‘ IDT ZWIR45xx Application Note - Security

Using IPsec and IKEv2 in 6LOWPANSs

Contents
N 11 (o To 18 ox 1 o] o DU RPN UTRPPPRRPT 3
2 IPSEC AN IKEV2 OVEIVIEWeiiiiiiiiee ettt ettt e e e e ettt et e e o4 e s nb bttt e e e e e e o e n b b be e e e e e e e e sanbbbbeeeaeaeeeannnbsneaaaans 3
20 S | =TT o PP 3
2.1.1. IPSEC PrOCESSING ...ceiiiittiiiiiae e e ettt e e e e e ettt e e e e e e e et ettt et e e e e e e s b bttt e e ea e e aaasbbbe et e e aee e e nnbbbeeeaaeeeeannnbnneaaaans 4
V2 | N Y7 T PSPPSR T PP TP PR 6
2.2.1. Establishing a Secured Connection and Creating One IPSEC SAccooiiiciiiiiee et 7
2.2.2. Creating @ NEW IPSEC SA Pl ...ttt e e e e e e s bbb e e e e e e e s aanbaaeeeaans 7
2.2.3. REKEYING the TKE_SA ... ittt ettt e e oo e bttt e et e e e e e s bbb e et e e e e e e aanbbbe e e e e e e e e annbaneeaaens 8
2.2.4. REKEYING AN IPSEC SA ...oiiiiiie ettt e e ettt e e e e s s et e e e e e e s s st aeeeaeeeas s sstaeeeeaeesaanssntneeeeeeseannnrrnneeees 8
P T O [0 1= [[o - g IR Y A TP PRI 8
3 Setup and CONFIQUIE IPSECttt ettt et e e e 4 e ettt e e e e e e s e abbbeeee e e e e e sanbbbbeeeaeaeeeannbbnneeeaens 9
3.1, ENQDIE IPSEC PrOCESSING.....cuuetiieiieeetiiititeeeee e e s s astteeee e e e e e ss st eeeaesssastsaeeeeeeesssnsstaeeeeaeeesaasssseneeeeeesannsnnenes 9
3.2, Configure SPD @nd SAD ENIIES ..coiiiiiiiiiiiiiie ettt e ettt e e e e et e e e e e e e s sbbeeeeeaa e e e e anbbeseaeaeesaannnreees 9
I 7070 Y Vo [[T o - T IS Y AN = o1 VST UPRTPT P 9
37 Vo (o] o =T ST = o1 R 11
R I T ¢ (o] g O o o [TP PPPTT P 12
3.2.4. REMOVING QN SA BENLIY ...ttt e et e e e e e e s abb e e e e e e e e e snnbe e e e e ae e e e annreees 12
3.2.5. REMOVING @GN SP ENLIY ...ttt s s e e e e e e s s e e e e e e e e s et e e e e e e e e snntaneeeeeeeannnnneens 12
3.3, IPsec Configuration EXAMIPIEoooiiuuiiiiiie ettt ettt e e e e e s bbb e e e e e e e e e anbbeeeeeee e e e annnaees 13
4 Setup and CONFIQUIE TKEV2....... ..ttt e e e e e e e bbbt e e e e e e e s a bbbt e e e e e e e e aanbbsaeeeaeesaannbeees 15
4.1, ENADIE TKEV2ottt sttt R et R et 15
4.2. Configuring the TKEV2 DABMONcciieeiiiieiieeieeeeeiseitieeeeeeesssssteteeeeeeesssssstaseeeeeessaassreseeeeeessaassssnnreeesssanns 15
4.2.1. 1IKEV2 Configuration EXAMPIEcooi ittt et e e e e e 17
5 Interfacing to Other OPErating SYSIEMSuuuiiiie it e e er e e e e e e s e e e e s e s e e e eeeess s rreeeeesansaraeeeees 18
L R I G SO UUPR 18
5.2. Connecting with the IPsec Linux Kernel Implementation ... 18
Lo Y - 11 1]][TR 19
LR T @7o o [T=Td] aTo YT/ g TR 0] T 1S U PSR 21
LR T I ¢ 11] o) [T TP PUPT P 22
Lo YV o [1 PSP PP PUR PPN 24
Lo I = 12 1]][SRR 24
6 Security Considerations for IPsec and IKEV2 With the ZWIRASXXc.uuuiiiiiiiiiiiiiieee e 25
A £ U1 1 =To Lo Tt U g T=T o | PO U P PPR PR 26
S T €10 17 1 Y PRSP 26
9 DOCUMENE REVISION HISTOMYttt ettt e ettt e e e e e e e s bbb et e e e e e e e s nbbbe e e e e e e e e anbbeneeeaens 27

© 2016 Integrated Device Technology, Inc. 1 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

List of Figures
Figure 2.1 WOrking PrinCIPIES Of IPSECuiiiiiiiiiiiii ettt e ettt e e e e e e sanbbeeeea e e e e aans 5

List of Tables

Table 2.1 Authentication Header FOMMAL.............iiiiiiiiiie e e e e e e e e e e e e e e e nnneees 4
Table 2.2 Encapsulating Security Payload FOIMAL.............ueviiiiiiiiiiiiiieee e e s sree e e e e s re e e e e e e nnnneees 4
Table 2.3 Sequence for Establishing a Secure Connection and Creating an IPSEC SAccccccovvvcivvvveeeeeveninns 7
Table 2.4 Sequence for Creating @ NeW IPSEC SA PaIIcouiiiiiiiiii e 7
Table 2.5 Sequence for ReEKeYING the TKD_SA ...t e e s e e e e e s s st ar e e e e e e s e nnnneees 8
Table 2.6 Sequence for REKEYING the IPSEC SA ...coci oot e e e e e s s er e e e e e e s e nnnnrees 8
Table 2.7 Sequence for CloSING the SA ... et e e e e e e e e e e b e e e e e e e e e nnneees 8
Table 3.1 Error Codes Generated by the IPSEC LIDraries. ... 12
Table 3.2 Example Packets and PrOCESSINGuuuuiieeiiiiiiiiieieeeesesitieieeeee et sstnteeeeeaessssnsareeeseeesssnnnsnseeeeeessnanssnns 14
Table 4.1 IKEV2 Default TIMING PEIIOUSuuiiiiiiieii ittt e e e e e e e sab e e e e e e e e e nneeees 16
Table 4.2 Cryptographic Algorithms fOr IKEV2coooiiiiiie et e e e 17

© 2016 Integrated Device Technology, Inc. 2 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

1 Introduction

6LOWPAN is a protocol to integrate wireless low-power networks into the global Internet. For security-relevant
applications, protection is required to prevent unauthorized access to data packets. IPsec is a standardized
security method for the internet protocol. In addition to protection of the data provided by encryption, a key
exchange and rekeying method that allows identification and authentication is also necessary. Currently, the
internet key exchange protocol version 2 (IKEv2) is the recommended standardized key management method for
IPsec.

