

TOSHIBA Photocouplers

Mouser Chalk Talk: Photorelays replacing Mechanical Relays

Toshiba America Electronic Components, Inc. Joseph Tso (Business Development Manager, Optoelectronics)

Overview Of Toshiba Photocouplers

© 2017, Toshiba Electronic Devices & Storage Corporation

HOC-3882

Over 40 years Photo Coupler Business

World's No.1 in:

- Photo Couplers sales since 2010 in a row
- Automotive Photo Couplers & Photo Relays
- ATE Photo Relays

Leading in:

- IC Photo Couplers
- Photo Relays

Broad range of Photo couplers

Competitive features of Toshiba

"The data is based on evaluation for limited lots. However, we perform the test not taking lot dispersion into account. So please regard the data as a reference. Life time characteristic will be accelerated depending upon using environment (temperature & humidity,conductive current etc.), we would appreciate your understanding. The lifetime prediction of GaAs(MQW) is estimated from deterioration trend and acceleration in GaAs."

Photorelays

© 2017, Toshiba Electronic Devices & Storage Corporation

Why Photorelays?

© 2017, Toshiba Electronic Devices & Storage Corporation

The merit of the Photorelay over Mechanical relays

Mechanical relay

Photo relay

TOSHIBA Leading Innovation >>>

Photorelay Application

© 2017, Toshiba Electronic Devices & Storage Corporation

Space-Constraint Applications (E.g. ATE)

© 2017, Toshiba Electronic Devices & Storage Corporation

Photorelay Application for ATEs (Testers)

ATE : Automatic test equipment

Pin Electronics

Leading Innovation >>>

DPS (Devise Power supply)

VSON4 Lineup

Topr is extended (from 85degC) to 110degC. Package size: 2.45 mm x 1.45 mm x 1.3 mm (typ)

	Туре	VOFF	ION	RON	RON	COFF	IOFF	tON	tOFF	В
×××		(min.)	(max.)	(typ.)	(max.)	(typ.)	(max.)	(max.)	(max.)	(min.)
	TLP3403	20V	1000mA	0.18Ω	0.22Ω	40pF	1nA	2ms	1ms	500
	TLP3431	20V	450mA	0.8Ω	1.2Ω	5pF	1nA	0.4ms	0.4ms	500
	TLP3450	20V	200mA	3Ω	5Ω	0.8pF	1nA	0.2ms	0.2ms	500
-	TLP3440	40V	120mA	12Ω	14Ω	0.45pF	1nA	0.2ms	0.3ms	500
	TLP3441	40V	140mA	5Ω	10Ω	0.7pF	1nA	0.2ms	0.2ms	500
Ī	TLP3442	40V	100mA	15Ω	20Ω	0.3pF	1nA	0.2ms	0.2ms	500
<	TLP3475	50V	300mA	1Ω	1.5Ω	12pF	1nA	0.5ms	0.4ms	500
	TLP3412	60V	400mA	1Ω	1.5Ω	20pF	1nA	0.5ms	0.5ms	500
*	TLP3451	60V	120mA	10Ω	15Ω	0.7pF	1nA	0.2ms	0.2ms	500
	TLP3417	80V	120mA	7Ω	12Ω	5pF	1nA	0.5ms	0.2ms	500
	TLP3419	80V	200mA	6Ω	8Ω	6.5pF	1nA	0.4ms	0.4ms	500
	TLP3420	100V	100mA	8Ω	14Ω	6pF	0.2nA	0.3ms	0.3ms	500

High runner for

DC relay

DPS relay (For device power source)

FC relay (For high frequency signal) *12GHz(f3dB) insertion loss (For DC measurement, Force & Sense)

VSONR4 Lineup (Built-in Resistance)

Package size: 2.75 (L) mm \times 1.45 (W) mm \times 1.3 (H) mm (typ)

Topr is extended (from 85degC) to 110degC.

