o CYPRESS

N 4 EMBEDDED IN TOMORROW™

AN221774

Getting Started with PSoC 6 MCU

Authors: Srinivas Nudurupati, Vaisakh K V

Associated Part Family: All PSoC® 6 MCU devices

Software Version: ModusToolbox™ 1.0, PSoC Creator™ 4.2
Associated Application Notes and Code Examples: Click here.

More code examples? We heard you.

To access an ever-growing list of hundreds of PSoC code examples, please visit our code examples
web page. You can also explore the PSoC video library here.
. __|

AN221774 introduces the PSoC 6 MCU, a dual-CPU programmable system-on-chip with Arm®
Cortex®M4 and Cortex-M0O+ processors. This application note helps you explore PSoC 6 MCU
architecture and development tools, and shows you how to create your first project using ModusToolbox
and PSoC Creator. This application note also guides you to more resources available online to accelerate
your learning about PSoC 6 MCU. To get started with the PSoC 6 MCU with BLE Connectivity device
family, refer to AN210781 — Getting Started with PSoC 6 MCU with BLE Connectivity.

Contents
1 INtrodUCHION.....ueiiiei i 2 5.6 Part 4: Build the Application............ccccceeeeeiinnns 32
1.1 PrereqUISIteSevveririierieie e 3 5.7 Part 5: Program the Device............cccvevvciverennnnn 33
2 Development ECOSYStEMcuveveiiiiiieiiiiieeiiece e 4 5.8 Part 6: Test Your Design........ccccevvvvrenvineeennnn 34
2.1 PSOC RESOUICESccuvveeeiiiieeeiiieeaiieeeeeienee s 4 6 My First PSoC 6 MCU Design
2.2 Firmware/App“cation Deve]opment ____________________ 5 Using PSoC Creator.........coeeiiiieiiiiiieeieeeeee e, 36
2.3 Support for Other IDEScccooovvvevereirirereinns 9 6.1 Using These INStructionscc.cooevvninnnn. 36
2.4 RTOS SUPPOI ...o.eveeerereeeeieeeseeeeeesesieeeseneneneneen 9 6.2 Aboutthe Design ..., 37
2.5 DEBUGGING. . rvrvvrererrersessenesree 1 6.3 Part 1: Create a New Project from Scratch.......38
2.6 PSoC 6 MCU Development Kitscc.......... 11 6.4 Part 2: Implement the Designcccccceeeernnnee 42
3 Device Features 6.5 Part 3: Generate Source Codeccccccueenne. 50
4 Choosing an IDE 6.6 Part 4: Write the Firmwareccccoevevveennne 52
5 My First PSoC 6 MCU Design Using 6.7 Part 5: Build the Project and
MOAUSTOOIDOX IDE ... 14 Program the DeviCe ..o, 56
5.1 Using These INStrUCtioNScccvovevevevereererenee. 14 6.8 Part 6: Test Your Design..........c.c.cooviiiinnnns 58
5.2 About the Design __ 14 7 Summary ... 59
5.3 Part 1: Create a New Application...................... 15 8 Related Application Notes and Code Examples......... 60
5.4 Part2: |mp|ement the Design and Appendix A. Glossary .. 62
Generate Source Codecccovvveniiervienineenns 19 Appendix B. PSoC 6 MCU Development Kits 63
5.5 Part 3: Write the Firmwarec.cccceeviverenns 28 Worldwide Sales and Design SUPpPOrt..........cccoccveeerrineen. 68
WWW.CYpress.com Document No. 002-21774 Rev. *C 1

Vs

ws CYPRESS

~am> EMBEDDED IN TOMORROW’ Getting Started with PSoC 6 MCU

1 Introduction

PSoC 6 MCU is Cypress’ ultra-low-power PSoC device with a dual-CPU architecture tailored for smart homes, loT
gateways, etc. The PSoC 6 MCU device is a programmable embedded system-on-chip that integrates the following
features on a single chip:

Single-CPU microcontroller: Arm Cortex-M4 (CM4) or Dual-CPU microcontroller: Arm Cortex-M4 (CM4) and
Cortex-M0O+ (CMO+).

Programmable analog and digital peripherals.

Up to 2 MB of flash and 1 MB of SRAM.

Fourth-generation CapSense® technology.

PSoC 6 MCU is suitable for a variety of power-sensitive applications such as the following:
o Smart home sensors and controllers.

o Smart home appliances.

o Gaming controllers.

o Sports, smart phone, and virtual reality (VR) accessories.
o Industrial sensor nodes.

o Industrial logic controllers.

o Advanced remote controllers.