The 6LOWPAN software stack running on the ZWIR45xx is IPsec and IKEv2 ready. This application note shows
how to configure, set up, and use the IPsec and IKEv2 functionalities.

2 IPsec and IKEv2 Overview

2.1. IPsec

Internet Protocol Security (IPsec) is a protocol suite for securing the Internet Protocol (IP) communications by
authenticating and encrypting each IP packet. IPsec is an end-to-end security scheme operating in the Internet
Layer of the Internet Protocol Suite.

IPsec is officially specified by the Internet Engineering Task Force (IETF) in various RFC publications:
e RFC 4301: Security Architecture for the Internet Protocol
e RFC 4302: IP Authentication Header
e RFC 4303: IP Encapsulating Security Payload
e RFC 4308: Cryptographic Suites for IPsec

To secure packets between two endpoints, security associations (SA) are used. An SA is a unidirectional virtual
channel that describes which packets should be secured. Furthermore, the methods of authentication and
encryption are defined for each SA. Each incoming and outgoing SA is identified by its security parameter index
(SPI) for each endpoint.

How packets are processed by IPsec is shown in Figure 2.1.

The Security Association Database (SAD) contains all relevant information for encrypting, decrypting, and verify-
ing the content of a packet. The entries in the Security Policy Database (SPD) define how an incoming or
outgoing packet should be processed. Possible options are to discard, bypass, or secure the packet. If an
outgoing packet should be secured, the SPD returns the associated SA. If no associated SA can be found in the
SPD, the key exchange daemon (IKEv2) must become active to create a valid SA.

IPsec uses the authentication header (AH) to protect the integrity of a packet or the encapsulating security pay-
load (ESP) to encrypt and authenticate the payload. Both the AH and ESP are next layer protocols and are placed
between layer 3 and 4.

© 2016 Integrated Device Technology, Inc. 3 April 12, 2016

@IDT

ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANS

Table 2.1 Authentication Header Format
Byte 0 1 3
0 Next Header Payload Length Reserved
4 SPI
8 Sequence Number
C Integrity Check Vector (ICV)
Table 2.2 Encapsulating Security Payload Format
Byte 0 1 3
0 SPI
4 Sequence Number
8 Payload Data
Padding (0-255 octets)
Pad Length Next Header
Integrity Check Vector (ICV)
2.1.1. IPsec Processing

Incoming and outgoing packets are processed different by IPsec. If a packet arrives from an unprotected interface
or lower layer, IPsec first checks the type of the packet. If it is a normal unprotected IP packet with a UDP, TCP,
or ICMPvV6 payload, the packet is directly passed to SP processing, which searches for a suitable entry in the
SPD. If no matching address and protocol entry is found, the packet is dropped. Otherwise, the policy defines
what must happen with the packet. Only if it is a bypass entry, the packet is passed to the next layer. Unsecured
packets matching a security policy are dropped. If an AH or ESP secured packet arrives from the upper layer, the
SPI included helps to locate the encryption and authentication suite in the SA database. Packets with an unknown
SPI cannot be decrypted and must be dropped. Packets belonging to a valid SA are decrypted by IPsec and
authenticated with the proper keys. Only packets with a positive integrity check are passed to SP processing.

© 2016 Integrated Device Technology, Inc.

April 12, 2016

‘ |DT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANS

Outgoing packets from a higher layer are handled similarly but in reverse order. First the SP processing
determines if a packet must be dropped (policy missing or policy dictates dropping packet), can be passed
unprotected to the upper layer, or must be secured first. The SP contains a reference to the SA of the packet.
However, if the referenced SA does not exist, the key exchange daemon must create a new SA to the
communication partner. The packet can now be protected with the security suite from the SA and be sent to the
lower layer.

Figure 2.1 Working Principles of IPsec

Protected Network Interface

No Pollcy or ¥ @ T No Policy or

Policy = Dro, Policy = D
@-’y—p(Look up in SPD Look up in SPD I olicy = Drop _;@

A ?

[IPSec Process]

Policy = Do not Policy =
secure packet Secure packet

A
! Entry found
No entry
‘ Look up in SAD ‘ Look up in SAD }—>®
A
No ent
Entry found \ v ry Secured Unsecured
Negotiate SA incoming incoming
[IPSec Process ‘ using IKEv2 packet packet
Y ¢

Unprotected Network Interface

© 2016 Integrated Device Technology, Inc. 5 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

2.2. IKEv2

The Internet Key Exchange version 2 (IKEv2) is a protocol used to set up a security association (SA) in the IPsec
protocol suite. It is the successor of IKE and improves and simplifies establishing the connection. It uses an
Elliptic-Curves-based key exchange to set up a shared session secret from which cryptographic keys are derived.
Public key techniques or a pre-shared key is used to mutually authenticate the communicating parties.

IKEV2 is described in the following RFCs:
e RFC 5996: Internet Key Exchange (IKEv2) Protocol
e RFC 4307: Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)
e RFC 5903: Elliptic Curve Groups modulo a Prime (ECP Groups) for IKE and IKEv2

IKEv2 uses UDP packets at port 500 to communicate. An IKE communication consists of packet pairs. Each
request is answered by a response packet and only the initiator is allowed to retry a transfer.

There are four different IKEv2 message types:

e IKE_SA_INIT: Initiate the IKE — a key exchange is performed to communicate over a secured connection

e IKE_AUTH: Authenticate the opposite communication partner and create first IPsec SA
e CREATE_CHILD_SA: Create additional IPsec SAs or rekey the IPsec SA
e INFORMATIONAL: Contains status error and termination messages

The four message types contain different payloads:

e AUTH: Authentication data e SA: New security association
e CERT: Certificate e SAil: IKE security association offer from the
« CERTREQ: Certificate request initiator

e SArl: IKE security association choice from

e CP: Configuration parameter
the responder

e D: Delete
o EAP: Extensible authentication

e HDR: IKE header — first part of each
IKE message

e SAi2: Child security association (for IPsec)
offer from the initiator

e SAr2: Child security association (for IPsec)
choice from the responder

e IDi: Identification data from the initiator « SK: Begin of the authenticated and encrypted
e IDr: Identification data from the responder payload

o KEi: Key exchange payload from the initiator e TSi: Traffic selector of the initiator

o KEr: Key exchange payload from the responder e TSr: Traffic selector of the responder

e Ni: Nonce from initiator o V: Vendor ID

e Nr: Nonce from responder
e N: Notify data

© 2016 Integrated Device Technology, Inc. 6 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

2.2.1. Establishing a Secured Connection and Creating One IPsec SA

For the initial key exchange, two IKE_SA_INIT packets are necessary. The initiator sends a packet with the
following payloads: HDR, SAil, KEi, Ni. The responder answers with payloads: HDR, SArl, KEr, Nr and an
optional [CERTREQ)]. After this, packets can both derive a shared secret and protect all subsequent transmitted
packets. All other keys will be derived from the shared secret key. To increase the security, random nonces from
both sides are used to calculate the encryption and authentication keys as well as keys for the IPsec SAs.

