad Packs in the CMSIS Pack root foiderr

Figure 5. Reload Packs Icon

The RSL10 CMSIS-Pack now appears in the list of installed packs. In the Devices tab, if you expand All

Devices > ONSemiconductor > RSL10 Series you can see RSL10 listed there. You can manage your
installed packs in the Packs tab. Expanding ONSemiconductor.RSL10 makes the Pack Properties tab display

the details of the RSL10 CMSIS-Pack. Figure 6 on page 10 illustrates what the Pack Manager perspective

7.

looks like after installation.

www.onsemi.com
9

Getting Started with RSL10

— i
© Oxygen2001 - omsis/source/start< - Edlipse = | s
File Edit Source Refactor Navigate Search Project Run Window Help '

I’
1= |G A ®E v e PR L BB Sl il oy Quick Access || B | B 1+ [

e® *=0

B Devices I 8 Boa BE®|% *° 0 @rasH CEan BEE@|d@Fiu =0

= Pack Properties 1T

type filter text Search Pack type filter text

Device Summary Pack Action Description 4 f ONSemiconductor RSL101.20 -
o % A Devices 1 Device 4 *® Device Specific 1 Pack RSL10 selected B Boards
+ % onsemiconductor 1 Device + % ONSemiconductorRSL10 @ LR ta.dal OM Semiconductor RSL10 Devica f + & Components
« % RSL10Series 1Device 120 % Remove | Release 120 + ¢ Device
B RsLi0 ARM Cortex-M3 48 MHz. 32 ki RAM, 384 kB * Previous ONSemicanductar RSLLO - Previou: + @ Lipraries il
* Generic Software Packs with generic conter| @ Calibrate =
@ Custom Protocel l
@ Flash
. @ System
- ¥ Math
- @ Kemel
@ BLE
@ Remote_Mic
- @ Weak_PRF
Startup
@ Bluetooth Profiles
+ B Devices
4 4§ RSL10 Series
W R5L10
+ % Examples
ADC_UART (RSL1D Evaluation Board)
Aes128 (RSL10 Evaluation Board)
Blinky (RSL10 Evaluation Board)

Central_client (RSL1O Evaluation Board) ~
‘ 1 »

B Console &]
CMSIS Pack Manager
18:12:38: Importing Pack ONSemiconductor.R5L18.1.2.8 completed

ZEE| @ on

Figure 6. Pack Manager Perspective after RSL10 CMSIS-Pack is Installed

For the next steps of working with a sample application, see Chapter 4, “Building Your First Sample
Application” on page 11.

www.onsemi.com
10

CHAPTER 4

Building Your First Sample Application

This section guides you through importing and building your first sample application, named blinky. This
application makes the LED (DIOG6) blink on the Evaluation and Development Board. The following procedure assumes
you have installed the SDK.

For more information about the sample applications, see the RSL10 Sample Code User’s Guide.

4.1 LAUNCHING THE IDE
To use the IDE for the first time, follow the steps below:
1. To start the IDE, go to the Windows Start menu, and select ON Semiconductor > RSL10 SDK IDE.

2. When you open the IDE for the first time, you are prompted to select a workspace for the session. The
workspace is the work area for all your IDE projects.

IMPORTANT: Create a new workspace for your version of the RSL10 IDE. Re-using an existing workspace
originally created with other Eclipse-based IDE may not be compatible.

The procedures in this chapter are written on the assumption that you are looking at the Workbench perspective.

4.2 IMPORT THE SAMPLE CODE

Depending on whether you installed the CMSIS-Pack or not, choose one of the procedures in the following
subsections. If you have chosen to install the CMSIS-Pack, jump to Section 4.2.2, “Importing Sample Code With
CMSIS-Pack” on page 13 to learn how to import code in that environment. Otherwise, continue to Section 4.2.1,
“Importing Sample Code Without CMSIS-Pack”.

4.2.1 Importing Sample Code Without CMSIS-Pack

To import the Simple GPIO I/O sample code (affectionately known as blinky):

1. Click on the File menu item and select Import. An Import dialog opens.
2. Select the General folder and click on Existing Projects into Workspace, as shown in Figure 7.

www.onsemi.com
11

Getting Started with RSL10

= Import ‘ = &8 ‘

Select \
Create new projects from an archive file or directory. -E 4 5 I

Select an import source:

type filter text

4 [General -
[E, Archive File
=% Existing Projects into Workspace
[:l‘ File System k
L Preferences

> = CCes

> = CVS

> (= Git

> 2= Install

» (== Remote Systems

> (= RPM

» (= Run/Debug

w2 Tasks L &

» [Team

=2 Trarinn

m

» .
@ < Back Next » Einh

Figure 7. Importing an Existing Project

3. Click Next, and the Import Projects dialog appears. Select the Copy projects into workspace check box, as
shown in Figure 8 on page 12.

= Import

Import Projects

Select a directory to search for existing Eclipse projects.

]
b &
ILE

@) Select root directory: - Browse...
() Select archive file: Browse...
Projects:

Select All
Deselect All

Options
[Search for nested projects
Copy projects into workspace
Waorking sets

|| Add project to working sets

Select...

