
Synchronization of Multiaxis Motion Control
over Real-Time Networks
By Jens Sorensen, Dara O’Sullivan, and Christian Aaen

Abstract
Real-time deterministic Ethernet protocols, such as EtherCAT, have enabled
synchronized operation of multiaxis motion control systems.1 There are
two aspects to this synchronization. First, the delivery of command and
references between the various control nodes must be synchronized to
a common clock and, second, the execution of the control algorithms and
feedback functions must be synchronized to the same clock. The first
kind of synchronization is well understood and an inherent part of the
network controller. However, the second kind of synchronization has up
to this point been neglected and is now a bottleneck when it comes to
motion control performance.

This article presents novel concepts to synchronize motor drives all the way
from a network controller and down the motor terminals and sensors. The
presented technologies enable much improved synchronization that leads to
significantly increased control performance.

Problem Statement and State of the Art
To define the limitations of state-of-the-art solutions, consider a 2-axis
networked motion control system, as shown in Figure 1. A motion control
master is sending commands and references across a real-time network
to two servo controllers, with each servo controller constituting a slave
node on the network. The servo controller itself consists of a network
controller, a motor controller, a power inverter, and a motor/encoder.

The real-time network protocols employ different methods to synchronize
slave nodes to the master, but an often used approach is to have a local
synchronized clock at each node. This common understanding of time
ensures references and commands for all servo axes are tightly synchro-
nized. In other words, all network controllers on the real-time network
are synchronized.

Typically, there are two interrupt lines between the network controller
and the motor controller. The first notifies the motor controller when it is
time to gather inputs and put them on the network. The second noti-
fies the motor controller when to read data from the network. Following
this approach, the data exchange between the motion controller and the
motor controller happens in a synchronized manner and very high timing
accuracy is possible. However, it is not enough to get synchronized data
across to the motor controllers; the motor controllers must also be able
to respond to the data in a synchronized way. Without this capability, the
motor controllers cannot take advantage of the timing accuracy of the
network. When it comes to responding to references and commands, the
motor controller’s I/Os pose a problem.

Each of the I/Os in a motor controller, such as pulse-width modulation
(PWM) timers and ADCs, have an inherent delay and time quantization.
As an example, consider the PWM timer generating gate drive signals for
the power inverter, as shown in Figure 2. The timer generates gate signals
by comparing reference Mx to an up-down counter. When Mx is changed
by the control algorithm, the new duty cycle does not take effect until the

Figure 1. A typical 2-axis network motion control system.

1Visit analogdialogue.com

Analog Dialogue 53-02, February 2019
Share on Twitter LinkedIn Facebook Email

Network Controller
Slave Node 2

Servo Axis 2

Sync Domain C

IRQs

R
ea

t-
T

im
e

N
et

w
o

rk

Motion Controller
Master

Master
Clock

Net

Local
Clock

Net Cmd I/Os Sensors

θ
Algo

Motor Controller 2
Power Inverter

M

Network Controller
Slave Node 1

Servo Axis 1

Sync Domain A Sync Domain B

IRQsLocal
Clock

Net Cmd I/Os Sensors

Micro-
processor

Micro-
processor

θ
Algo

Motor Controller 1
Power Inverter Motor/Encoder

M

Data Exchange

Data Exchange

http://www.analog.com
http://www.analogdialogue.com
https://www.facebook.com/AnalogDevicesInc
https://twitter.com/adi_news
https://www.youtube.com/user/AnalogDevicesInc
https://www.linkedin.com/company/analog-devices
http://www.analog.com
https://registration.analog.com/login/AccountRegistration.aspx
https://twitter.com/intent/tweet?text=Synchronization%20of%20Multiaxis%20Motion%20Control%20over%20Real-Time%20Networks%20%7C%20Analog%20Devices&url=https%3A%2F%2Fwww.analog.com%2Fen%2Fanalog-dialogue%2Farticles%2Fsynchronization-of-multi-axis-motion-control-over-real-time-networks.html%23.XEjaSaJn16w.twitter&related=
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fwww.analog.com%2Fen%2Fanalog-dialogue%2Farticles%2Fsynchronization-of-multi-axis-motion-control-over-real-time-networks.html%23.XEjaY4S9YHg.linkedin
https://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.analog.com%2Fen%2Fanalog-dialogue%2Farticles%2Fsynchronization-of-multi-axis-motion-control-over-real-time-networks.html%23.XEjaIMTR8iY.facebook
https://www.facebook.com/AnalogDevicesInc
mailto:?subject=Synchronization of Multiaxis Motion Control over Real-Time Networks&body=Check out this Analog Devices design note https://www.analog.com/en/analog-dialogue/articles/synchronization-of-multi-axis-motion-control-over-real-time-networks.html#author

next PWM period. This is equivalent to a zero-order hold effect meaning
the duty cycle is only updated once per PWM period, T, or twice if double
update mode is used.