During the next communication phase, the nodes identify and authenticate the communication partners and
negotiate one IPsec SA. Therefore only two IKE_AUTH packets are needed. The initiator sends HDR, SK {IDi,
AUTH, SAi2, TSi, TSr, and optional [CERT], [CERTREQ)], [IDr]}. After the responder has answered with the
payloads HDR, SK {IDr, AUTH, SAr2, TSi, TSr, [CERT]}, the IKE connection and a pair of IPsec SAs are
established.

Table 2.3 Sequence for Establishing a Secure Connection and Creating an IPsec SA

Packet Initiator <> Responder

1 HDR, SAil, KEi, Ni | 2>

€ | HDR, SAr1, [CERTREQ], KEr, Nr

2
3 HDR, SK {IDi, AUTH, SAi2, TSi, TSr [CERT], [CERTREQ], [IDr]} | >
4 < | HDR, SK {IDr, AUTH, SAr2, TSi, TSr, [CERT]}

2.2.2. Creating a New IPsec SA Pair

To create a new IPsec SA, a CREATE_CHILD_SA request with the payload HDR, SK {SA, Ni, [KEi], TSi, TSr}is
sent. It is answered by a CREATE_CHILD_SA message with the payload HDR, SK {SA, Nr, [KEr], TSi, TSr}.

Table 2.4 Sequence for Creating a New IPsec SA Pair

Packet Initiator <> Responder
1 HDR, SK {SA, Ni, [KEi], TSi, TSr} | >
2 € | HDR, SK {SA, Nr, [KEr], TSi, TSr}

© 2016 Integrated Device Technology, Inc. 7 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

2.2.3. Rekeying the IKE_SA

The IKE_SA is rekeyed with a pair of CREATE_CHILD_SA messages: HDR, SK {SA, Ni, KEi} and HDR, SK {SA,
Nr, KEr}. During the rekeying process, both communication partners perform a new key exchange to refresh all
keying material.

Table 2.5 Sequence for Rekeying the IKD_SA

Packet Initiator <> Responder
1 HDR, SK {SA, Ni, KEi} | >
2 & | HDR, SK {SA, Nr, KEr}

2.2.4. Rekeying an IPsec SA

For rekeying an IPsec SA, a pair of CREATE_CHILD_SA messages is used: HDR, SK {N(REKEY_SA), SA, Ni,
[KEI], TSi, TSr} and HDR, SK {SA, Nr, [KEr], TSi, TSr}. It is not necessary to do a key exchange during the IPsec-
SA rekeying process.

Table 2.6 Sequence for Rekeying the IPsec SA

Packet Initiator <> Responder
1 HDR, SK {N(REKEY_SA), SA, Ni, [KEi], TSi, TSt} | >
2 & [HDR, SK {SA, Nr, [KEr], TSi, TSr}

2.2.5. Closing an SA
Closing an SA is performed by sending an INFORMATIONAL message pair;: HDR, SK {D} and HDR, SK {D}.

Table 2.7 Sequence for Closing the SA

Packet Initiator <> Responder
1 HDR, SK {D} | >
2 < | HDR, SK {D}

© 2016 Integrated Device Technology, Inc. 8 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

3 Setup and Configure IPsec

3.1. Enable IPsec Processing
All IPsec relevant functions are centralized in the C library file 11bZWIR45xx-1PSec.a.

To enable IPsec processing, include this library file in the project. When creating a new project, Rowley
CrossStudio adds the required library if selected. For an existing CrossStudio project, choose “Add Existing Item”
for the “System Files” folder and add the file 1ibZWIR45xx-1PSec.a. Do not forget to set the file type to library.

If the IPsec library is included in the project, IPsec processing is always enabled. If the SPD and SAD are not
configured, all inbound and outbound traffic is blocked by IPsec. Only neighbor solicitations, neighbor
advertisements, and key exchange packets are processed.

3.2. Configure SPD and SAD Entries

For managing both databases, the API provides add-entries functions. It is only possible to add entries, and the
priority is given by the order of adding entries. Manipulating, or order-changing functions are not provided.

Recommendation: Configure both databases after system start-up in the function ZWIR_AppInitNetwork.

IPsec provides end-to-end security. Therefore each connection (between sensor node and sensor node or
between sensor node and server) should have its own SA and SP for each direction.

The Advanced Encryption Standard (AES) with a block size of 128 bits is used for encrypting and authentication.
The AES-CTR mode is available for encryption, and the AES-XCBC-96 mode is available for data authentication.

3.2.1. Adding an SA Entry
SA entries can be added manually with the API function:

ZWIRSEC_SecurityAssociation_t*

ZWIRSEC_AddSecurityAssociation (uint32_t securityParamldx,
uintd_t replayCheck,
ZWIRSEC_EncryptionSuite t* encSuite,

ZWIRSEC AuthenticationSuite_t* authSuite)

This function adds a security association to the security association database manually. Use this function
before calling ZWIRSEC_AddSecurityPolicy if not using IKEv2 for automatic key exchange.

The securityParamldx argument is a uniqgue number identifying the security association. The
encSuite and authSuite parameters specify the encryption and authentication algorithms and keys.
The replayCheck parameter determines if replay checks must be performed for this security association.
The internal replay check counter can only be reset by recreating the specific security association. The
others are pointers to the encryption *encSuite and authentication *authSui te suite containing the
corresponding keys and encryption functions that are used for this security association.

The function returns a pointer to the security association descriptor if it was created successfully. In the
event of an error, the function returns NULL.

© 2016 Integrated Device Technology, Inc. 9 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

The encryption parameters are set up in the following structure:

typedef struct {
ZWIRSEC_EncryptionAlgorithm_t algorithm
uint8_t key [16]
uint8_t nonce [4 1]
} ZWIRSEC_EncryptionSuite_t

This structure carries all encryption related information. The algorithm, a 16-byte array containing the
encryption key (key), and a 4-byte nonce value (nonce) are required.

All implemented encryption algorithms are defined in the following typedef:

typedef enum { ... } ZWIRSEC_EncryptionAlogrithm_t
Enumeration of algorithms available for authentication; possible values include
ZWIRSEC_encNull =11 no encryption
ZWIRSEC_encAESCTR
ZWIRSEC_encAESGCM16

13 AES Counter Mode based encryption

20 AES Galois/Counter Modes with a 16 octet ICV
Note: This algorithm requires ZWIRSEC_authNull as an
authentication algorithm. Thus AES-GCM includes packet
authentication.