:
. < Bacl NE > nis ancel
® s |[o

Figure 8. Import Projects Dialog Box

www.onsemi.com
12

ON Semiconductor

4. Browse to the folder blinky, as shown in Figure 9 on page 13, and click OK. The sample code is in the RSL10
installation directory (C:\Program Files (x86)\ON Semiconductor\RSL10 SDK by default) under
source\samples

Browse For Folder

Select root directory of the projects to import

4 RSL10 SDK 2.0
| arm_tools
configuration
| documentation
| eclipse
I include
lib
4 | source
> | firmware
4 | samples
| ADC_UART

aesl28
ble_peripheral_server_bond
blinky

central_client
central_client_bond
central_client_uart
central_peripheral
custom_protocol_trx
default MANU_INFO_INIT
DMIC_OD

| flash_copier and _crc

Folder: ~ blinky

Make New Folder | oK] I Cancel

Figure 9. Select a Project to Import

5. On the Import Projects dialog, click Finish. This creates a new project in your workspace called blinky. The

project appears in the left side of Project Explorer, as shown in Figure 10.

K5 Project Explorer 2

4 1= blinky
> [Includes
> = include
» g app.c

S%|e =0

=| readme_blinky.txt

= eartinne Id

Figure 10. Newly Imported Project

4.2.2 Importing Sample Code With CMSIS-Pack

1. In the Pack Manager perspective, click on the Examples tab to list all the example projects included in the
RSL10 CMSIS-Pack.
2. Choose the example project called blinky, and click the Copy button to import it into your workspace (see
Figure 11 on page 14).

www.onsemi.com

Getting Started with RSL10

&8 Packs [Examples & O Only show examples from installed packs ‘ @ ‘ &= Y70

Search Example

Example Action Description
blinky (RSL10 Evaluation Board) & Copy . Blinky GPIO I/O Sample Code
central_client (RSL10 Evaluation Board) % Copy Central Device with Client Sample Code
central_client_double (RSL10 Evaluation B #* Copy Central Device with Client Sample Code - Double
central_peripheral (RSL10 Evaluation Boar ¥ Copy Central Peripheral Device Sample Code
custom_protacol_trx (RSL10 Evaluation B Copy Low Latency Audio Sample Application with Custom Prot...
default_ MANU_INFO_INIT (RSL10 Evaluati|% Copy Default System Initialization Function
hei_app (RSL10 Evaluation Board) % Copy Host Controller Interface Application
pair_bond (RSL10 Evaluation Board) % Copy Pairing and Bonding with Peripheral Device Sample Code
pair_bond_master (RSL10 Evaluation Boar® Copy Pairing and Bonding with Central Device Sample Code
peripheral_server (RSL10 Evaluation Boarc % Copy Peripheral Device with Server Sample Code
peripheral_server FOTA (RSL10 Evaluatior® Copy Peripheral Device with Server for Sending Firmware Over ...
peripheral_server_hrp (RSL10 Evaluation B¥ Copy Heart Rate Peripheral Device with Server Sample Code
peripheral_server_sleep (RSL10 Evaluation® Copy Sleep Mode Sample Code for Peripheral Device with Serv...

sleep_ble_advertisements (RSL10 Evaluati|% Copy Sleep and Wakeup with Bluetooth Low Energy Technolog...
sleep_RAM _retention (RSL10 Evaluation B/ Copy Sleep and Wakeup Sample Code

standby_power_mode (RSL10 Evaluation [¥ Copy Standby Power Mode Sample Code
supplemental_calibrate (RSL10 Evaluation® Copy Supplemental Calibration Sample Code

Figure 11. Pack Manager Perspective: Examples Tab

3. The C/C++ perspective opens and displays your newly copied project. In the Project Explorer panel, you can
expand your project folder and explore the files inside your project. On the right side, the blinky.rteconfig file
displays software components. If you expand Device > Libraries, you will see the System library (libsyslib)
and the Startup (libcmsis) components selected for blinky (see Figure 12 on page 15).

NOTE: Sample projects are preconfigured with Release versions of RSL10 libraries, which are
distributed as object files. In the RTE configuration, you can switch to the Source variant to
include the source code of the library directly into your project (see Figure 12 on page 15).

www.onsemi.com
14

ON Semiconductor

© ongenoot]