The programmable analog and digital subsystems allow flexibility and dynamic fine-tuning of the design using
ModusToolbox™ IDE, the Eclipse-based IDE for developing PSoC 6 MCU applications, or PSoC Creator, the
schematic-based design tool.

Figure 1 illustrates an application-level block diagram for a real-world use case using PSoC 6 MCU.

Figure 1. Application-Level Block Diagram Using PSoC 6 MCU

PSoC 6 MCU
Buck Universal Digital TFT LCD Display
uc
Block (UDB)-
12C Block
Motion Sensor <€ Converter Based LCD
Parallel Interface

' §

Ambient Light SAR ADC
Sensor Block 1€ CM4 CPU
A i
CapSense |
,nTtgr“f;L‘e Block | CMO+ CPU PWM Block > RGB LED

PSoC 6 MCU is a highly capable and flexible solution. For example, the real-world use case in Figure 1 takes advantage
of these features:

A buck converter for ultra-low-power operation.

An analog front end (AFE) within the device to condition and measure sensor outputs such as ambient light sensor.
Serial Communication Blocks (SCBs) to interface with multiple digital sensors such as motion sensors.

CapSense technology for reliable touch and proximity sensing.

Digital logic (Universal Digital Blocks or UDBs) and peripherals (Timer Counter PWM or TCPWM) to drive the
display and LEDs respectively.

Product security features managed by CM0+ CPU and application features executed by CM4 CPU.

See Device Features and the device datasheets for more details.

WWW.Cypress.com Document No. 002-21774 Rev. *C 2

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

This application note introduces you to the capabilities of PSoC 6 MCU, gives an overview of the development
ecosystem, and gets you started with a simple design wherein you learn to use PSoC 6 MCU. This design is available
as code example CE221773 for ModusToolbox and PSoC Creator.

For hardware design considerations, see AN218241 — PSoC 6 MCU Hardware Design Considerations.

1.1 Prerequisites
Before you get started, make sure that you have a development kit and have installed the required software. It is
recommended that you download the code example for reference.
1.1.1 Hardware
m CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer Kit
m CYB8CKIT-062-BLE PSoC 6 BLE Pioneer Kit or
m CYBCPROTO-062-4343W PSoC 6 Wi-Fi BT Prototyping Kit Note that kit is supported only on ModusToolbox; it is
not supported in PSoC Creator.
1.1.2 Software
®m ModusToolbox 1.00r
m PSoC Creator 4.2 with Peripheral Driver Library (PDL v3.1.x or later)
m CE221773 — PSoC 6 MCU Hello World Example Using ModusToolbox

WWW.Cypress.com Document No. 002-21774 Rev. *C 3

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

N

Development Ecosystem
2.1 PSoC Resources

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device and quickly and
effectively integrate it into your design. For a comprehensive list of PSoC 6 MCU resources, see KBA223067 in the
Cypress community. The following is an abbreviated list of resources for PSoC 6 MCU.

Overview: PSoC Portfolio, PSoC Roadmap ® Development Tools
Product Selectors: PSoC 6 MCU o CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT
Datasheets describe and provide electrical Pioneer Kit is_a development kit_that supports the
specifications for each device family. PSoC 62 series MCU along with Wi-Fi and BT
Application Notes and Code Examples cover connectivity.
a broad range of topics, from basic to advanced o CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kitis an
level. You can also browse our collection of easy-to-use and inexpensive development
code examples. See Code Examples. platform for PSoC 63 series MCU with BLE
Technical Reference Manuals (TRMs) provide Connectivity.
detailed descriptions of the architecture and o CY8CPROTO-062-4343W PSoC 6 Wi-Fi BT
registers in each device family. Prototyping Kit is a development kit that supports
PSoC 6 MCU Programming Specification the PSoC 62 series MCU along with CYW4343W
provides the information necessary to program module-based Wi-Fi and BT connectivity for
the nonvolatile memory of PSoC 6 MCU development on ModusToolbox.
devices. m Training Videos: Cypress provides video training
CapSense Design Guides: Learn how to on our products and tools, including a dedicated
design capacitive touch-sensing applications series on PSoC 6 MCU.
with PSoC devices.