pwm

–1

0

T/2 T/2

t1ton/2 ton/2

t0

t2

+1 M0 M1
M2

Figure 2. Update of duty cycle for PWM timer.

No matter how tightly the data exchange is synchronized on the real-time
network, the time quantization of the PWM timer ends up being the deter-
mining factor in axis synchronization. When a new reference is received,
it is not possible to respond to it until a new duty cycle takes effect. This
introduces a time uncertainty of up to one PWM period, which is typically
in the range of 50 μs to 100 μs. In effect, there will be an undefined and
varying phase relationship between the network synchronization period
and the PWM period. Compare this to a time uncertainty of sub-1 μs on
the real-time network and it is clear that the I/Os of the motor controller
play a crucial role when it comes to synchronizing motion control over
a network. In fact, it is not the real-time network that determines the
synchronization accuracy—rather it is the I/Os of the system.

Again referring to Figure 1, the system has three synchronization domains,
A, B, and C, that are not tied together. They are effectively out of synchro-
nization with a variable uncertainty of up to one PWM period.

Synchronization Uncertainty and
Application Impact
The impact of timing uncertainty can be clearly seen in high performance
multiaxis servo systems for applications like robotics and machining.
The varying time offset between motor control axes at the I/O level has a
direct and measurable impact on the final three-dimensional positioning
accuracy of the robot or machine tool.

Consider a simple motion profile, as shown in Figure 3. In this example,
the motor speed reference (red curve) is ramped up and then back down
again. If the ramp rate is within the capability of the electromechanical
system, the actual speed is expected to follow the reference. However, if
there is a delay anywhere in the system, the actual speed (blue curve) will
lag reference, which results is a position error, Δθ.

t

t

Δθ

ΔθΔθ

ω

θ

Figure 3. Effect of timing delay on position accuracy.

In multiaxis machines, a target position (x, y, z) is translated into angular
axis profiles (θ1, ..., θn) according to the mechanical construction of the
machine. The angular axis profiles define a sequence of equally time
spaced position/velocity commands for each axis. Any difference in timing
between the axes results in reduced accuracy of the machine. Consider
the 2-axis example shown in Figure 4. A target path for the machine is
described by a set of (x, y) coordinates. A delay causes a timing error on
the command for the y-axis and the actual path ends up being irregular.

The impact of a constant delay may, in some cases, be minimized by
proper compensation. More critical is a varying and unknown delay for
which compensation is impossible. Furthermore, a varying delay results
in varying control loop gain, which makes it difficult to tune the loop for
optimal performance.

It should be noted that a delay anywhere in the system will cause inac-
curacy in the precision of the machine. As a consequence, minimizing or
eliminating delays enables increased productivity and end-product quality.

x

y

Target Path (x4, y3)

(x3, y2)

(x1, y0)

(x1, y1)

(x0, y0)

Actual Path for
Delayed y Command

Figure 4. Effect of timing delay on position accuracy.

Synchronization and New Control Topologies
The traditional approach to motion control is shown in the top part of
Figure 5. A motion controller, typically a PLC, sends position references
(θ*) to a motor controller over a real-time network. The motor controller
consists of three cascaded feedback loops with the inner loop controlling
torque/current (T/i), the middle loop controlling speed (ω), and the other
loop controlling position (θ). The torque loop has the highest bandwidth
and the position loop has the lowest. Feedback from the plant is kept
local to the motor controller and is tightly synchronized with the control
algorithm and pulse-width modulator.

With this system topology, axes are synchronized through the exchange
of position references between the motion and motor controllers, but the
correlation to synchronization of the motor controller’s I/O (feedback and
PWM) only becomes an issue for very high precision applications such as
CNC machining. The position loop often has fairly low bandwidth and is
therefore less sensitive to synchronization of I/O. That means synchroniza-
tion of nodes at a reference level typically gives acceptable performance
even though the network and I/O are in different synchronization domains.