File Edit Source Refactor Navigate Search Project Run Window Help

o A Rl i - A R+ R N AR =R 1i@-iBin|rnoNzeeZ3R|SiRH oD~
&5 Preject Explorer 01 @l® 770 [dstate @ blinkprteconti & =8
& blinky 4 Components - " @
- @ Includes
. RTE Saftware Components Sel. Vanant Vendor Version Description
. @ maine B s ONSemiconduc ARM Cortex-M3 48 MHz. 32 kB RAM, 334 kB ROM
% blinky.ecanfi “ # Dwvice
readme_blinky.tx + ¥ Bluetooth Profile:
sectionsld + ¥ Uibearies
& e (warues ¢ BLE O release L ONSemiconduc 100 Bluetooth Stack (libblelib)
% > measure_rc.osc Twatvee ¢ calibrate O release L ONsemiconduc 100, Calibration Libeary (ibcalibratelib)
& remote_mic_nraw # Custom ProtocD) release 2 ONSemiconduc 100 Low Latency Audio Streaming Customn Pretocel Library (libe
5 remote_mic_u_raw ¥ Flash O release L ONSemiconduc 100 , Flash Library (libflashlib)
¥ Kemel O release L ONSemiconduc 100 | Event Kemel Library (libkelin)
¥ Math 0O release 4 ONSemiconduc 100 Math Library {liomathlib)
* Remote Mic U release 4 ONSemiconduc 100 | Remote Microphone Library (libremate_miclib)
System B release L, ONSemiconduc 100 System Macros and Library (libsyslit)
* Weak PRE O release |, ONSemiconduc 100 Weak Profile Library (weak_gprf)
¥ Starup B release L ONSemiconduc 100 | RSL10-CMSIS Startup Library and Include Folders (libemsis)
Validation Output Description

Camponents| Device Packs
Figure 12. RTE Configuration For the Blinky Example Project

4.3 BUILD THE SAMPLE CODE

1. Right click on the folder for blinky and click Build Project. Alternatively, you can select the project and click
the hammer icon shown in Figure 13 on page 16.

www.onsemi.com
15

Getting Started with RSL10

File Edit Source Refactor Navigate Search Project Run Window H

i |®n’ia:@'6‘3'="'6’v°§sv0v8§vﬂ
5 Project Explorer 22 = %[o ¥ = 0 & |
S '
8 Inc Go Into
. = De Open in New Window
> = inc Show in Local Terminal 4
» & RTI & Copy Ctrl+C
» e apy Paste Ctrl+V
@ blit 3¢ Delete Delete
=l rea Remove from Context Ctrl+Alt+Shift+Down
=l seq Source 4
Move...
Rename... F2
s Import..
3 Export.
€ CMSIS C/C++ Project 4
Build Project
Clean Project
Refresh
Close Project
Close Unrelated Projects

Figure 13. Starting to Build a Project

2. When the build is running, the output of the build is shown in the Eclipse C/C++ Development Tooling (CDT)
Build Console, as illustrated in Figure 14.

El Console 5

CDT Build Console [blinky]
13:43:57 **** Build of configuration Debug for project blinky ****
make all
"Invoking: Cross ARM GNU Print Size
arm-none-eabi-size --format=berkeley "blinky.elf”
text data bss dec hex filename
1988 164 8 2168 834 blinky.elf
"Finished building: blinky.siz

13:43:53 Build Finished (tock S@4ms)

Figure 14. Example of Build Output

3. The key resulting output in Project Explorer includes:
* blinky.hex: HEX file for loading into Flash memory

+ blinky.elf: Arm® executable file, run from RAM, used for debugging
* blinky.map: map file of the sections and memory usage

These files are shown in Figure 15 on page 17.

NOTE: You might need to refresh the project to see the three built output files. To do so, right-click on
the project name blinky and choose Refresh from the menu.

www.onsemi.com
16

&5 Project Explorer &2 | = &
4 & blinky

- %% Binaries

+ [Includes

4 (= Debug

> app.o - [arm/le]
- % blinky.elf - [arm/le]
= app.d
= blinky.hex
= blinky.map
& makefile
@ objects.mk
& sources.mk
@ subdirmk
> = include
- & RTE
- g app.c
4 blinky.rteconfig
=| readme_blinky.txt
=| sections.ld

=

Figure 15. Output Files from Building a Sample Project

ON Semiconductor

NOTE: If the IDE has trouble finding the GNU toolchain, it might be caused by having other GNU
toolchains installed. See Appendix A, “Arm Toolchain Support” on page 29 for more

information.

4.4 DEBUGGING THE SAMPLE CODE

4.4.1 Preparing J-Link for Debugging

Before you can debug with J-Link, configure the location of the J-Link GDB Server:

1.
2.

Under Window > Preferences go to Run/Debug and select String Substitutions.
Make sure the Jlink_gdbserver and jlink_path resemble the image in Figure 16.

www.onsemi.com
17

Getting Started with RSL10

= Preferences

type filter text
> General
CIC++
Changelog
Help
Install/Update
Library Hover
> Mylyn
» Remote Systems
4 Run/Debug
Console
External Tools
Launching
Perspectives
String Substitution
View Management
View Performance
> Specfile Editor
Team
Terminal
Tracing

@

o [@]&]
String Substitution Kooy ot
Create and configure string substitution variables.
Variable Value Description Contributed By New.
jlink_gdbserver JLinkGDBServerCL Name of the J-Link GDB server executable ilg.gnuarmeclipse.debug.gdbjtag.jlink

Jlink_path

C:\Program Files (x86)\SEGGER\JLink V620f\ Path to J-Link installation folder

ilg.gnuarmeclipse.debug.gdbjtag,jlink

Figure 16. Configuring the J-Link GDB Server

4.4.2 Debugging with the .elf File

0K

I

Cancel

If you have performed the steps in the previous sections, you are ready to debug the application using the .elf file as

follows:

1. Within the Project Explorer, right-click on the blinky.elf file and select Debug As > Debug

Configurations...