WWW.Cypress.com Document No. 002-21774 Rev. *C 4

W & CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

2.2 Firmware/Application Development
Cypress provides two development platforms that you can use for application development with PSoC 6 MCU:

® ModusToolbox: An Eclipse-based development environment on Windows, macOS, and Linux platforms that
includes the ModusToolbox IDE and the PSoC 6 SDK. ModusToolbox supports stand-alone device and
middleware configurators that are fully integrated into the IDE. Use the configurators to set the configuration of
different blocks in the device and generate code that can be used in firmware development. ModusToolbox supports
all PSoC 6 MCU devices.
ModusToolbox relies on PSoC 6 SDK as the software development kit for all supported Cypress PSoC 6 devices.
The SDK is provided as source code and in some cases, like BLE, as libraries. See ModusToolbox IDE and the
PSoC 6 SDK for more information.

m PSoC Creator: A Cypress-proprietary IDE that runs on Windows only. It supports a subset of PSoC 6 MCU devices
(up to 1 MB flash memory) as well as other PSoC device families such as PSoC 3, PSoC 4, and PSoC 5LP. See
PSoC Creator for more information.
2.2.1 ModusToolbox IDE and the PSoC 6 SDK

ModusToolbox is a free development ecosystem that includes the ModusToolbox IDE and the PSoC 6 SDK. The
ModusToolbox IDE brings together several device resources, middleware, and firmware to build an application. Using
ModusToolbox, you can enable and configure device resources and middleware libraries, write C/assembly source
code, and program and debug the device.

The PSoC 6 SDK is the software development kit for the PSoC 6 MCU. The SDK makes it easier to develop firmware
for supported devices. It helps you to build firmware without the need to understand the intricacies of the device
resources.

As Figure 2 shows, with the ModusToolbox IDE, you can:

1. Create a new application based on a list of starter applications, filtered by kit or device, or browse the collection of
code examples online.

2. Configure device resources in design.modus to build your hardware system design in the workspace.
Add software components or middleware.
4. Develop your application firmware.
Figure 2. ModusToolbox IDE Resources and Middleware

Choose Target Hard
s % fyPr. 22 |5 De. HiiRe. ZP. = O S
Weetadbowd Perpherals | Pins | Platform [‘:hm DA Serial Communication Block (SCE) § - Parameters 8 x
S - T
=] Emp(yPS 06 _c : — #HY
| § nrsadoucs [Conflgure Device [Value B
Dev/Eval Kit csignmodus 2nieg FESEIEES - E
4[5 EmptyPSoCé_mainapp. a Cummumtmun) Com Made Standaed
il Includes =]D”GM ‘:Ci‘;lcd Bus nf‘ I? o 7) Baud Rate (bps) 115200
| b (= EmptyPSoCh_config o orerter
Custom Hardware Ve o et [T Quad Serial Memory Tnterface (QSPB 0 %) Oversample 0
= (1) 4 5 Source 7] Seria| Communication Block (SCB 0 7) Bit Order LB First.
A\ / [7] Serial Communication Block (SCEB) 1 7) Data Width & bits
. [7] Serial Communication Block (SCB) 2 7
Starter Application e =]) Parity Mone
b ot ! [Serizl Communication Block (SCB) 3 ES— — =
for o latn. Browse Starter 8 o , [serin o e . W .
B ; 5 EmptyPSaCt_mainapp_cmlp 5] jon UART-10 = [USRT | | Code Preview & x
ronpac Applications or 5 EmptyPSoCS_mainspp_cmi_psoctpdl . Lok b
= | Emgty application > EmptyPSoC6_mainal sochipdl =1 /7 BOTE: This is a preview only. It combines elements of the *
= Code Examples 5 ErmptyPSoCt.rinapp.procty =i @
=o 0 v A e =g 7] Seriz| Communication Block (SCE) 8 #include "cy_sch_uare.h”
[7] Universal Serial Bus (USB) 0 #include "c¥_sysclk.h™
Digital
= Syrem sdetine vART_FW 5085
ModusToolbox™ B e S ;

Code Freview

v Start

Hew 2pplication

B¢/ Middleware Selector (3 \ = 2=
)

L Import Application Search

B < ikl Add Software GGG :
Firmware &, Build EmptyPSaCt Application [Lib BV Components/ ity EV Support.
o Cleon Empiy 505 Spplication 7] L Web Sockats Middleware — [RTSSss
1) Project Build Settings

I

[Middleware BLE. Base SW cor

B Configure Device m

nent; This is the Bluetooth Low Energy (BLE) software companent base part. Includes BLE | —
. common, profiles and HAL sources, H
int mmdn(vold) & Select Middleware (7] Midelleware BLE. Complete BLE Protocol. This is the BLE Bluctooth Low Energy (BLE) software companent, operates in BLE dual
{ Dual core mode: controller, Soft FP (controll)core mode. ThisCompanent incudes the Sof PP pre B Stk s

g) library anel can be run on CHOp anly core.