Туре	VOFF	ION	VFON	RON	RON	COFF	CxR (pFΩ)	IOFF	tON	tOFF	BVs	Status
	(min.)	(max.)	(max.)	(typ.)	(max.)	(typ.)	(typ.)	(max.)	(max.)	(max.)	(min.)	
TLP3403R	20V	1000mA	3.0V	0.18Ω	0.22Ω	40pF	7.2	1nA	2ms	1ms	300Vrms	MP
TLP3412R	60V	400mA	3.0V	1Ω	1.5Ω	20pF	20	1nA	0.5ms	0.5ms	300Vrms	MP
TLP3475R	50V	300mA	3.0V	1Ω	1.5Ω	12pF	12	1nA	0.5ms	0.4ms	300Vrms	MP

S-VSON4 Lineup

Industry-smallest mounting area^{*1}: 2.00 mm×1.45 mm (typ.)

^{*1} As of February 2017, from a survey by Toshiba.

High Operating Temp: 110degC.

Height=1.75mm

	Туре	VOFF(min.)	ION(max.)	RON(typ.)	RON(max.)	COFF(typ.)	C(pF)xR(Ω) (typ.)	IOFF(max.)	tON(max.)	tOFF(max.)	BVs (min.)
X	TLP3406S	30V	1500mA	0.1Ω	0.2Ω	120pF	12	1nA@20V	2ms	1ms	500Vrms
	TLP3407S	60V	1000mA	0.2Ω	0.3Ω	80pF	16	1nA@50V	2ms	1ms	500Vrms
	TLP3409S	100V	650mA	0.4Ω	0.6Ω	50pF	20	1nA@80V	2ms	1ms	500Vrms
	TLP3440S	40V	120mA	12Ω	14Ω	0.45pF	5.4	1nA@40V	0.2ms	0.3ms	500Vrms
	TLP3475S	60V	400mA	1Ω	1.5Ω	12pF	12	1nA@50V	0.5ms	0.4ms	500Vrms

TLP3440S (under development) ES: available CS: B/Sep

High Current Applications (HVAC, thermostat, etc.)

TOSHIBA Leading Innovation >>>

© 2017, Toshiba Electronic Devices & Storage Corporation

HVAC(Including thermostat)

[Function of relay] HVAC (Heating Ventilation and Air Conditioning)

Photorelays are used for signal transmission from the thermostat to heating, ventilation (damper motor in VAV) and air conditioning control equipment in building automation. Conventionally, mechanical relays are used, but these can be replaced with high capacity photorelays.

[Function of relay]

TOSHIBA

Leading Innovation >>>

The safe torque off function is a safety function. In the event of anomaly (indicated by a safety signal input), drive signal to the servo amplifier shuts down, which in turn stops the motor torque. Photorelays are used to transmit monitor signals to controls, such as PLCs, in the safety circuit of the servo amplifier.

[Use] servo amplifier 、CNC、Robot etc

© 2017, Toshiba Electronic Devices & Storage Corporation

E-meter · Smart meter

[Function of relay]

Photorelays are used as contact output for external communication.

[Merit of Photorelays]

High withstand voltage
Reinforced insulation
Long life

Power monitoring system(BMS etc)

[Function of relay]

Photorelays are in the power monitoring circuit of battery cells. The relay is expected to make many contacts and photorelays are highly recommended as they have no contact life (long life).

small sizelong lifeHigh withstand voltage

TOSHIBA Leading Innovation >>>

[Function of relay]

When a suspicious activity is detected by the passive security sensor, the photorelay transmits this information to the reporting terminal.

TOSHIBA Leading Innovation >>>

[Function of relay]

A mechanical relay is traditionally used as the contact output of the PLC output stage. However, semiconductor relays (photorelays, PDA couplers + MOSFETs) have become the common choice due to their superior reliability.

[Merits of Photorelays]

High reliabilitySmall sizeHigh capacity

Leading Innovation >>>

List of High current Photorelays

High capacity photorelays (above 1A current) for the replacement of mechanical relays New product is highly recommended for new design.