2. When the Debug Configurations dialog appears, right-click on GDB SEGGER J-Link Debugging and

select New. A new configuration for blinky appears under the GDB SEGGER heading, with new
configuration details in the right side panel.

3. Adjust the following values for your configuration:

a. Change to the Debugger tab, and enter RSL10 in the Device field. Ensure that SWD is selected as the

target interface (as shown in Figure 17).

www.onsemi.com

18

type filter text

[E1 C/C++ Application

C/C++ Attach to Application

C/C++ Postmortem Debugger

C/C++ Remote Application

GDE Hardware Debugging

B SEGGER J-Link Debugging
1 blinky

¥ Launch Group

Filter matched B of & items

)
)

& Debug Configurations
Create, ge, and run confi i
X 8%

Mame: blinky

[0 Main |$5 Debuggerl, ¥ Startup | ' Source| T Common

J-Link GDB Server Setup
| Start the J-Link GDB server locally

Executabile: Slilink_path}/$[jlink_gdbserver}

Device name: RSLL0

Endianness (@ Little Big
Connection: @ USB P
Interface: 2 SWD ITAG

Initial speed: Auta Adaptiv @ Fixed

GDBport 2331
SWOport 2332
Telnetport 2333

Log file:

Other options: -singlenun -strict -timeout 0

¥ Allocate console for the GDB server

GDB Client Setup

Executable; Sicross_prefixlgdbScross_suffix)

Other options:

Connect 1o running larget

(USB serial or IP name/address)

1000 kHz

| Verily downloads || Initialize registers on start

| Local host only

¥ Allocate console for semihosting and SWO

Commands: set mem inaccessible-by-default off

Remote Target
Host name or IP address | localhost

Port number: 2331

[Force thread list update on suspend

Supported deyice names

Figure 17. Setting Up a GDB Launch Configuration, Debugger Tab

ON Semiconductor

b. Change to the Startup tab and enter the following in the Run/Restart Commands field as illustrated in
Figure 18:

set {int} & VTOR = ISR Vector_ Table
set $sp = *((int ¥*)

&ISR _Vector Table)

www.onsemi.com
19

Getting Started with RSL10

[l Main | %% Debugger | B Startup . % Source| = Common
Initialization Commands

[¥] Initial Reset and Halt Type: Low speed: 1000 kHz

JTAG/SWD Speed: @ Auto () Adaptive () Fixed kHz
Enable flash breakpoints
Enable semihosting Console routed to: [V] Telnet [| GDB client

Enable SWO CPU freq: 10000000 Hz. SWO freq: 0 Hz. Port mask: (Oxl

Load Symbols and Executable
Load symbols
@ Use project binary: blinky.elf

() Use file: Workspace... File System...
Symbols offset (hex):
Load executable 2
@ Use project binary: blinky.elf
©) Use file: Norkspace... File System...

Executable offset (hex):

Runtime Options

D RAM application (reload after each reset/restart)
Run/Restart Commands

Pre-run/Restart reset Type: (always executed at Restart)
set {int} &_VTOR = ISR_Vector_Table

set $sp = *((int *) &ISR_Vector_Table)

[] Set program counter at (hex):
Set breakpoint at: main
Continue

Figure 18. Setting Up a GDB Launch Configuration, Startup Tab

4. Once the updates to the configuration are completed, make sure the Evaluation and Development Board is

connected to the PC via a micro USB cable, and click Debug. J-Link automatically downloads the blinky
sample code to RSL10’s flash memory.
NOTE: If J-Link does not automatically write your program to RSL10’s flash memory, make sure you
are using J-Link version 6.20f or later and that the RSL10 IDE points to the correct location, as

www.onsemi.com
20

ON Semiconductor

shown in Section 4.4.1, “Preparing J-Link for Debugging”.

IMPORTANT: If the preloaded sample “Peripheral Device with Sleep Mode” is currently on your board (see
Section 2.2.1, “Preloaded Sample” on page 6 for help determining what your preloaded sample is), and you are
having difficulty connecting to the board, do the following:

a. Connect DIO12 to ground.

b. Press the RESET button (this restarts the application, which will pause at the start of its
initialization routine).

c. Repeat step 4 above. After successfully downloading blinky to flash memory, disconnect DIO12
from ground, and press the RESET button so that the application will work properly.

Alternatively, use the Stand-Alone Flash Loader (available with its own manual in the
RSL10_Utility_Apps.zip file) to erase the “Peripheral Devices with Sleep Mode” application from the
board’s flash memory.

5. Eclipse asks if you would like to open the Debug perspective. Answer Yes, and click on Remember my
decision so that the question is not asked again.

