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Abstract
Real-time deterministic Ethernet protocols, such as EtherCAT, have enabled 
synchronized operation of multiaxis motion control systems.1 There are 
two aspects to this synchronization. First, the delivery of command and 
references between the various control nodes must be synchronized to  
a common clock and, second, the execution of the control algorithms and 
feedback functions must be synchronized to the same clock. The first  
kind of synchronization is well understood and an inherent part of the 
network controller. However, the second kind of synchronization has up 
to this point been neglected and is now a bottleneck when it comes to 
motion control performance.

This article presents novel concepts to synchronize motor drives all the way 
from a network controller and down the motor terminals and sensors. The 
presented technologies enable much improved synchronization that leads to 
significantly increased control performance.

Problem Statement and State of the Art
To define the limitations of state-of-the-art solutions, consider a 2-axis 
networked motion control system, as shown in Figure 1. A motion control 
master is sending commands and references across a real-time network 
to two servo controllers, with each servo controller constituting a slave 
node on the network. The servo controller itself consists of a network 
controller, a motor controller, a power inverter, and a motor/encoder.

The real-time network protocols employ different methods to synchronize 
slave nodes to the master, but an often used approach is to have a local 
synchronized clock at each node. This common understanding of time 
ensures references and commands for all servo axes are tightly synchro-
nized. In other words, all network controllers on the real-time network  
are synchronized.

Typically, there are two interrupt lines between the network controller 
and the motor controller. The first notifies the motor controller when it is 
time to gather inputs and put them on the network. The second noti-
fies the motor controller when to read data from the network. Following 
this approach, the data exchange between the motion controller and the 
motor controller happens in a synchronized manner and very high timing 
accuracy is possible. However, it is not enough to get synchronized data 
across to the motor controllers; the motor controllers must also be able 
to respond to the data in a synchronized way. Without this capability, the 
motor controllers cannot take advantage of the timing accuracy of the 
network. When it comes to responding to references and commands, the 
motor controller’s I/Os pose a problem.

Each of the I/Os in a motor controller, such as pulse-width modulation 
(PWM) timers and ADCs, have an inherent delay and time quantization. 
As an example, consider the PWM timer generating gate drive signals for 
the power inverter, as shown in Figure 2. The timer generates gate signals 
by comparing reference Mx to an up-down counter. When Mx is changed 
by the control algorithm, the new duty cycle does not take effect until the 

Figure 1. A typical 2-axis network motion control system.
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next PWM period. This is equivalent to a zero-order hold effect meaning 
the duty cycle is only updated once per PWM period, T, or twice if double 
update mode is used.
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Figure 2. Update of duty cycle for PWM timer.

No matter how tightly the data exchange is synchronized on the real-time 
network, the time quantization of the PWM timer ends up being the deter-
mining factor in axis synchronization. When a new reference is received, 
it is not possible to respond to it until a new duty cycle takes effect. This 
introduces a time uncertainty of up to one PWM period, which is typically 
in the range of 50 μs to 100 μs. In effect, there will be an undefined and 
varying phase relationship between the network synchronization period 
and the PWM period. Compare this to a time uncertainty of sub-1 μs on 
the real-time network and it is clear that the I/Os of the motor controller 
play a crucial role when it comes to synchronizing motion control over 
a network. In fact, it is not the real-time network that determines the 
synchronization accuracy—rather it is the I/Os of the system.

Again referring to Figure 1, the system has three synchronization domains, 
A, B, and C, that are not tied together. They are effectively out of synchro-
nization with a variable uncertainty of up to one PWM period.

Synchronization Uncertainty and  
Application Impact
The impact of timing uncertainty can be clearly seen in high performance 
multiaxis servo systems for applications like robotics and machining. 
The varying time offset between motor control axes at the I/O level has a 
direct and measurable impact on the final three-dimensional positioning 
accuracy of the robot or machine tool.

Consider a simple motion profile, as shown in Figure 3. In this example, 
the motor speed reference (red curve) is ramped up and then back down 
again. If the ramp rate is within the capability of the electromechanical 
system, the actual speed is expected to follow the reference. However, if 
there is a delay anywhere in the system, the actual speed (blue curve) will 
lag reference, which results is a position error, Δθ.
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Figure 3. Effect of timing delay on position accuracy.

In multiaxis machines, a target position (x, y, z) is translated into angular 
axis profiles (θ1, ..., θn) according to the mechanical construction of the 
machine. The angular axis profiles define a sequence of equally time 
spaced position/velocity commands for each axis. Any difference in timing 
between the axes results in reduced accuracy of the machine. Consider 
the 2-axis example shown in Figure 4. A target path for the machine is 
described by a set of (x, y) coordinates. A delay causes a timing error on  
the command for the y-axis and the actual path ends up being irregular.

The impact of a constant delay may, in some cases, be minimized by 
proper compensation. More critical is a varying and unknown delay for 
which compensation is impossible. Furthermore, a varying delay results 
in varying control loop gain, which makes it difficult to tune the loop for 
optimal performance.