£, Complete BLE Protocal,
mode: hast and profiles. 3o

12 GLE)softuare componet,operte i BLE dun
udes the P pre-built BLE Stacl

e BLE. Complete BLE Protocol. rgy {BLE) software
core mnde. Hard FD e st arne core. This ral

WWW.Cypress.com Document No. 002-21774 Rev. *C 5

o CYPRESS

~amp> EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

2.2.1.1 ModusToolbox Help

Visit the ModusToolbox home page to download and install the latest version of ModusToolbox. Launch ModusToolbox
and navigate to the following items:

® Quick Start Guide: Choose Help > ModusToolbox IDE Documentation > Quick Start Guide. This guide gives
you the basics for using ModusToolbox.

m PSoC 6 API Reference: Choose Help > ModusToolbox APl Reference > PSoC PDL API Reference. This guide
gives you in an insight into the PSoC 6 PDL APIs.

2.2.1.2 PSoC 6 SDK

The PSoC 6 SDK includes resource drivers and middleware configurators to get you started developing firmware with
PSoC 6 MCU. The SDK includes the same driver code as found in the Software Development Kits for PSoC 6 Devices.

The SDK provides the central core of the ModusToolbox software. It contains Configurators, drivers, libraries,
middleware, as well as various utilities, makefiles, and scripts. It also includes relevant drivers, middleware, and
examples for use with Cypress 10T devices and connectivity solutions. You may use any or all tools in any environment
you prefer. The SDK is the one place where you can find all the development resources for PSoC 6 MCU devices.

Configurators

ModusToolbox software provides graphical applications called Configurators that make it easier to configure a
hardware block. For example, instead of having to search through all the documentation to configure a serial
communication block as a UART with a desired configuration, open the appropriate Configurator and set the baud rate,
parity, stop bits. Upon saving the hardware configuration, the tool generates the "C" code to initialize the hardware with
the desired configuration

Configurators are independent of each other, but they can be used together to provide flexible configuration options.

They can be used stand alone, in conjunction with other tools, or within a complete IDE. Everything is bundled together

as part of the unified SDK for distribution purposes. Configurators are used for:

m Setting options and generating code to configure drivers

m Setting up connections such as pins and clocks for a peripheral

m Setting options and generating code to configure middleware

For PSoC 6 MCU applications, the available Configurators include:

m Device Configurator: Set up the system (platform) functions, as well as the basic peripherals (e.g., UART, Timer,
PWM).

m CapSense Configurator and Tuner: Configure CapSense, and generate the required code.

m USB Configurator: Configure USB settings and generate the required code.

m QSPI Configurator: Configure external memory and generate the required code.

® Smart I/0O Configurator: Configure the Smart 1/O.

m BLE Configurator: Configure the Bluetooth Low Energy (BLE) settings.

WWW.Cypress.com Document No. 002-21774 Rev. *C 6

A,
e

-

CYPRESS

EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

2.2.2

PSoC Creator
PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It brings together several digital, analog,
and system Components and firmware to build an application, and enables you to design hardware and firmware
systems concurrently. Using PSoC Creator, you can select, place, and configure Components on a schematic; write

Cl/assembly source code; and program and debug the device.

As Figure 3 shows, with PSoC Creator, you can:

1.

2 S

2.2.2.1

Browse the collection of code examples from the File > Code Example... menu.

a.
b.

c.
d.

Filter for examples based on device family.
Select from the menu of examples offered based on the Filter by options.

Download the code example using the download button.
Create a new project based on the selection.

Explore the library of more than 100 Components.

Drag and drop Components to build your hardware system design in the main design workspace.
Review the Component datasheets.

Configure the Components using configuration tools.

Co-design your application firmware with the PSoC hardware.