6. The Debug perspective opens and the application runs up to the first breakpoint in main, as shown in Figure 19
on page 22. You can press F6 multiple times to step through the code and observe that the LED changes its
state when the application executes the function Sys GPIO Toggle (LED DIO).

www.onsemi.com
21

Getting Started with RSL10

-
£ Oxygen2001 - blinky/main.c - Eclipse

e 5 e |

Hmihe |Bitt~ O~ Q@S &~
i vyt o w Do

4% Debug & [i+ =8
4 [©] blinky [GDB SEGGER J-Link Debugging]
4 {2 blinky.elf
4 o Thread #1 57005 (Suspended : Breakpoint)
= main() at main.c:139 0x1003de

sl JLinkGDBServerCLexe

4 arm-none-eabi-gdb

» Semihosting and SWV

File Edit Source Refactor Mavigate Search Project Run Window Help

@viBiw|mnme R 0lid | & i
Quick Access = | BE®
% Brea.. 3 ¢ Expr.. Wi Reg Mod... Peri. = O |

gl... =
XEEA | BEE Y |0
& app.c [function: main] [type: Temporary]

[¥]. main.c [line: 134]

[#]e mainc [line: 139]

No details to display for the current selection.

4 blinky.rteco [@ mainc 2 1 = B E= Qutline 2 FEEZRY e Y= B
124 % - e o S rsl10h
125 int main(void) # CONCAT(Q
126 { # DIO_SRC(
2127 /*_Ilji;%alize the system */ # BUTTON DIO
EE Initialize(); # LED.DIO
oo /% Spin loop */ # RECOVERY_DIO
131 while (1) &Y led_toggle_status : volatile uint8_t
132 { ++ DIO0_IRQHandler(void) : void
133 /* Refresh the watchdog time ++ Initialize(void) : void
134 Sys_Watchdog_Refresh(); e DIO0_IRQHandler(void) : void
B? T le GPTO 6 (if t 1 e Initialize(void) : void
6 oggle 6 (if togglin T
137 if (led_toggle_status == 1) S main(yoid) ;i
138 L
139 Sys_GPIO_Toggle(LED_DIO) - -
140 } - il
141 else
142 { &
< | 111 | »
& Console + Tasks ! Problems (2 Executables &} Debugger Console 2 | EmbSys Registers B~=0 o
blinky [GDB SEGGER J-Link Debugging] ${cross_prefix}gdb${cross_suffix} (277}
128 Initialize(); -
Breakpoint 3, main () at ../main.c:134 I
i134 Sys_Watchdog_Refresh(); =
—— PRI P PR '
[l =
o —

Figure 19. Debug Perspective

4.4.3 Peripheral Registers View with RSL10 IDE

1. The RSL10 IDE includes the EmbSysReg third party plugin, which can be used in a Debug session to visualize
and modify RSL10 registers values. To configure the plugin, open Window > Preferences

2. On the left panel, select C/C++ > Debug > EmbSys Register View (see Figure 20 on page 23)

3. On the right panel, select Architecture: cortex-m3, Vendor: ONSemiconductor, Chip: RSL10 (see Figure 20

on page 23)

www.onsemi.com
22

ON Semiconductor

= Preferences = B3]
type filter text EmbSys Register View Pywrw
> G |
bt A Periperal Reqgister View for embedded system -
4 CfC++ —
Appearance Architecture: Chip description
» Autotools = ON Semiconductor RSL10
) cortex-m3 A
> Build
Code Analysis | penecr:
. Code Style ~ |oNsemiconductor -
4 Debug Chip: i
Breakpoint Acti
fea point Actions [RSIJ.O v|
Disassembly
4 EmbSys Register View Board:
Behavior = NONE —— ¥
Floating Point Memory Renderer h |
GDB .
Source Lookup Path . il il » »
'@ OK J | Cancel

Figure 20. EmbSys Register View Configuration

4. Assuming you are running a Debug session for blinky, open Window > Show View > Other...
5. Under Debug, select EmbSys Registers and click OK.

' 2 Show View =

type filter text

+ & General -
- &= CfC++
» &= C/C++ Packs
i = Charts
> & CVS
4 (= Debug
® Breakpoints
%% Debug
2= Disassembly
B EmbSys Registers
(@ Executables

m

&1 Expressions -

[OK] | Cancel ‘

Figure 21. Opening the EmbSys Register View

6. The EmbSys Registers view will open and display all the RSL10 peripheral registers. If you wish, you can
drag the EmbSys registers window and place it side-by-side with your source code view (see Figure 22 on
page 24)

7. Expand and double click the DIO > DIO > DIO_DATA register. It will turn green to indicate you have
activated real-time monitoring for this register

8. Press F6 to step through the code and you can observe that this register bit 6 toggles its state when
Sys_GPIO Toggle (LED DIO) is executed.

www.onsemi.com
23

Getting Started with RSL10

9. Double click the Bin column, which contains the current binary value of this register. It will display buttons for
each bit. Click on the Bit 6: GPIO button to change its state and then click on Set, as shown in Figure 22 on
page 24. You can observe that the LED (DIO6) on your board changes its state.