This structure carries all authentication-related information:

typedef struct {
ZWIRSEC_AuthenticationAlgorithm_t algorithm
unsigned char key [16]
} ZWIRSEC_AuthenticationSuite_t

The only two parameters are the authentication algorithm and the 16-byte key.

Possible authentication algorithms are specified in the following enum:

typedef enum { ... } ZWIRSEC AuthenticationAlgorithm_t
Enumeration of algorithms available for authentication; possible values include:
ZWIRSEC _authNull =0 No authentication
5 Extended AES128 CBC Mode based authentication.

ZWIRSEC_authAESXCBC96

© 2016 Integrated Device Technology, Inc. 10 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

3.2.2. Adding an SP Entry
SP entries are added by calling the following API function:

uint8_ t
ZWIRSEC_AddSecurityPolicy (ZWIR_PolicyType_t type,
ZWIR_IPv6Address_t* remoteAddress,
uint8_t prefix,
ZWIR_Protocol_t proto,
uintlé t lowerPort,
uintle_t upperPort,

ZWIRSEC_SecurityAssociation_t* securityAssociation)

The first parameter (type) of this function defines the direction and action of the policy. Possible values are
ZWIRSEC_ptOutputApply = 0x11 Secure outbound traffic with IPSec
ZWIRSEC_ptOutputBypass =0x12 Bypass outbound traffic unsecured

ZWIRSEC_ptOutputDrop = 0x13 Drop outbound traffic
ZWIRSEC_ptinputApply = 0x21 Unsecure inbound traffic with IPSec
ZWIRSEC_ptlInputBypass = 0x22 Bypass inbound traffic unsecured
ZWIRSEC_ptinputDrop = 0x23 Drop inbound traffic

The next parameters are a pointer to the remote IPv6 Address (*remoteAddress) and a prefix (prefix) to
define an address range. The prefix defines how many bits of the remote address must match, starting from the
most significant address bit. The next layer protocol and a port range are configured by the parameters proto,
lowerPort and upperPort. Possible protocols are

ZWIR_protoAny =0 any protocol
ZWIR_protoTCP =6 TCP
ZWIR_protoUDP =17 UDP
ZWIR_protolCMP6 = 58 ICMPvV6

Last, the security association to be utilized (*securityAssociation) must be given. For unsecured and all
incoming traffic, this parameter can be null.

SP entries can be overlapping, in which case, the first matching entry will be used for securing.

© 2016 Integrated Device Technology, Inc. 11 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

3.2.3. Error Codes

The error codes listed in Table 3.1 are generated by the IPsec libraries and passed to the ZWIR_Error hook if it
is implemented in the application code. ZWIRSEC_eDroppedICMP indicates that an ICMP packet was dropped
due to an IPsec rule, and ZWIRSEC_eDroppedPacket indicates that any other (non-ICMP) packet was
discarded due to an IPsec rule. ZWIRSEC_eUnknownSP1 indicates that an IPsec packet was received but no
associated security association was found. With active replay check, ZWIRSEC_eReplayedPacket indicates a
replayed packet.

IPsec indicates authentication vector mismatches (corrupted packet) with ZWIRSEC_eCorruptedPacket.

Table 3.1 Error Codes Generated by the IPsec Libraries

C — Identifier Code | Default Handling
libZWIR45xx-IPsec.a
ZWIRSEC_eDroppedICMP 5001ex Ignore
ZWIRSEC_eDroppedPacket 5011ex Ignore
ZWIRSEC_eUnknownSPl1 5024ex Ignore
ZWIRSEC_eReplayedPacket 5034ex Ignore
ZWIRSEC_eCorruptedPacket 5041ex Ignore

3.2.4. Removing an SA Entry

void
ZWIRSEC_RemoveSecurityAssociation(ZWIRSEC SecurityAssociation_t* sa)

This function removes the security association pointed to by sa.

3.2.5. Removing an SP Entry

void
ZWIRSEC_RemoveSecurityPolicy(uint8_t spi)

This function removes the security policy with index spi from the security policy database. If no index is
stored at spi, the function does nothing.

© 2016 Integrated Device Technology, Inc. 12 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

3.3.

IPsec Configuration Example

The following example demonstrates the variety of configuration possibilities:

ZWIR_IPv6Address_t testAddress =
{Oxfe, 0x80, 0x00, Ox00, 0x00, Ox00, Ox00, Ox00, Ox00, Ox11, Ox7d, Ox00, Ox00, Ox21, Ox14, 0x98};
ZWIRSEC_EncryptionSuite_t esO =
{ ZWIRSEC_encAESCTR,
{0x02, 0x02, 0x02, 0x02, 0x02, 0Ox02, 0x02, Ox02, 0x02, 0x02, Ox02, 0x02, Ox02, 0x02, 0x02, 0x02},
{0x01, 0x23, 0x45, Ox67} };
ZWIRSEC_AuthenticationSuite_t asO =
{ ZWIRSEC_authAESXCBC96,
{0x01, Ox01, Ox01, Ox01, Ox01l, Ox01, Ox01l, Ox01, Ox01l, Ox01, Ox01l, Ox01, Ox01l, Ox01, Ox0l1l, Ox01}
}:
ZWIRSEC_EncryptionSuite_t esl =
{ ZWIRSEC_encAESCTR,
{0x04, 0x04, 0Ox04, 0x04, Ox04, 0Ox04, 0x04, Ox04, 0x04, 0x04, Ox04, 0x04, Ox04, 0x04, 0x04, 0x04},
{0x89, Oxab, Oxcd, Oxef} };
ZWIRSEC_AuthenticationSuite_t asl =
{ ZWIRSEC_authAESXCBC96,
{0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, O0x03, 0x03, 0x03, 0x03, 0x03, 0x03}

};

ZWIRSEC_SecurityAssociation_t *in = ZWIRSEC_AddSecurityAssociation(0x0000affe, O, &es0, &asO);
ZWIRSEC_SecurityAssociation_t *out = ZWIRSEC_AddSecurityAssociation(0x0000bade, 0, &esl, &asl);

ZWIRSEC_AddSecurityPolicy(ZWIRSEC_ptOutputApply, &testAddress, 128, ZWIR_protoUDP, 1000, 3000, out);
ZWIRSEC_AddSecurityPolicy(ZWIRSEC_ptinputApply, &testAddress, 128, ZWIR_protoUDP, 1000, 3000, in);

ZWIRSEC_AddSecurityPolicy(ZWIRSEC_ptOutputDrop, &testAddress, 0, ZWIR_protoAny, 0, 2999, 0);
ZWIRSEC_AddSecurityPolicy(ZWIRSEC_ptlnputDrop, &testAddress,0, ZWIR_protoAny, 0, 2999, 0);

ZWIRSEC_AddSecurityPolicy(ZWIRSEC_ptOutputBypass, &testAddress, 64, ZWIR_protoUDP, 0x0, Oxffff, 0);
ZWIRSEC_AddSecurityPolicy(ZWIRSEC_ptlnputBypass, &testAddress, 64, ZWIR_protoUDP, 0x0, Oxffff, 0);

This configuration creates a pair of SA (in-Oxaffe and out-Oxbade) in line 20 and 21. The in-SA uses the AES-CTR
mode with the key 0x0202020202020202 and 0x01234567 as nonce. For authentication, the in-SA is using the
AES-XCBC-96 with the key 0x0101010101010101.