While the control topology shown at the top of Figure 5 is common, other
control partitioning approaches are also used in which position and/or
speed loops are implemented at the motion controller side, and speed/
torque references are passed across the network. Recent trends in the
industry are indicating a move toward a new partitioning method, in which
all of the control loops are moved away from the motor controllers to a
powerful motion controller on the master side of the network (see the bot-
tom of Figure 5). The data exchange on the real-time-network is a voltage
reference (v*) for the motor controller and plant feedback (i, ω, θ) for
the motion controller. This control topology, which is enabled by powerful
multicore PLCs and real-time networks, has several benefits. Firstly, the
architecture is very scalable. Axes can also be easily added/removed with-
out having to worry about the processing power of the motor controller.
Secondly, increased precision is possible since both trajectory planning
and motion control are done in one central place.

The new control topology has drawbacks, too. By removing the control
algorithms from the motor controller, tight synchronization of code execu-
tion and I/O is lost. The higher the bandwidth of a control loop, the more
of a problem the loss of I/O synchronization is. The torque/current loop is
especially sensitive to synchronization.

2Analog Dialogue 53-02, February 2019

Proposed Solution
Moving the faster control loops to the motion controller creates a demand
for synchronization all the way from the network master and down to the
motor terminals.

The overall idea is to bring the I/Os of all axes into synchronization with
the network so that everything runs in one sync domain. Figure 6 shows
an I/O event scheduler, which sits between the network controller and
the motor controller. The main function of the I/O event scheduler is to
generate sync/reset pulses to all the peripherals so that they are kept in
synchronism with the network traffic. The I/O event scheduler takes the
frame sync signal, which is derived from the local clock of the network
controller, and outputs appropriate hardware triggers for all I/Os that must
be kept synchronized to the network.

Each I/O has its own set of timing/reset requirements, which means the
I/O event scheduler must provide tailored triggers for each I/O. While trig-
ger requirements differ, a general principle applies to all of them. Firstly,
all triggers must be referenced to the frame sync. Secondly, there is a
delay/offset associated with each trigger. This delay is related to the I/O’s
inherent delay—for example, the conversion time of an ADC or the group
delay of a sinc filter. Thirdly, there is the response time of the I/O—for
example, the transfer of data from an ADC. The I/O event scheduler knows
the timing requirements of each I/O and adjusts the trigger/reset pulses to
the local clock continuously. The principle behind generating each output
pulse of the I/O event scheduler is summarized in Figure 7.

PlantMotor ControllerMotion Controller

Motor Controller

Real-Time
Network

ElectricalMechanical

v

Feedback

Mechanical
Load and
Sensor

R L

S
J

і

ω

ω*θ*

θ*

T*

θ

і

ω

θ

Current
Interface

CiCω +
–

+
–

+
–

Cθ

Motion Controller

v* v*

і

ω

ω*θ* T*

θ

CiCω +
–

+
–

+
–

Cθ

Position
Interface

Plant

Feedback

Mechanical
Load and
Sensor

R L

S
J

Current
Interface

Position
Interface

S
la

ve
 In

te
rf

ac
e

Real-Time
Network

S
la

ve
 In

te
rf

ac
e

M
as

te
r

In
te

rf
ac

e

Motion
Profile

Motion
Profile

M
as

te
r

In
te

rf
ac

e

PWM

PWM

Figure 5. Traditional (top) and emerging (bottom) motion control topologies.

Network Controller
Slave Node 1

R
ea

l-
T

im
e

N
et

w
o

rk

Motion Controller
Master

Master
Clock

Net Net Cmd
I/O

I/O
I/O

I/O
I/O

I/O

Micro-
processor

Sensors

Power Inverter

M

Motor Encoder

Local
Clock

I/O Event
Scheduler

I/O
Events

Frame
Sync

Data Exchange

IRQ

Motor Controller 1

Algo

Network Controller
Slave Node 1

Net Cmd
I/O

I/O
I/O

I/O
I/O

I/O

Sensors

θ

θ

Power Inverter

M

Motor Encoder

Local
Clock

I/O Event
Scheduler

I/O
Events

Frame
Sync

Data Exchange

IRQ

Motor Controller 1

Algo

One Sync Domain

Micro-
processor

Figure 6. An I/O scheduler ties the sync domains together.