& Debug - blinky/maine - Felipse === x|
File Edit Source Refactor Navigate Search Project Run Window Help
P R e e e | =3 B T SR S0 L AT R TR S o e Quick Access | BEc/c++ (%5 Debug |
5 Debug & it B T =0 % Brea i IR - =n
« [blinky [GDE SEGGER J-Link Debugging) - Rt | H i
4 5% blinky.ell V| @ [function: main] [type: Temparary]

4 o Thicad [1] 57005 (Suspended : Step)
= main(} at mam.c139 0x1003d6

& JLnkGDBServertL w il 5 -
int main{void) - o Ao Vendor: ONSemiconductor Chip: RSL10 Board: -~ none
{ Register Hex Bin Reset Acc.. Address Description *
ze the system */ [D1o_cFGierd] xO00D313F RW 0w4D0007... Digital I Cont
Initialize(); [Z] DIO_CFG[en]] x0000313F RW 0x400007... Digital 10 Canf
7 Spin looe *f [p1o_cFGllen]] 00OD313F RW 0w4D00OT... Digital 10 Cont
while (1) [p1o_craifen]] x000D313F RW 0wADO0OT... Digital I Cont
{ [D1o_cFGien]] (xO00D313F RW 0w4D00O7... Digital I Cond
/* Refresh the watchdop timer =/ [DIo_cFGlfer]] x000D313F RW 0w4D0007... Digital I Conf
Sys_Watchdog Retresh(); [DI0_CFG{lerd] eOOGO313F - RW mmr.. Digital 10 Conf =
=1 Do darll F

Q Conf,
/™ Togele GPIO & (if is enabled) the: xonnoFosa Bl na'
i\'f (led_toggle status - 1) 1] Ot (bits 15-01 OFOG0 1111000001100000 | (1% read
. Sys_GP10. Toggle(LED_D10); [] GRIO (bits 15-0) [1111000001 100000 GPIO[15:0] writ
} [pio_oiR xO000BO00 AW Dwd0007... Digital 10s Dire
alse [oio_MODE 00000000 RO hAD0007... Digital 10s Mo«
[E] DIo_INT_CF6fer] 00000000 AW [d00007... DIO Internupt €
Sys_GPLO_Set_Low(LED_DIO); [DIO_INT_CFGfer]] 00000000 RW 0x4D0007... DIO Interupt C
‘lys_uul.:y_vrvugr-.:mkuww.5 - systeiCoreciocky; |8 E DIC_INT_CF6[ferr]] 00000000 AW 0400007 DIO Internupt €
] = [DIOINT TG ferr] 00000000 AW rdD0007... DIO Interrupt €
) [Z] DIoy_INT_DERQUMNCE 00000000 AW d00007... DIO Interrupt B
- [Dio_PeM_SRC (00111111 AW 0d00007... PCM Input Sele =
. i b . i '
Console : B Console &1 L % | lm &l B +8~-riv=n0o
blinky [G?B S[GG[II‘\‘J-LiﬂK Debugging] JLinkGDBServerCL
Read 4 bytes @ address @x@@1080306 (Data AxFIFF2006) =

Read 4 bytes @ address @w40000748 (Data - Qx@eearece) =
Read 1 bytes @ address @x801202(4 (Data - ©x80)
Read 1 hutac B addrace AVARIAAICA (Nata - GvA)

Figure 22. Toggling RSL10 DIO Using the EmbSys Registers View

4.4.4 Arm® Cortex®-M3 Core Breakpoints

A maximum of two hardware breakpoints can be set at a given time. If you need more than two breakpoints, you
can use the Unlimited Flash Breakpoints feature available through J-Link.

4.5 FOLDER STRUCTURE OF THE RSL10 SDK INSTALLATION

By default, all files are installed in C:\Program Files (x86)\ON Semiconductor\RSL10 SDK, but you can choose to
install the SDK anywhere. The subfolders are described in Table 1.

Table 1. Installed Folders

Folder Contents

Root installation folder IDE application to start the SDK software license file and 3rd party license files.

arm_tools Full installation of the GNU Arm Toolchain

configuration Linker script file sections.ld. Linker settings must point to this location for the
linker scripts.

www.onsemi.com
24

Table 1. Installed Folders

ON Semiconductor

Folder Contents

documentation Hardware, firmware and software documentation in PDF format. Also 3rd-party
documentation from other companies besides ON Semiconductor. Available from
a link in the Start menu.

eclipse Full installation of Eclipse Oxygen version with GNU Arm plugins to support
Arm Cortex-M3 processor processor development.

include Include files for firmware (BLE, Syslib, Flashlib etc.) Projects must point to this
directory and sub-directories when including firmware header files.

lib Pre-built libraries which can be linked to by sample code or other source code.
Project linker settings must point to this directory when linking with firmware
libraries.

source firmware The source of the provided support libraries.
samples Sample code sources as ready-to-build

projects.

www.onsemi.com
25

CHAPTER 5

More Information

5.1 MORE INFORMATION

Documentation is available via a shortcut on your Start menu: ON Semiconductor > RSL10 SDK
Documentation. You can also access documentation through the documentation.zip file downloaded with this release
of RSL10.

If you added the RSL10 CMSIS-Pack, a set of documents is included. From your IDE, you can access the
documents through the C/C++ perspective by opening any RTE configuration file, such as blinky.rteconfig, and
selecting the tab Device (see Figure 23 on page 28).