The policies, added in line 23 and 24, specify that all UDP packets transmitted and received from the sender with
IP address fe80::11:7d00:21:1498 between port 1000 and 3000 must be secured with the corresponding SA.

© 2016 Integrated Device Technology, Inc. 13 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

UDP packets from and to any other IP addresses with a port equal to or less than 2999 are dropped by IPsec
(Line 26 and 27).

All other UDP packets in the same subnet (fe80::/64) are bypassed without any IPsec protection (defined in line
29 and 30).

Table 3.2 shows the corresponding rule in the previous code example and resulting IPsec action for example IP
packets with different addresses, protocols, and ports.

Table 3.2 Example Packets and Processing

Direction IP Address Protocol/Port Action Line of the policy
Out fe80::11:7d00:21:1498 UDP/1000 Secure with SA-out |23

Out fe80::11:7d00:21:1498 UDP/1001 Secure with SA-out | 23

Out fe80::11:7d00:21:1498 UDP/999 Drop 26

Out fe80::11:7d00:21:1498 TCP/1000 Drop 26

Out fe80::11:7d00:21:1498 UDP/3000 Secure with SA-out |23

Out fe80::11:7d00:21:1498 UDP/3001 Bypass 29

Out fe80::11:7d00:21:1500 UDP/3001 Bypass 29

Out fe80::11:7d00:21:1500 UDP/3000 Bypass 29

Out fe80::11:7d00:21:1500 UDP/2999 Drop 26

Out fe80::11:7d00:21:1500 UDP/1 Drop 26

Out 1234::11:7d00:21:1500 UDP/1 Drop 26

Out 1234::11:7d00:21:1500 UDP/2999 Drop 26

Out 1234::11:7d00:21:1500 UDP/3000 Drop No matching rule
In fe80::11:7d00:21:1498 UDP/1001 Secure with SA-in [24

In fe80::11:7d00:21:1498 UDP/999 Drop 27

In fe80::11:7d00:21:1498 UDP/3001 Bypass 30

© 2016 Integrated Device Technology, Inc. 14 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

4 Setup and Configure IKEv2

4.1. Enable IKEv2
The IKEv2 Daemon is sourced out in the C library file libZWIR45xx-1KEvV2.a.

To use IKEV2 processing, include this library file in the project. When creating a new project, Rowley CrossStudio
adds the required library if selected. For an existing CrossStudio project, choose “Add Existing Item” for the
“System Files” folder and add the file 1ibZWIR45xx-1KEv2.a. Do not forget to set the file type to library.

The IKEv2 daemon functions only if IPsec processing is enabled.

Note: As of stack version 1.10, IKEv2 has used Elliptic-Curves-based key exchange instead of Diffie-Hellman key
exchange. Furthermore, AES-CTR has been used for encrypted IKE payloads. This allows a faster, more efficient
and secure key exchange. The code size and the IKEv2 payload size could be minimized as well.

The former IKEv2 implementation has been moved in the library file 1 ibZWIR45xx-1KEv2-deprecated.a.

4.2. Configuring the IKEv2 Daemon
The IKEv2 daemon registers itself as the key exchange daemon for IPsec.

The IKEv2 daemon comes with its own event scheduler. Both the IKEv2 connection (IKE SA) and the derived
IPsec SA (child SA) are rekeyed periodically. See Table 4.1 for the default schedule. The periods are adjustable
by overwriting the weak constants. All time constants are defined in seconds:

uint8 t ZWIRSEC ikeRetransmitTime = 10

This is a weak constant defining the how many seconds IKE waits for a reply before retransmission is
initiated. The time should be large enough to enable IKE processing at the receiver. This value largely
depends on the clock frequency. Set the value accordingly. The predefined value of 10 seconds is only
suitable for a receiver clock frequency of 32MHz or 64MHz. The value can be redefined by definition of the
variable ZWIRSEC _ikeRetransmitTime with an appropriate value in the application code.

uint32_t ZWIRSEC ikeRekeyTime = 86400

This is a weakly defined variable that controls the interval at which the IKE connection must be rekeyed.
The default setting corresponds to one week. In order to change this value, the variable
ZWIRSEC_1keRekeyTime must be defined with an appropriate value in the application code.

uint32_t ZWIRSEC ikeSARekeyTime = 604800

This weakly defined variable controls the interval during which security associations remain valid before
rekeying is required. The default setting corresponds to one day. In order to change this value, a
ZWIRSEC _i1keSARekeyTime variable must be defined with an appropriate value in the application code.

© 2016 Integrated Device Technology, Inc. 15 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

Table 4.1 IKEv2 Default Timing Periods

Event Period Description

Retransmit 10 seconds Time until retransmission of an IKE packet if no answer packet was received
Rekeying child SA |24 hours Time until the child SAs will be rekeyed

Rekeying IKE SA 7 days Time until the IKE SAs will be rekeyed

If an outgoing IP packet must be secured according to a SP and if there is no corresponding SA, IPsec calls the
key exchange daemon to create a matching SA. In addition to the IPsec SPD and SAD configuration, the IKE
authentication configuration is needed. Such entries are added by an APIIKE function:

unsigned char
ZWIRSEC_AddIKEAuthenticationEntry (ZWIR_IPv6Address t* remoteAddress,

uintd_t prefixLength,
uint8_t id,

uintd_t idLength,
uint8_t presharedKey)

The address range to match the IPv6 address of the communication partner is defined by the first two parameters
*remoteAddress and prefixLength. The next parameter is a pointer the ID (*id) and the parameter
idLength defines the length of the ID. The pre-shared key is defined by a pointer to a 16-bit wide field
(*presharedKey).

During the secured connection negotiation, both endpoints identify and authenticate each other. Each endpoint
sends its ID and authentication string derived from the PSK.