It should be noted that a delay anywhere in the system will cause inac-
curacy in the precision of the machine. As a consequence, minimizing or 
eliminating delays enables increased productivity and end-product quality.
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Figure 4. Effect of timing delay on position accuracy.

Synchronization and New Control Topologies
The traditional approach to motion control is shown in the top part of 
Figure 5. A motion controller, typically a PLC, sends position references 
(θ*) to a motor controller over a real-time network. The motor controller 
consists of three cascaded feedback loops with the inner loop controlling 
torque/current (T/i), the middle loop controlling speed (ω), and the other 
loop controlling position (θ). The torque loop has the highest bandwidth 
and the position loop has the lowest. Feedback from the plant is kept 
local to the motor controller and is tightly synchronized with the control 
algorithm and pulse-width modulator.

With this system topology, axes are synchronized through the exchange 
of position references between the motion and motor controllers, but the 
correlation to synchronization of the motor controller’s I/O (feedback and 
PWM) only becomes an issue for very high precision applications such as 
CNC machining. The position loop often has fairly low bandwidth and is 
therefore less sensitive to synchronization of I/O. That means synchroniza-
tion of nodes at a reference level typically gives acceptable performance 
even though the network and I/O are in different synchronization domains.

While the control topology shown at the top of Figure 5 is common, other 
control partitioning approaches are also used in which position and/or 
speed loops are implemented at the motion controller side, and speed/
torque references are passed across the network. Recent trends in the 
industry are indicating a move toward a new partitioning method, in which 
all of the control loops are moved away from the motor controllers to a 
powerful motion controller on the master side of the network (see the bot-
tom of Figure 5). The data exchange on the real-time-network is a voltage 
reference (v*) for the motor controller and plant feedback (i, ω, θ) for 
the motion controller. This control topology, which is enabled by powerful 
multicore PLCs and real-time networks, has several benefits. Firstly, the 
architecture is very scalable. Axes can also be easily added/removed with-
out having to worry about the processing power of the motor controller. 
Secondly, increased precision is possible since both trajectory planning 
and motion control are done in one central place.

The new control topology has drawbacks, too. By removing the control 
algorithms from the motor controller, tight synchronization of code execu-
tion and I/O is lost. The higher the bandwidth of a control loop, the more 
of a problem the loss of I/O synchronization is. The torque/current loop is 
especially sensitive to synchronization.
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Proposed Solution
Moving the faster control loops to the motion controller creates a demand 
for synchronization all the way from the network master and down to the 
motor terminals.

The overall idea is to bring the I/Os of all axes into synchronization with 
the network so that everything runs in one sync domain. Figure 6 shows 
an I/O event scheduler, which sits between the network controller and 
the motor controller. The main function of the I/O event scheduler is to 
generate sync/reset pulses to all the peripherals so that they are kept in 
synchronism with the network traffic. The I/O event scheduler takes the 
frame sync signal, which is derived from the local clock of the network 
controller, and outputs appropriate hardware triggers for all I/Os that must 
be kept synchronized to the network.

Each I/O has its own set of timing/reset requirements, which means the 
I/O event scheduler must provide tailored triggers for each I/O. While trig-
ger requirements differ, a general principle applies to all of them. Firstly, 
all triggers must be referenced to the frame sync. Secondly, there is a 
delay/offset associated with each trigger. This delay is related to the I/O’s 
inherent delay—for example, the conversion time of an ADC or the group 
delay of a sinc filter. Thirdly, there is the response time of the I/O—for 
example, the transfer of data from an ADC. The I/O event scheduler knows 
the timing requirements of each I/O and adjusts the trigger/reset pulses to 
the local clock continuously. The principle behind generating each output 
pulse of the I/O event scheduler is summarized in Figure 7.
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Figure 5. Traditional (top) and emerging (bottom) motion control topologies.
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Figure 7. The I/O scheduler generates trigger pulses.

In most networked motion control systems, the frame rate, and hence 
the frame sync rate, is equal to or lower than the PWM update rate of the 
motor controller. This means that the I/O event scheduler must provide 
at least one and possibly several trigger pulses per frame period. For 
example, if the frame rate is 10 kHz and the PWM rate is 10 kHz, the I/O 
event scheduler must provide 1 trigger pulse per network frame and, 
similarly, if the frame rate is 1 kHz and the PWM rate is 10 kHz, the I/O 
event scheduler must provide 10 trigger pulses per network frame. This  
is equivalent to the frequency multiplier in Figure 7. A delay, tD, is applied  
to each synchronization pulse to compensate for the inherent delay of 
each I/O. The final element of the I/O event scheduler is an intelligent 
filtering function. On every network there is some jitter on the traffic. 
The filter reduces the jitter on trigger pulses and also ensures the rate  
of change of frame sync frequency is limited.

The bottom half of Figure 7 shows an example timing diagram for PWM 
synchronization. Note in this example how the frame sync frequency is a 
multiple of the PWM frequency and how the jitter on the I/O trigger signal 
is reduced.