In addition to this guide, the following documentation is included with the RSL10 SDK:

RSL10 Release Notes
Lists new features in the latest release and known issues. This file is downloaded with the
installer in a zip file, and is not in the documentation folder.

RSL10 Sample Code User’s Guide
Explains how to use the sample applications provided with the RSL10 software development
tools. You learn about setting up your system, accessing code files, and how the sample
applications work, using the Peripheral Device with Server sample code as the prime example.

RSL10 Hardware Reference
Describes all the functional features provided by the RSL10 SoC, including how these features
are configured and how they can be used. This manual is a good place to start when you are
designing real-time implementations of your algorithms. or planning a product based on the
RSL10 SoC.

RSL10 Firmware Reference
The system firmware provides functionality that isolates you from the hardware, and
implements complex but common tasks, making it easier to support and maintain your code.
The Bluetooth firmware provides an implementation of the Bluetooth host, controller, and
profiles, supporting the standards-compliant use of these components within your application.
This manual provides a reference to both sets of firmware features, and explains how they can
assist with the development of your applications.

Arm and Thumb®-2 Instruction Set Quick Reference Card
From the Arm company, this quick reference card provides a short-hand list of instructions for
the Arm Cortex-M3 processor.

RivieraWaves Interface Specifications
Interface Specifications from RivieraWaves provide a description of the API for the specified
library:

* GAP Interface Specification

* GATT Interface Specification

* Host Error Code Interface Specification

* L2C Interface Specification

* RW BLE Alert Notification Profile Interface Specification
* RW BLE Battery Service Interface Specification

www.onsemi.com
26

ON Semiconductor

* RW BLE Blood Pressure Profile (BLP) Interface Specification

* RW BLE Cycling Power Profile Interface Specification

* RW BLE Cycling Speed and Cadence Profile Interface Specification
* RW BLE Device Information Service Interface Specification

* RW BLE Find Me Profile Interface Specification

* RW BLE Glucose Profile (GLP) Interface Specification

* RW BLE HID Over GATT Profile Interface Specification

* RW BLE Heart Rate Profile (HRP) Interface Specification

* RW BLE Health Thermometer Profile Interface Specification

* RW BLE Location and Navigation Profile Interface Specification

* RW BLE Phone Alert Status Profile Interface Specification

* RW BLE Proximity Profile Interface Specification

* RW BLE Running Speed and Cadence Profile Interface Specification
* RW BLE Scan Parameters Profile Interface Specification

* RW BLE Time Profile (TIP) Interface Specification

* RW BLE Wireless Power Transfer System Profile Interface Specification

LPDSP32 Documentation
The following documents are available in the RSL10_LPDSP32_Support.zip file:

» RSL10 Getting Started with the LPDSP32 Processor, which provides an overview of the
techniques involved when writing and integrating code for the LPDSP32 processor that is on
RSL10.

* LPDSP32-V3 Block Diagram, which provides a drawing of all the inputs, outputs,
components and process blocks

* LPDSP32-V3 Hardware Reference Manual, which describes the hardware aspects of the
LPDSP32-V3 core and its operations to provide an understanding of the core architecture and
various kinds of supported operations.

* LPDSP32-V3 Interrupt Support Manual, which describes how interrupts are supported.

* User Guide IP Programmers for LPDSP32-V3, which describes the C application layer, the
flow generally followed when any application is ported to LPDSP32, various tips for
optimization to make the best use of the processor and compiler resources, and certain things
the programmers should be aware of when porting applications. It also provides a few
examples to show the usage of LPDSP32 intrinsic functions and to give an idea of how
certain DSP functions can be ported to and optimized for LPDSP32.

www.onsemi.com
27

Getting Started with RSL10

S Oxygen2001 - bli fig - Edll_
File Edit Source Refactor Navigate Search Project Run Window Help
= R RGO LS T @ riBiw . 7 A TR ST A TR - 4
Iy Project Explorer & = - & starke | 4 blinkyrtecontig 0 [E10x0 [maine o
2 &5 blinky H Device @
& Binaries
w Includes Device: RSL10 Change...
+ (= Debug Family: RSL10 Series CPU: ARM Cortex-M3
& blinky.elf - [arm/le] SubFamily: Max. Clockc 48 MHz
) maina - farmyle] Vendor ONSEMiCOMIUCIon Memory: 32 kB RAM, 384 kB ROM
:l_l":\f-ht'* Pack ONSemiconductorRSL10.1.2.0 FRU: none
;:n‘:""” URL: it keilcom/dd2/onsemiconductor/rsl10 Endian: Little-endian
makefile Device data books: Description:

objects.mi
sourcesmk
subdir.mk
B RIE
g mainc
& blinky.rteconfig
readme_blinky.tet
sections.ld

n Set Quick Reference Card

RSL10 s an ultra-low-power, multi-protocol 2.4
GHz radio designed for use in wireless devices
that demand low power consumption and a
restricted size.