Figure 3. PSoC Creator Schematic Entry and Components

D o Yow Bodt Quld Oebug Teok o tp

Find Code Example

ownload
utton

Do Examples i

o @
@ Browse Code

S I——

=

3 3 DA,
Werkspace Epoees 1 projet Sax
Bia

Tosdeswpncrich

s BLSS A £ B 0w

- v x Companent Catiog 6 comp.. = 8X, iy,
G

o o~
B

©@

[Contgur Capiomm— e
@ Develop I
Firmware r
o

rces | Gestees | A0C | Bultn

i x C50urwng mode SmanSense (il Ads Ture)

Zwangmede Sar sl

1 e

Configure
Components

[E—

S0 < 5 60F

canca

PSoC Creator Help
Visit the PSoC Creator home page to download and install the latest version of PSoC Creator. Launch PSoC Creator

and navigate to the following items:

Quick Start Guide: Choose Help > Documentation > Quick Start Guide. This guide gives you the basics for

developing PSoC Creator projects.

Code Examples: Choose File > Code Example or click the Find Code Example... link on the Start Page tab.

Drag and Drop
Components

Open .
Datasheet

8 CYPRESS

PSoC 6 Capacitive Sensing (CapSen:

Features

)

Explore Component
Catalog

Inst_N

7

These code examples demonstrate how to configure and use PSoC resources.

Component Datasheets: Right-click a Component and select Open Datasheet. Visit the PSoC 6 MCU

Component Datasheets page for a list of all Component datasheets.

WWW.CYpress.com

Document No. 002-21774 Rev. *C

~
W

CYPRESS

EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

2.2.3

Software Development Kits for PSoC 6 Devices

Cypress provides significant source code and tools to enable software development for PSoC 6 MCU. You use tools
to specify how you want to configure the hardware, generate code for that purpose which you use in your firmware,
and include various middleware libraries for additional functionality, like BLE connectivity or FreeRTOS. This source
code makes it easier to develop the firmware for supported devices. It helps you quickly customize and build firmware
without the need to understand the register set.

For the PSoC Creator environment, Cypress provides the Peripheral Driver Library (PDL). The PDL supports both
PSoC Creator and third-party IDEs. You use PSoC Creator Components to configure the hardware. PSoC Creator
generates configuration code based on your choices. That code is based on the source code in the PDL drivers. The
PDL also includes various middleware libraries. There may or may not be a Component to assist in configuring that
code.

For ModusToolbox software, Cypress provides the PSoC 6 SDK. This SDK includes both the driver code and
middleware libraries. In the ModusToolbox environment, you use Configurators to configure either the device, or a
middleware library, like the BLE stack or CapSense functionality.

The driver code is delivered as the psoc6pd! library. Middleware is delivered as psocémw. The PDL source code is
essentially identical, whether delivered with PSoC Creator or ModusToolbox IDE. There are implementation differences
for the two IDEs.

There are differences in how the middleware is provided. For example, CapSense functionality is provided in PSoC
Creator as a Component. For ModusToolbox software, there is a Configurator and a middleware library. See the
respective documentation for the two IDEs for details of what's the same, and what’s different.

Whether you use ModusToolbox IDE, PSoC Creator, or a third-party IDE, firmware developers who wish to work at the
register level should also use the driver source code from the PDL. The PDL includes all the device-specific header
files and startup code you need for your project. It also serves as a reference for each driver. Because the PDL is
provided as source code, you can see how it accesses the hardware at the register level.

Some devices do not support particular peripherals. The PDL is a superset of all the drivers for any supported device.
This superset design means:

m Al API elements needed to initialize, configure, and use a peripheral are available.

m The PDL is useful across various PSoC 6 MCU devices, regardless of available peripherals.

m The PDL includes error checking to ensure that the targeted peripheral is present on the selected device.

This enables the code to maintain compatibility across some members of the PSoC 6 device family as long as the
peripherals are available. A device header file specifies the peripherals that are available for a device. If you write code
that attempts to use an unsupported peripheral, you will get an error at compile time. Before writing code to use a
peripheral, consult the datasheet for the particular device to confirm support for the peripheral.

PSoC Creator provides Components that are based on the PDL. This retains the essence of PSoC Creator in utilizing
Cypress or community-developed and pre-validated Components. However, the PDL is a source code library that you
can use with any development environment.

The PDL includes the following key software resources:

m Header and source files for each peripheral driver.

m Header and source files for middleware libraries.

m Device-specific header, startup, and configuration files.

® Template projects for supported third-party IDEs.

m Full documentation, available in <PDL install directory>\doc\.