The first added authentication IkeAuthenticationEntry is used for generating the authentication data to
send them to the opposite communication partner. For identifying the communication partner, all entries are used.

For IPsec SAs negotiated by IKEv2, the replay check is always enabled.

The key exchange is initialized automatically if an SP matching packet is sent. All sent packets will be dropped
until the key exchange is finished.

To save memory, it is not possible to start to key exchanges at the same time.

© 2016 Integrated Device Technology, Inc. 16 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

By default the IKEv2 daemon uses and offers to the communication partner the following cryptographic
algorithms:

Table 4.2 Cryptographic Algorithms for IKEv2

Type Algorithm Algorithm — Deprecated LIB
IKE encryption AES-CTR AES-CBC

IKE authentication AES-XCBC-96 AES-XCBC-96

IKE pseudo-random function | AES-128-XCBC AES-128-XCBC

Key exchange ECP 256 Bit Diffie-Hellman 768 Bit

IPsec encryption AES-CTR AES-CTR

IPsec authentication AES-XCBC-96 AES-XCBC-96

4.2.1. IKEv2 Configuration Example

The configuration in the following example allows two nodes in the same sub-network to establish a secured UDP
connection at port 1111. Both must have the same ID to identify the connection and the same PSK as the initial
secret to secure the key exchange (first id is the local ID).

ZWIR_IPv6Address_t testAddress = { Oxfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x11, Ox7d, 0x00, Ox00, 0x00, 0x00, Ox00 };

char psk[17] = {“abcdefghijklimnop"};
char id[3] = {"1","d","0"};

ZWIRSEC_AddlkeAuthenticationEntry(&testAddress, 64, id, 3, psk);

© 0o N o g b~ W N P

ZWIRSEC_AddSecurityPolicy(ZWIRSEC_OutputApply, &testAddress, 64, ZWIR_protoUDP, 1111, 1111, NULL);
ZWIRSEC_AddSecurityPolicy(ZWIRSEC_InputApply, &testAddress, 64, ZWIR_protoUDP, 1111, 1111, NULL);

=
o

© 2016 Integrated Device Technology, Inc. 17 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

5 Interfacing to Other Operating Systems

5.1. Linux
Both IPsec and IKEv2 with PSK are compatible with implementation for Linux.

Section 5.2 describes how to connect the ZWIR45xx with the IPsec Linux kernel implementation, and section 5.3
describes connecting with the strongSwan IKEv2 key exchange daemon.

For all of the following examples, the Linux distribution Ubuntu 9.10 is utilized.

5.2. Connecting with the IPsec Linux Kernel Implementation
IPsec-secured connections are setup in the config file:
/etc/ipsec-tools.conf

It is possible to start this configuration (instead of rebooting) immediately:
sudo /Zetc/init.d/setkey start

Further information about how to configure the IPsec connection under Ubuntu can be found on these websites:

https://help.ubuntu.com/community/IPSecHowTo

or
http://www.freebsd.org/cgi/man.cgi?query=setkey&sektion=8

© 2016 Integrated Device Technology, Inc. 18 April 12, 2016

https://help.ubuntu.com/community/IPSecHowTo
http://www.freebsd.org/cgi/man.cgi?query=setkey&sektion=8

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

5.2.1. Example

The following configuration gives an example of how an IPsec connection that secures UDP port 1000 and
pinging can be arranged between a PC and the ZWIR45xx.

/etc/ipsec-tools.conf

1 # Flush the SAD and SPD

2 Fflush;

3 spdflush;

4

5 # Add out SA

6 add fe80::21d:e0ffF:Fe20:253 feB80::11:7d00:21:1498 esp 0x0000affe

7 -E aes-ctr 0x0202020202020202020202020202020201234567
8 -A aes-xcbc-mac 0x01010101010101010101010101010101;

9

10 # Add in SA

11 add feB80::11:7d00:21:1498 fe80::21d:e0ff:fe20:253 esp 0x0000bade
12 -E aes-ctr 0x0404040404040404040404040404040489abcdef
13 -A aes-xcbhc-mac 0x03030303030303030303030303030303;

14

15 # Add out SP

16 spdadd fe80::21d:e0ff:fe20:253 fe80::11:7d00:21:1498[1000] any —P out ipsec
17 esp/transport//require;

18

19 # Add in SP

20 spdadd fe80::11:7d00:21:1498 fe80::21d:e0ff:fe20:253 [1000] any —P in ipsec
21 esp/transport//require;

22

23

24 # Enable IPsec for pinging

25

26 spdadd ::/0 ::/0 icmp6 128,0 -P out ipsec

27 esp/transport//require;

28

29 spdadd ::/0 ::/0 icmp6 129,0 -P in ipsec

30 esp/transport//require;

© 2016 Integrated Device Technology, Inc. 19 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

ZWIR45xx configuration

1 ZWIR_IPv6Address_t testAddress = { Oxfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0Ox00, 0x00,

2 0x02, 0x1ld, Oxe0, OxFff, Oxfe, 0x20, Ox02, O0x53 };

3 ZWIRSEC_EncryptionSuite_t esO =

4 { ZWIRSEC_encAESCTR,

5 {0x02, 0x02, 0x02, 0x02, 0x02, 0Ox02, 0x02, Ox02, 0x02, 0x02, Ox02, 0x02, Ox02, 0x02, 0x02, 0x02},
6 {0x01, 0x23, 0x45, Ox67} };

7 ZWIRSEC_AuthenticationSuite_t asO =

8 { ZWIRSEC_authAESXCBC96,

9 {0x01, O0x01, Ox01, Ox01, Ox01l, Ox01, Ox01l, Ox01, Ox01l, Ox01, Ox01l, Ox01, Ox01l, Ox01, Ox0l1l, Ox01}

10 };

11 ZWIRSEC_EncryptionSuite_t esl =

12 { ZWIRSEC_encAESCTR,

13 {0x04, 0x04, Ox04, 0x04, 0x04, Ox04, 0x04, 0Ox04, 0x04, 0x04, Ox04, 0x04, Ox04, 0x04, 0x04, 0x04},
14 {0x89, Oxab, Oxcd, Oxef}};

15 ZWIRSEC_AuthenticationSuite_t asl =

16 { ZWIRSEC_authAESXCBC96,

17 {0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, Ox03}
18 };

19

20 ZWIRSEC_SecurityAssociation_t *in = ZWIRSEC_AddSecurityAssociation(0x0000affe, O, &es0, &asO);
21 ZWIRSEC_SecurityAssociation_t *out = ZWIRSEC_AddSecurityAssociation(0x0000bade, 0, &esl, &asl);

23 ZWIRSEC_AddSecurityPolicy(ZWIRSEC_ptOutputApply, &testAddress, 0, ZWIR_protoUDP, 1000, 3000, out);
24 ZWIRSEC_AddSecurityPolicy(ZWIRSEC_ptinputApply, &testAddress, 0, ZWIR_protoUDP, 1000, 3000, in);

26 ZWIRSEC_AddSecurityPolicy(ZWIRSEC_ptOutputApply, &testAddress, 0, ZWIR_protolCMPVv6, 128, 129, out);
27 ZWIRSEC_AddSecurityPolicy(ZWIRSEC_ptlnputApply, &testAddress, 0, ZWIR_protolCMPv6, 128, 129, in);

© 2016 Integrated Device Technology, Inc. 20 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

5.3. Connecting with strongSwan
strongSwan is a complete IPsec implementation for Linux 2.4 and 2.6 kernels, and it supports IKEv1 and IKEv2.