Off-state voltage 20 to 40V

TOSHIBA Leading Innovation >>>

List of High current Photorelays

TLP3547

100

100

100

100

100

100

100

200

200

200

400

600

1.4

2

2

1

(1.5)

(3.5)

3

(0.7)

(0.5)

1.5

0.4

0.6

SOP6

SOP6

DIP6

DIP4

DIP4

DIP6

DIP8

DIP4

SOP4

DIP8

DIP8

DIP8

New

Current

Current

Current

Current

New

New

New

New

New

New

Current

Current

3Q/17

3Q/17

30/17

2Q/17

4Q/17

4Q/17

OK

4Q/17

3Q/17

OK

TOSHIBA Leading Innovation >>>

6

5

High current Photorelay lineup

TLP38xx series New Products

Feature: High ION, Low RON

- TLP3823: 100V / 3A
- TLP3825: 200V / 1.5A
- High Operating Temp: 110degC.
- High BV: 2500 Vrms

TLP172AM/TLP172GM/TLP175A

Low Input Current

TLP172xx Series: 3mA Class TLP175A: 1mA class TI P171xx Series: 0.2mA class

- Application
 •FA equipment
- •BMS (Battery Management System)
- •Security equipment
- Telecom
- replacement from Mechanical relay

Photo relay

For load drive with High BVs

TLP240A/240D/240G/240GA/240J/241A

Photo relay

1add to new line-up 2A output type, TLP241A

Expanded lineup from 40V to 600V for $V_{\text{OFF}}.$

 $I_{\mbox{\scriptsize ON}}$ are extended to 2.0A from 0.09A.

2adopted High-intensity LED

Possible to improve initial design margin for $\mathrm{I}_{\mathrm{F}}.$

3SMD and Various lead forms are available

- Application -

- ·FA ·BMS
- •WHM •Security
- ·IoT/ Building Automation
- •replace Mechanical relay

Line-ι	ab dr								
Ta=25℃						New			
	TLP240A	TLP240D	TLP240G	TLP240GA	TLP240J	TLP241A			
Output	1-form-A								
Package	DIP4								
I _{FT} (max)	3mA								
VOFF (min)	60 V	200V	350V	400V	600V	40 V			
RON (max)	2Ω	8Ω	50Ω	35Ω	60Ω	0.15Ω			
ION(max.)	0.5A	0.25A	0.1A	0.12A	0.09A	2.0A			
BVs(min.)	5kVrms								
tON(max)	3r		5ms						
tOFF(max)	1ms								

Safety standard(Reinforced Insulation)

- ●UL approved UL1577 file No.E67349
- cUL approved CSA Component Acceptance Service No.5A File No.E67349
- CQC approved GB4943.1, GB8898
- EN60747-5-5 Option (D4) type VDE approved

-Order name and Lead forming example -Ex) : TLP241A

Photovoltaic

Outline of Photovoltaic coupler

Photovoltaic couplers generate electric voltage by the photo diode arrays that receive the LED light

 \rightarrow A gate drive circuit, which does not require an external power supply!

Photovoltaic

High Temp. Operation, High BVs, Faster switching Photovol coupler

TLP3905/TLP3906 🛷

Compact SO6 Package Photovoltaic coupler!

·125 deg. High temperature operating

Suitable for relay switching under high temperature condition than competitor's equivalents which are guaranteed Topr=85 deg.

•Isolation voltage 3750Vrms

Isolation voltage BVs : up to 3.75kVrms (approved by VDE).

Faster switching speed

Control circuit is embedded in TLP3906.

 \rightarrow No need to evaluate shunt resistance at output side.

Enables faster switching speed.

	Current item	NEW	Current item	NEW		
	TLP190B	TLP3905	TLP191B	TLP3906		
Internal circuit	Without disch	arge resistance	With discharge resistance	With discharge circuit		
Package	MFSOP6	4pin SO6	MFSOP6	4pin SO6		
T _{opr}	-40 to 85°C	-40 to 125°C	-40 to 85°C	-40 to 125°C		
V _{oc}	7	7V	7V			
I _{SC}	12	2μΑ	12µA			
t _{on} / t _{off}	0.2ms / 1ms	0.3ms / 1ms	0.2ms / 3ms	0.2ms / <mark>0.3ms</mark>		
BVs	2500 V _{rms}	3750 V _{rms}	2500 V _{rms}	3750 V _{rms}		

Application

·PLC…Relay contact output module

·SPS…Inrush current prevention circuit

TOSHIBA Leading Innovation >>>

$\ensuremath{\mathbb{C}}$ 2017, Toshiba Electronic Devices & Storage Corporation

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which Minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) deterMining the appropriateness of the use of this Product in such design or applications; (b) evaluating and deterMining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- GaAs (Gallium Arsenide) is used in Product. GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export AdMinistration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA

Leading Innovation >>>

TOSHIBA Leading Innovation >>>