WWW.Cypress.com Document No. 002-21774 Rev. *C 8

~
W

CYPRESS

g~ EMBEDDED IN TOMORROW® Getting Started with PSoC 6 MCU
There are two key documents:
1. The PDL v3.x User Guide covers the fundamentals of working with the PDL, such as the following:
m Creating a custom project using the PDL (including third-party IDES).
m Configuring a peripheral.
® Managing pins in firmware.
m Using the PDL as a learning tool for register-based programming.
m Using the PDL API Reference documentation.

2. The PDL 3.x API Reference Manual.html. This reference has complete information on every driver in the PDL,
including overview, configuration considerations, and details on every function, macro, data structure, and
enumerated type.

2.3 Support for Other IDEs

You can also develop firmware for PSoC 6 MCU using your favorite IDE such as IAR Embedded Workbench. Cypress

recommends that you generate resource configuration using a configuration tool. For ModusToolbox, the stand-alone

device and middleware configurators generate the required code. For PSoC Creator, configuration is integral to the

IDE.

You can use the PDL with another IDE by using PSoC Creator to design the system and generate configuration code

and then export to a target IDE. See the AN219434 — PSoC 6 MCU Importing Generated Code into an IDE for details.

2.3.1 Using ModusToolbox to Target Another IDE

ModusToolbox configurators are standalone tools that can be used to set up and configure PSoC 6 MCU resources

and other middleware components without using the ModusToolbox IDE. The device configurator and middleware

configurators use the design.modus file within the application workspace. You can then point to the generated source
code, and continue developing firmware in your IDE. If there is a change in the device configuration, edit the
design.modus file using the configurators and regenerate the code for the target IDE.

2.3.2 Using PSoC Creator to Target Another IDE

PSoC Creator is used to set up and configure PSoC 6 MCU system resources and peripherals. You then export the

project to your IDE, and continue developing firmware in your IDE. If there is a change in the device configuration, you

edit the TopDesign schematic in PSoC Creator and regenerate the code for the target IDE.

You can work effectively in most if not all IDEs. If your IDE is not supported in the Target IDEs panel, you can still use

PSoC Creator. After you generate code, add the necessary files directly to your IDE’s project. AN219434 — PSoC 6

MCU Importing Generated Code into an IDE provide detailed steps for manually importing the generated code into

another IDE.

24 RTOS Support
2.4.1 RTOS Support with ModusToolbox

The PSoC 6 SDK includes RTOS for PSoC 6 MCU development. The FreeRTOS source code is fully integrated with
the SDK as part of software components/middleware. You can import the FreeRTOS middleware into your application
by using the Select Middleware option. Select the mainapp project, and then click the Select Middleware link in the
Quick Panel. Then select FreeRTOS from the Middleware Selector dialog, as Figure 4 shows.

WWW.Cypress.com Document No. 002-21774 Rev. *C 9

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

Figure 4. Import FreeRTOS in ModusToolbox IDE Application

38 mtw - ModusToalbox IDE
Eile Edit Mavigate Search Project Bun 'WF

Hmild |®'Q'@:| o~

E5p. 52|40 HER. ZP. = B

T -
ErmotPSacs conf 8 & Middleware Selector o |[-E-| s
» 1= EmptyPSoCh config
<
)= EmptyPSoCh_mainapp Search:
=% EmptyPsatb_rmanapp_cmip X
+ TS EmptyPSoCh_mainapp_cmilp_psoctipd) Middleware Components
b 125 EmptyPSaCh_mainapp_psochpd| -+
[] Middleware em'Win FlexColar driver This is the middleware emifin FlexCalar driver

[Middleware LUSB Device This is the middleware USE device component
Q Hp Wy GE %8 o [F] obex_lib This is a WICED Object Exchange Protocol library for 2071981 platform.
[phap_lib This is a WICED Phonebook Access Profile library for 2071981 platform,
™ [7] Protocals This is WICED Protocol Support,
ModusToolbox™ ¥4 e
[Retarget 'O Retarget the IO functions of the standard C run-time library to the user-defined target
~ Start
[] RTOS Threadx This is the Thread) Operating Systern Includes,
Mew &pplication
[7] Test cade Test code - Malloc debug -- Trace? =
& Search Online for Code Examples
g Impart Application L [T Tracex This is the WICED TraceX Wrapper,
-] UPHP This is WICED UPMP Support.
~ EmptyPSoC6_mainapp
e e e IR P e P eim s
&, Build EmptyPSoCs Applicafon < I} I
o Clean ErmptyPSoCE Applfation
i Configure Device

gt Select Middleware

2.4.2 RTOS Support with PSoC Creator

The PDL includes RTOS support for PSoC 6 MCU development: FreeRTOS source code is fully integrated and included
with the PDL. You can import the FreeRTOS software package into your project by using the PSoC Creator RTOS
import option. Navigate to the Project > Build Settings menu and select FreeRTOS from the Software package
imports option under Peripheral Driver Library > FreeRTOS as shown in Figure 5.