Implementation
Figure 8 shows an example of the proposed synchronization scheme that 
has been implemented and tested in a networked motion control system. 
The network master is a Beckhoff CX2020 PLC that is connected to a PC 
for development and deployment of the PLC program. The protocol of the 
real-time network (red arrows) is EtherCAT.

The main elements of the motor controller are the fido5200 and  
ADSP-CM408, both from Analog Devices. Together the two provide  
a highly integrated chip set for a network connected motor drive.

fido5200 is a real-time Ethernet multiprotocol (REM) switch with two 
Ethernet ports. It provides a flexible interface between a host processor 
and the industrial Ethernet physical layer. fido5200 includes a configurable 
timer control unit (TCU) that makes it possible to implement advanced 
synchronization schemes for the various industrial Ethernet protocols. 
Additional functions like input capture and the output of square wave 
signals can also be realized via dedicated timer pins. Timer input/output 
are kept in phase with the synchronized local time and therefore with the 
network traffic. This makes it possible not only to synchronize the I/O of  
a single slave node, but the slave nodes across the whole network.

The REM switch has two Ethernet ports and hence connects to two Phys 
(PHY1 and PHY2). This topology supports both ring and line networks. 
However, in the experimental setup, only one slave node is used for  
illustration and only one Ethernet port is active.

The REM switch communicates with a host processor though a parallel 
memory bus, which ensures high throughput and low latency.

The host processor used to realize the motor controller is the ADSP-CM408. 
It is an application specific processor based on an ARM® Cortex®-M4F 
core to implement control and application functions. The processor includes 
peripherals to support industrial control applications such as timers for 
PWM inverter control, ADC sampling, and position encoder interfaces. To 
keep all peripherals in sync with the network, a flexible trigger routing 
unit (TRU) is utilized. The TRU redirects the triggers generated by the  
fido5200’s TCU to all timing critical peripherals on the ADSP-CM408. 
These are the pulse-width modulator, sinc filter for phase current mea-
surement, ADC, and absolute encoder interface. The principles behind 
synchronizing I/Os are illustrated in Figure 9.
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Figure 9. Generating synchronization events for I/Os.

In Figure 9, notice how the I/O event scheduler is realized using the TCU 
on the REM switch and the TRU on the motor control processor. In other 
words, the function is implemented across two integrated circuits.

The feedback for the motor controller is phase current and the rotor 
position from a 3-phase servo motor. Phase current is measured using 
isolated Σ-Δ ADCs and the rotor position is measured with an EnDat 
absolute encoder. Both the Σ-Δ ADCs and the encoder interface directly  
to ADSP-CM408 without the need for any external FPGA or CPLD.

The PWM switching frequency is 10 kHz and the control algorithm 
is executed once per PWM period. As discussed in this article, the TCU 
provides synchronization pulses to ADSP-CM408 once per PWM period.

Experimental Results
A photo of the experimental setup is shown in Figure 10. To illustrate the 
synchronization of the system the PLC was setup to run a program with 
a task time of 200 μs. The task time also determines the frame rate on 
the EtherCAT network. The motor controller runs with a PWM and control 
update period of 100 μs (10 kHz) and therefore needs synchronization 
pulses to happen at this rate. The result is shown in Figure 11.

Sensors

Power Inverter

TwinCAT

CX2020 PLC

EnDat 2.2

Motor Controller

PHY2

PHY1

ADSP-CM40x
Control

Processor

Sensor

θ, ω

AC Motor

Figure 8. Implementation of a synchronization scheme.
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Figure 11. Generating synchronization events for I/Os.

The signal Data Ready indicates when the REM switch has made network 
data available to the motor control application. The signal is asserted 
every 200 μs, which corresponds to the EtherCAT frame rate. The PWM 

sync signal is also generated by the REM switch and used to keep the I/O 
of the motor controller in synchronism with the network traffic. Since the 
PWM period is 100 μs, the REM switch schedules two PWM sync pulses 
per EtherCAT frame. The lower two signals on Figure 11, HS PWM and 
LS PWM, are high-side and low-side PWM for one of the motor phases. 
Notice how the PWM signals are synchronized to the network traffic.

Summary
Real-time Ethernet is widely used in motion control systems and some pro-
tocols achieve time synchronization with an accuracy of sub-1 μs. However, 
the synchronization only involves data traffic between the network master 
and slaves. Existing network solutions do not include synchronization of  
motion control I/O, which limits the achievable control performance.

The synchronization scheme proposed in this article enables synchro-
nization all the way from the network master right down to the motor 
terminals. Because of much improved synchronization, the proposed 
scheme offers significant improvement in control performance. The pro-
posed scheme also offers seamless synchronization across multiple axes. 
Axes can easily be added and the synchronization tailored to the individual 
motor controller.

The synchronization is based on an I/O event scheduler, which resides 
between the network controller and the motor controller. The I/O event 
scheduler is programmable on the fly and can be conditioned to minimize 
the effect of jitter/frequency changes.

The article’s proposed scheme has been verified in an experimental setup 
and results were presented. EtherCAT was used as the communication 
protocol in the experiment. However, the ideas presented apply to any 
real-time Ethernet protocol.
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