Since strongSwan supports IKEv2 with PSK authentication, it is possible to establish a secure connection
between the ZWIR45xx and a device running Linux/strongSwan; e.g., a PC.

The only restriction is that link local addresses are currently not supported by strongSwan. Therefore a prefix
must be distributed by a router advertisement daemon like radvd.

Two configuration files must be edited after installing strongSwan:
ipsec.conf //contains all connection parameters
ipsec.secrets //contains all secrets such as PSKs

For more information, visit the strongSwan wiki: https://wiki.strongswan.org/projects/strongswan

To reduce the algorithm negotiation overhead, all algorithms for the key exchange and IPsec should be specified
in the configuration file.

© 2016 Integrated Device Technology, Inc. 21 April 12, 2016

https://wiki.strongswan.org/projects/strongswan

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

5.3.1. Example

In this example, the strongSwan IKEv2 daemon should establish a secured connection to the wireless sensor
node. Both must know the ID and PSK of the opposite node. In this case, both nodes have the same ID and PSK.

The key exchange is based on two computationally intensive calculations. Thus, increasing the speed of the
microcontroller is recommended.

The following config files show how to establish a secure UDP connection at port 1111 between a wireless sensor
node and a strongSwan daemon.

/etc/ipsec.conf

1 config setup

2 charonstart=yes //start the IKEv2 Daemon

3 # uncomment if required

4 # charondebug=""ike 4, dmn 4, mgr 4, chd 4, job 4, cfg 4, knl 4, net 4" //write debug infos
5

6 conn test

7 keyexchange=ikev2 //use IKEv2

8 left=2001:db8:1:0:21e:bff:fe57:656¢C //local 1Pv6 Address

9 right=2001:db8:1:0:11:7d00:21:15aa //remote IPv6 Address

10 rightid=id0 //remote 1D

11 leftid=idO //local 1D

12 auto=start //establish connection while startup

13 auth=esp //use ESPs for IPsec

14 authby=psk //select PSK authentication

15 esp=aesl28ctr-aesxcbc! //specify security algorithms for IPsec

16 ike=aes128ctr-aesxcbc-ecp256! //specify security algorithms for IKEv2
17 ikelifetime=7d //time till IKEv2 rekeying

18 keylifetime=1d //time till IPsec SA rekeying

19 leftprotoport=UDP/1111 //local upper protocol and port specification
20 rightprotoport=UDP/1111 //remote upper protocol and port specification

© 2016 Integrated Device Technology, Inc. 22 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

/etc/ipsec.secrets

1 "1d0" : PSK "abcdefghijklImnop™ //PSK for specific local and remote IP
Example C-Code for ZWIR 45xx
1 #include <stdio.h>
2 #include <ZWIR45xx-6LoWPAN.h>
3 #include <ZWIR45xx-1KEv2.h>
4 #include <ZWIR45xx-1Psec.h>
5
6 void ZWIR_ApplInitNetwork (void) {
7 ZWIR_IPv6Address_t testAddress = { 0x20, 0x01, 0x0d, Oxb8, 0x00, O0x01, 0x00, Ox00,
8 0x02, Oxle, OxOb, Oxff, Oxfe, Ox57, 0x65, Ox6C };
9 char psk[17] = {"abcdefghijklmnop'"};
10 char id[3] = {"i","d","0"};
11
12 ZWIRSEC_AddlkeAuthenticationEntry(&testAddress,64,id,3,psk);
13 ZWIRSEC_AddSecurityPolicy(ZWIRSEC_ptOutputApply, &testAddress, 64, ZWIR_protoUDP, 1111, 1111, O);
14 ZWIRSEC_AddSecurityPolicy(ZWIRSEC_ptinputApply, &testAddress, 64, ZWIR_protoUDP, 1111, 1111, 0);
15 3}

© 2016 Integrated Device Technology, Inc. 23 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

5.4. Windows

Since Windows 7®, Microsoft has introduced the Windows Filtering Platform (WFP). This platform enables IKEv2
and IPsec for Windows®. Unfortunately only a few security algorithms are supported. Thus it is not possible to
use only IKEv2 with AES based algorithms.

However, the following example demonstrates IPsec-secured communication with the ZWIR4512 module.

5.4.1. Example

The following configuration gives an example of how an IPsec connection that secures UDP port 32799 can be
arranged between a Windows® PC and the ZWIR45xx. The encryption and authentication algorithm is
ZWIRSEC_encAESGCM16.

The example code for configuring the WFP with a small C program and the ZWIRxxxx project can be found in the
Examples/ folder under 1Psec_Windows/

ZWIR45xx configuration

1 #define PORT 32799

2

3 #define WIN_IN_SPI 0x19c3ba8c // assigned by Windows automatically

4

5 ZWIR_IPv6Address_t testAddress = { Oxfe, Ox80, 0x00, Ox00, 0x00, 0x00, 0x00, 0x00,

6 0x02, 0x1d, OxeO, Oxff, Oxfe, 0x20, 0x02, Ox53 };

7 ZWIR_IPv6Address_t testAddress = { o0, O, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, 1};

8 ZWIRSEC_EncryptionSuite_t esln = { ZWIRSEC_encAESGCM16,

9 {0x0b, 0x0b, OxOb, 0x0Ob, OxOb, O0xOb, OxOb, OxOb,

10 Ox0b, 0x0b, OxOb, 0xOb, OxOb, OxOb, O0xOb, OxO0b},

11 {0x07, 0x08, 0x09, Ox0a} };

12 ZWIRSEC_EncryptionSuite_t esOut = { ZWIRSEC_encAESGCM16,

13 {0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,

14 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02},

15 {0x03, 0x04, 0x05, 0x06} };