Figure 5. Import FreeRTOS in PSoC Creator Project
Build Settings B

Corfigurtion: [Debug (Active) 7
Toolchain: [4AM GeC 5.4-2016924pdate -
= PSoC_6_MCU Hello World Bxz @) Defautt (Tools > Options): C:\Program Files (B6)\Cypress\PDL\30.1
[#-Code Generation
E-Debug (&) Custom
Custemizer
i Software package imports:
i--Target IDEs s Expand "5 Collapse ¥ Check All I Uncheck All
CMO+ ARM GCC 5.4-2016-| Variant Version Descriptior 4
[-CM4 ARM GCC 5.4-2016-c T B L TER o -
] Communication [2C 2.10.0 |I2C comm
L[] Communication SPI 2.10.0 |SPLcommu
E-RTOS =
[+FreeRTOS 9.00 |FreeRTOSH
-[7] Memory Management |heap 1 [+ [0.0.0 |The simplefE
[=H- utilities
7] Retarget V'O 1.10.0 |Redirects | «
« i = n | '
[o J[sy |[cemes |

If you have a preferred RTOS, use the resources provided as examples on how to integrate such code with the PDL.

WWW.Cypress.com Document No. 002-21774 Rev. *C 10

& CYPRESS

EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

2.5 Debugging

The CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer Kit and CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit have the
KitProg2 onboard programmer/debugger. It supports Cortex Microcontroller Software Interface Standard - Debug
Access Port (CMSIS-DAP) and custom modes of operations, as well as the KitProg2 connection. This makes debugging
the PSoC 6 MCU Pioneer Kit extremely flexible. See the KitProg2 User Guide for details.

The CY8CPROTO-062-4343W PSoC 6 Wi-Fi BT Prototyping Kit has the KitProg3 onboard programmer/debugger. It
supports Cortex Microcontroller Software Interface Standard - Debug Access Port (CMSIS-DAP). See the KitProg3
User Guide for details.

2.5.1 Debugging with ModusToolbox

The ModusToolbox IDE requires KitProg3 for debugging PSoC 6 MCU applications. It also supports GDB debugging
using industry standard probes like the Segger J-Link.

ModusToolbox supports simultaneous debugging both Cortex-M4 and Cortex-M0+ CPUs. For more information on
debugging firmware on PSoC devices with ModusToolbox, refer to the ModusToolbox Help.

ModusToolbox includes the fw-loader command-line tool to update CY8CIT-062-WiFi-BT and CY8CKIT-062-BLE kits,
and switch the KitProg firmware from KitProg2 to KitProg3. Refer to the PSoC 6 MCU KitProg Firmware Loader
section in the ModusToolbox IDE User Guide for more details.

2.5.2 Debugging with PSoC Creator
PSoC Creator supports debugging a single CPU (either Cortex-M4 or Cortex-M0+) at a time. Some third-party IDEs
support multi-CPU debugging. For more information on debugging firmware on PSoC devices with PSoC Creator, refer
to the PSoC Creator Help.

2.6 PSoC 6 MCU Development Kits

CYB8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer Kit and CY8CPROTO-062-4343W PSoC 6 Wi-Fi BT Prototyping Kit
are development kits that supports the PSoC 62 series MCU along with Wi-Fi and BT connectivity. The CY8CKIT-062-
BLE PSoC 6 BLE Pioneer Kit and CYS8CPROTO-063-BLE PSoC 6 BLE Prototyping Kit support the PSoC 6 MCU with
Bluetooth Low Energy (BLE) Connectivity. Refer to Appendix B for more information. Note that the CYSCPROTO-062-
4343W PSoC 6 Wi-Fi BT Prototyping Kit is not supported on PSoC Creator and is only supported on the ModusToolbox
IDE.