Figure 23. Accessing RSL10 Documentation

5.2 OTHER RELEVANT DOCUMENTATION

The following manuals and tools are available directly from the ON Semiconductor RSI.10 website:

RSL10 Evaluation and Development Board Manual

RSL10 USB Dongle

A reference manual that provides detailed information on the configuration and use of the
RSL10 Evaluation and Development Board. When you use this board with the software

development tools, you can test and measure the performance and capabilities of the RSL10
radio SoC.

The RSL10 USB Dongle acts as a generic central Bluetooth low energy device so that you can
develop applications for peripherals. It is designed to be used with the Bluetooth Low Energy
Explorer, which allows developers to become familiar with developing, testing, and evaluating
Bluetooth low energy devices. Bluetooth Low Energy Explorer lets you scan for your device,
read advertising data, connect, and discover services. You can then pair and bond to your device,
read and write to characteristics, subscribe to notifications, and receive characteristics updates.
The application also features a logging section, which displays the details of processes in the

underlying structure, allowing for easier troubleshooting. For more information, see the manual
that accompanies the application.

See the RSL10 product page for more information such as data sheets, application notes, and videos.

www.onsemi.com
28

http://www.onsemi.com/PowerSolutions/product.do?id=RSL10

APPENDIX A

Arm Toolchain Support

There are several ways in which the RSL10 Eclipse IDE determines which Arm GNU toolchain to use when
building. Understanding how this works can help prevent confusion and frustration, when the development machine has
several versions of GNU toolchains installed.

A.1 BASIC INSTALLATION

The RSL10 SDK supports the Arm toolchain, tested with the Oxygen versions of Eclipse, by installing it in the
arm_tools directory within the installed RSL10 software tools location. The build tools RM and Make are also included
with the toolchain, to allow for an easier building experience out of the box.

When the user starts the RSL10 SDK with the IDE.exe program (whose shortcut is located in Windows menu
items), the arm_tools\bin directory is added to the path, to give Eclipse access to the toolchain installed with the RSL10
software tools.

Conlflicts with toolchain versions can occur in the Eclipse Oxygen-based IDE, if an Arm-based toolchain has been
installed elsewhere or already exists on the path, and Eclipse selects that toolchain rather than the one included in
arm_tools.

A.2 CONFIGURING THE ARM TOOLCHAIN IN ECLIPSE

All toolchain location options can be accessed by right clicking on the project in the Project Explorer view,
selecting Properties at the bottom of the pop-up menu, and choosing the Toolchains tab. The scope of the toolchain
path support is described below.

Global Path:
This is the path used by all workspaces/projects. The global path can be set in the Toolchains tab of the project.

Workspace Path:
This is the path used by all projects in the current workspace.

Project Path:
This is the path used by the current project for its toolchain.

A.3 ADDITIONAL SETTINGS
Additional settings (other than the toolchain paths) are located within the MCU preference. These are:
* The Build Tools path (global, workspace, project-based) for tools such as Make and RM

* The Segger JLink path (global, workspace, project-based) for the location of the Segger JLink executables.
This replaces the Run/Debug string substitutions for JLink previously used.

www.onsemi.com
29

Getting Started with RSL10

Windows is a registered trademark of Microsoft Corporation. Arm and Cortex are registered trademarks of Arm Limited. All other brand names and product names appearing in this
document are trademarks of their respective holders.

ON Semiconductor and o are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other
countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any
products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does

ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws,
regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be
provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters,
including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor
the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical
devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or
use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or
manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in
any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: N. American Technical Support: 800-282-9855 Toll ON Semiconductor Website: www.onsemi.com
Literature Distribution Center for ON Semiconductor Free USA/Canada

19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Europe, Middle East and Africa Technical Support: Order Literature: http://www.onsemi.com/orderlit
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Phone: 421 33 790 2910

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada For additional information, please contact your local
Email: orderlit@onsemi.com Sales Representative

AND9697/D

	Getting Started with RSL10
	Table of Contents
	1. Introduction
	1.1 Purpose
	1.2 Intended Audience
	1.3 Conventions
	1.4 Manual Organization
	1.5 Further Reading

	2. Connecting the Hardware
	2.1 Prerequisites
	2.2 Connecting the Hardware
	2.2.1 Preloaded Sample

	3. Installing the Software
	3.1 Prerequisite Software
	3.2 Installation Procedure
	3.3 Optional RSL10 CMSIS-Pack Installation Procedure

	4. Building Your First Sample Application
	4.1 Launching the IDE
	4.2 Import the Sample Code
	4.2.1 Importing Sample Code Without CMSIS-Pack
	4.2.2 Importing Sample Code With CMSIS-Pack

	4.3 Build the Sample Code
	4.4 Debugging the Sample Code
	4.4.1 Preparing J-Link for Debugging
	4.4.2 Debugging with the .elf File
	4.4.3 Peripheral Registers View with RSL10 IDE
	4.4.4 Arm® Cortex®-M3 Core Breakpoints

	4.5 Folder Structure of the RSL10 SDK Installation

	5. More Information
	5.1 More Information
	5.2 Other Relevant Documentation

	A. Arm Toolchain Support
	A.1 Basic Installation
	A.2 Configuring the Arm Toolchain in Eclipse
	A.3 Additional Settings