16 ZWIRSEC_AuthenticationSuite_t as = { ZWIRSEC_authNull,{} };

17

18

19 ZWIRSEC_SecurityAssociation_t *saln = ZWIRSEC_AddSecurityAssociation(Ox55aabbcc, 0, &esln, &as);
20 ZWIRSEC_SecurityAssociation_t *saOut = ZWIRSEC_AddSecurityAssociation(WIN_IN_SPI, 0, &esOut, &as);
21 ZWIRSEC_AddSecurityPolicy(ZWIRSEC_ptOutputApply, &addrUnsp, O, ZWIR_protoUDP, PORT, PORT, saOut);
22 ZWIRSEC_AddSecurityPolicy(ZWIRSEC_ptinputApply, &addrUnsp, O, ZWIR_protoUDP, PORT, PORT, saln);
23 ZWIRSEC_AddSecurityPolicy(ZWIRSEC_ptOutputBypass, &addrUnsp, 0, ZWIR_protolCMPv6, O, OxFFff, 0);
24 ZWIRSEC_AddSecurityPolicy(ZWIRSEC_ptlnputBypass, &addrUnsp, O, ZWIR_protolCMPv6, O, OxFfff, 0);

© 2016 Integrated Device Technology, Inc. 24 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

6 Security Considerations for IPsec and IKEv2 with the ZWIR45xx

Only IPsec with IKEv2 is the secure method providing key freshness for secured connections. As the security
algorithm, AES in Counter Mode is used. To prevent identical encrypted patterns (as a result of identical
initialization vectors), it is necessary to change the key at regular intervals. However, IKEv2 was not actually
designed for low-power, low-bandwidth networks such as 6LoWPANs. The initial key exchange with its long keys
consumes a lot of computing power and energy.

Thus IKEv2 should be used if high security is necessary and the system can provide enough energy. Usually
IPsec provides enough security with the AES-CTR encryption for 6LOWPAN at typical small data rates. It must
ensure that the encrypting initialization vector will be reset to zero after a system reset.

© 2016 Integrated Device Technology, Inc. 25 April 12, 2016

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

7 Related Documents

IETF Documents Source
Security Architecture for the Internet Protocol RFC 4301 - http://www.ietf.org/rfc/rfc4301
IP Authentication Header RFC 4302 - http://www.ietf.org/rfc/rfc4302
IP Encapsulating Security Payload RFC 4303 - http://www.ietf.org/rfc/rfc4303
Cryptographic Algorithms for IKEv2 RFC 4307 - http://www.ietf.org/rfc/rfc4307
Cryptographic Suites for IPsec RFC 4308 - http://www.ietf.org/rfc/rfc4308
Elliptic Curve Groups modulo a Prime for IKE and IKEv2 RFC 5903 - http://tools.ietf.org/html/rfc5903
Internet Key Exchange (IKEv2) Protocol RFC 5996 - http://www.ietf.org/rfc/rfc5996

IDT Documents

ZWIR451x Programming Guide*

Visit www.IDT.com/ZWIR4512 or contact your nearest sales office for the latest version of these documents.

Note: Documents marked with an asterisk () require a free customer login account for access.

8 Glossary

Term Description

AES Advanced Encryption Standard

AH Authentication Header

API Application Programming Interface

CBC Cyclic Block Cipher

ESP Encapsulating Security Payload

ICMPV6 | Internet Control Message Protocol Version 6

ICV Integrity Check Vector

IKE Internet Key Exchange

IPsec Internet Protocol Security

ID Identifier

PSK Pre Shared Key

RFC Request for Comments (type of publication of the Internet Engineering Task Force (IETF) and the Internet Society)
SA Security Association

SAD Security Association Database

SP Security Policy

© 2016 Integrated Device Technology, Inc. 26 April 12, 2016

http://www.ietf.org/rfc/rfc4301
http://www.ietf.org/rfc/rfc4302
http://www.ietf.org/rfc/rfc4303
http://www.ietf.org/rfc/rfc4307
http://www.ietf.org/rfc/rfc4308
http://tools.ietf.org/html/rfc5903
http://www.ietf.org/rfc/rfc5996
http://www.idt.com/zwir4512

‘ IDT ZWIR45xx Application Note - Security Using IPsec and IKEv2 in 6LOWPANs

Term Description

SPD Security Policy Database

TCP Transmission Control Protocol

UDP User Datagram Protocol

WFP Windows Filtering Platform

WPAN [Wireless Personal Area Network

9 Document Revision History

Revision Date Description
1.00 September 30, 2010 | Initial release.
1.10 November 4, 2011 | Clarification of prefix definition. Update contact information.
1.11 August 3, 2012 Replaced deprecated enum names.
Minor edits.
1.20 April 2, 2014 Updated code; replaced deprecated enums; updated
ZWIRSEC_SecurityAssociation_t; added removing functions.
1.30 September 3, 2014 | Added ECC-based key exchange; added windows IPsec example.
Updated contacts. Updated imagery for cover and headers.
Minor edits.
April 12, 2016 Changed to IDT branding.
‘ IDT Corporate Headquarters Sales Tech Support
o 6024 Silver Creek Valley Road 1-800-345-7015 or 408-284-8200 www.IDT.com/go/support
San Jose, CA 95138 Fax: 408-284-2775
www.IDT.com www.|DT.com/go/sales

DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance
specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The
information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an
implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property
rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be
reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the
property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated
Device Technology, Inc. All rights reserved.

© 2016 Integrated Device Technology, Inc. 27 April 12, 2016

http://www.idt.com/
http://www.idt.com/go/sales
http://www.idt.com/go/support
http://www.idt.com/go/glossary

	1 Introduction
	2 IPsec and IKEv2 Overview
	2.1. IPsec
	2.1.1. IPsec Processing

	2.2. IKEv2
	2.2.1. Establishing a Secured Connection and Creating One IPsec SA
	2.2.2. Creating a New IPsec SA Pair
	2.2.3. Rekeying the IKE_SA
	2.2.4. Rekeying an IPsec SA
	2.2.5. Closing an SA

	3 Setup and Configure IPsec
	3.1. Enable IPsec Processing
	3.2. Configure SPD and SAD Entries
	3.2.1. Adding an SA Entry
	3.2.2. Adding an SP Entry
	3.2.3. Error Codes
	3.2.4. Removing an SA Entry
	3.2.5. Removing an SP Entry

	3.3. IPsec Configuration Example

	4 Setup and Configure IKEv2
	4.1. Enable IKEv2
	4.2. Configuring the IKEv2 Daemon
	4.2.1. IKEv2 Configuration Example

	5 Interfacing to Other Operating Systems
	5.1. Linux
	5.2. Connecting with the IPsec Linux Kernel Implementation
	5.2.1. Example

	5.3. Connecting with strongSwan
	5.3.1. Example

	5.4. Windows
	5.4.1. Example

	6 Security Considerations for IPsec and IKEv2 with the ZWIR45xx
	7 Related Documents
	8 Glossary
	9 Document Revision History