3Analog Dialogue 53-02, February 2019

tD

tFRAME = N × tPWM

Frame Sync

PWM
I/O Event

tPWM
Jitter

I/O Event Scheduler

Delay Filter
Frequency
Multiplier

Frame
Sync

I/O Event

Figure 7. The I/O scheduler generates trigger pulses.

In most networked motion control systems, the frame rate, and hence
the frame sync rate, is equal to or lower than the PWM update rate of the
motor controller. This means that the I/O event scheduler must provide
at least one and possibly several trigger pulses per frame period. For
example, if the frame rate is 10 kHz and the PWM rate is 10 kHz, the I/O
event scheduler must provide 1 trigger pulse per network frame and,
similarly, if the frame rate is 1 kHz and the PWM rate is 10 kHz, the I/O
event scheduler must provide 10 trigger pulses per network frame. This
is equivalent to the frequency multiplier in Figure 7. A delay, tD, is applied
to each synchronization pulse to compensate for the inherent delay of
each I/O. The final element of the I/O event scheduler is an intelligent
filtering function. On every network there is some jitter on the traffic.
The filter reduces the jitter on trigger pulses and also ensures the rate
of change of frame sync frequency is limited.

The bottom half of Figure 7 shows an example timing diagram for PWM
synchronization. Note in this example how the frame sync frequency is a
multiple of the PWM frequency and how the jitter on the I/O trigger signal
is reduced.

Implementation
Figure 8 shows an example of the proposed synchronization scheme that
has been implemented and tested in a networked motion control system.
The network master is a Beckhoff CX2020 PLC that is connected to a PC
for development and deployment of the PLC program. The protocol of the
real-time network (red arrows) is EtherCAT.

The main elements of the motor controller are the fido5200 and
ADSP-CM408, both from Analog Devices. Together the two provide
a highly integrated chip set for a network connected motor drive.

fido5200 is a real-time Ethernet multiprotocol (REM) switch with two
Ethernet ports. It provides a flexible interface between a host processor
and the industrial Ethernet physical layer. fido5200 includes a configurable
timer control unit (TCU) that makes it possible to implement advanced
synchronization schemes for the various industrial Ethernet protocols.
Additional functions like input capture and the output of square wave
signals can also be realized via dedicated timer pins. Timer input/output
are kept in phase with the synchronized local time and therefore with the
network traffic. This makes it possible not only to synchronize the I/O of
a single slave node, but the slave nodes across the whole network.

The REM switch has two Ethernet ports and hence connects to two Phys
(PHY1 and PHY2). This topology supports both ring and line networks.
However, in the experimental setup, only one slave node is used for
illustration and only one Ethernet port is active.

The REM switch communicates with a host processor though a parallel
memory bus, which ensures high throughput and low latency.

The host processor used to realize the motor controller is the ADSP-CM408.
It is an application specific processor based on an ARM® Cortex®-M4F
core to implement control and application functions. The processor includes
peripherals to support industrial control applications such as timers for
PWM inverter control, ADC sampling, and position encoder interfaces. To
keep all peripherals in sync with the network, a flexible trigger routing
unit (TRU) is utilized. The TRU redirects the triggers generated by the
fido5200’s TCU to all timing critical peripherals on the ADSP-CM408.
These are the pulse-width modulator, sinc filter for phase current mea-
surement, ADC, and absolute encoder interface. The principles behind
synchronizing I/Os are illustrated in Figure 9.

PWM
PWM Event

ADC Event

Sinc Event

Enc Event

Algo Event

ADC

SincTRUTCULocal
Clock

Frame

fido5200 ADSP-CM408

Sync

Encoder

Algo

Figure 9. Generating synchronization events for I/Os.

In Figure 9, notice how the I/O event scheduler is realized using the TCU
on the REM switch and the TRU on the motor control processor. In other
words, the function is implemented across two integrated circuits.

The feedback for the motor controller is phase current and the rotor
position from a 3-phase servo motor. Phase current is measured using
isolated Σ-Δ ADCs and the rotor position is measured with an EnDat
absolute encoder. Both the Σ-Δ ADCs and the encoder interface directly
to ADSP-CM408 without the need for any external FPGA or CPLD.

The PWM switching frequency is 10 kHz and the control algorithm
is executed once per PWM period. As discussed in this article, the TCU
provides synchronization pulses to ADSP-CM408 once per PWM period.

Experimental Results
A photo of the experimental setup is shown in Figure 10. To illustrate the
synchronization of the system the PLC was setup to run a program with
a task time of 200 μs. The task time also determines the frame rate on
the EtherCAT network. The motor controller runs with a PWM and control
update period of 100 μs (10 kHz) and therefore needs synchronization
pulses to happen at this rate. The result is shown in Figure 11.

Sensors

Power Inverter

TwinCAT

CX2020 PLC

EnDat 2.2

Motor Controller

PHY2

PHY1

ADSP-CM40x
Control

Processor

Sensor

θ, ω

AC Motor

Figure 8. Implementation of a synchronization scheme.

4Analog Dialogue 53-02, February 2019

Servo
Motor

PLC

EtherCAT
Network

Motor Controller
Power Inverter

Figure 10. Implementation of a synchronization scheme.

Data
Ready

PWM
SYNC

HS
PWM

LS
PWM

Figure 11. Generating synchronization events for I/Os.

The signal Data Ready indicates when the REM switch has made network
data available to the motor control application. The signal is asserted
every 200 μs, which corresponds to the EtherCAT frame rate. The PWM

sync signal is also generated by the REM switch and used to keep the I/O
of the motor controller in synchronism with the network traffic. Since the
PWM period is 100 μs, the REM switch schedules two PWM sync pulses
per EtherCAT frame. The lower two signals on Figure 11, HS PWM and
LS PWM, are high-side and low-side PWM for one of the motor phases.
Notice how the PWM signals are synchronized to the network traffic.

Summary
Real-time Ethernet is widely used in motion control systems and some pro-
tocols achieve time synchronization with an accuracy of sub-1 μs. However,
the synchronization only involves data traffic between the network master
and slaves. Existing network solutions do not include synchronization of
motion control I/O, which limits the achievable control performance.

The synchronization scheme proposed in this article enables synchro-
nization all the way from the network master right down to the motor
terminals. Because of much improved synchronization, the proposed
scheme offers significant improvement in control performance. The pro-
posed scheme also offers seamless synchronization across multiple axes.
Axes can easily be added and the synchronization tailored to the individual
motor controller.

The synchronization is based on an I/O event scheduler, which resides
between the network controller and the motor controller. The I/O event
scheduler is programmable on the fly and can be conditioned to minimize
the effect of jitter/frequency changes.

The article’s proposed scheme has been verified in an experimental setup
and results were presented. EtherCAT was used as the communication
protocol in the experiment. However, the ideas presented apply to any
real-time Ethernet protocol.

References
1 Jie Ma. “Multi-DOF Motion Control System Design and Realization Based

on EtherCAT.” 2016 Sixth International Conference on Instrumentation
and Measurement, Computer, Communication, and Control, July 2016.

Jens Sorensen [jens.sorensen@analog.com] is a system applications
engineer at Analog Devices, where he works with motor control solutions
for industrial applications. He received his M.Eng.Sc. degree from Aalborg
University, Denmark. His main interests are control algorithms, power
electronics, and control processors.

Dara O’Sullivan [dara.osullivan@analog.com] is a senior system applications
engineer with the Motor and Power Control team (MPC) within the automa-
tion, energy, and sensors business unit at Analog Devices. His area of expertise
is power conversion and control in ac motor control applications. He received
his B.E., M.Eng.Sc., and Ph.D. from University College Cork, Ireland, and has
worked in industrial and renewable energy applications in a range of research,
consultancy, and industry positions since 2001.

Christian Aaen [christian.aaen@analog.com] is a software systems
design engineer with the Deterministic Ethernet Technology Group at
Analog Devices. His area of expertise is embedded software design with
a background in power conversion and motor drives. He received his B.Sc.
and M.Sc. from Aalborg University, Denmark.

Jens Sorensen

Dara O’Sullivan

Christian Aaen

5Analog Dialogue 53-02, February 2019

https://ieeexplore.ieee.org/document/7774878
https://ieeexplore.ieee.org/document/7774878
mailto:jens.sorensen%40analog.com?subject=
mailto:dara.osullivan%40analog.com?subject=
mailto:christian.aaen%40analog.com?subject=

	Abstract
	Problem Statement and State of the Art
	Synchronization Uncertainty and Application Impact
	Synchronization and New Control Topologies
	Proposed Solution
	Implementation
	Experimental Results
	Summary
	References