WWW.Cypress.com Document No. 002-21774 Rev. *C 11

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

3 Device Features

The PSoC 6 MCU device has an extensive feature set as shown in Figure 6. The following is a list of its major features.
For more information, see the device datasheet, the Technical Reference Manual (TRM), and the section on Related
Application Notes and Code Examples.

m 32-bit dual-CPU subsystem Figure 6. PSoC 6 MCU Block Diagram
o 150-MHz Arm Cortex-M4 and 100-MHz Arm PSoC 6 MCU
Cortex-M0O+
. . MCUSubsystem Analog Blocks 1/0 Subsystem
0 Up to 2 MB of flash with additional 32 KB for Opamp
EEPROM emulation and 32-KB supervisory q rm x2 x2
flash ' g ‘
Cortex®-Ma = 12-bit SAR
o Up to 1 MB of SRAM with selectable Deep with SPFPU = ADC
Sleep retention granularity at 32-KB retention 150-Mkiz % _
i : CapS =
O Inter-processor communication supported in = Digital Blocks &
g ~ o
arm 1;
o0 Cryptography accelerators and true random Cortex®-Mo+ 8 x12 x32 §
number generator function L00MLE ? Communication Interfaces g .
0 Up to three DMA controllers é =
o)
o : -ti i SRAM 5 =
eFUSE: one-time programmable bits % é
0 Secure boot with hardware hash-based = £ £
authentiation : :
o Up to 104 GPIOs with programmable drive S
modes, drive strength, slew rates 2 (Quad-SPI)
<
0 Two ports with Smart 1/O that can implement
Boolean operations
® Programmable analog blocks CapSense with SmartSense™ auto-tuning
o Two opamps of 6-MHz gain bandwidth O Supports both CapSense Sigma-Delta (CSD) and
(GBW) and two low-power comparators CapSense Transmit/Receive (CSX) controllers
O Up to One 12-bit, 1-Msps SAR ADC and one O Provides best-in-class SNR, liquid tolerance, and
12-bit voltage-mode DAC proximity sensing
® Programmable digital blocks, Operating voltage range, power domains,
communication interfaces and low-power modes
0O Upto 12 UDBs for custom digital peripherals 0 Device operating voltage: 1.71 V to 3.6 V with
o Up to 32 TCPWM blocks configurable as 16- gf%r—gs(;:‘/lectable core logic operation at either 1.1 V
bit/ 32-bit timer, counter, PWM, or quadrature :
decoder o0 Multiple on-chip regulators: low-drop out (LDO for
O Upto 13 SCBs configurable as 12C Master or Qcttlve;, (gﬁ\j%)sllgei?(r:;?\;—:‘;)t;mgle—mput multiple-
Slave, SPI Master or Slave, or UART utpu u
0 Audio subsystem with up to two 12S interface N éfé';’e’ thw'g.z"ger aﬁgta’ieb’erﬁ;ee%olag\slv;‘c}?ﬂ,ivﬁé
and two PDM channels P. P p.
power management
O SMIF interface with support for execute-in- " » R .
plac fom extmal qua S s memory 11 20402 00" backup pover domai it bl
and on-the-fly encryption and decryption (PMIC) control, and limited SRAM backup
0 Secure Digital Host Controller with support for
SD, SDIO, and eMMC interfaces
0 Full-Speed, dual-role USB with device and
host capability
WWW.Cypress.com Document No. 002-21774 Rev. *C 12

~
W

-

CYPRESS

EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

4

Choosing an IDE

ModusToolbox, the latest-generation toolset, includes the ModusToolbox IDE.. The IDE is Eclipse-based and therefore
is supported across Windows, Linux, and MacOS platforms. The tool supports all PSoC 6 MCU devices. The associated
hardware and middleware configurators also work on all three host operating systems.

Certain features of PSoC 6 MCU such as UDBs and USB host are not currently supported in ModusToolbox IDE.
Cypress will release new versions of ModusToolbox to support these features and improve the user experience.

Choose ModusToolbox if you have prior experience with Eclipse-based tools and want to take advantage of the power
and extensibility of an Eclipse-based IDE, or if you want your development environment on Linux or MacOS. You should
also choose ModusToolbox if you want to build an IoT application using Cypress IoT devices, or if you are using a
PSoC 6 MCU device not supported on PSoC Creator.

PSoC Creator is the long-standing Cypress-proprietary tool that runs on Windows only. This mature IDE includes a
graphical editor that supports schematic based design entry with the help of Components. PSoC Creator supports all
PSoC 3, PSoC 4, PSoC 5LP devices and a subset of PSoC 6 MCU devices. The subset of PSoC 6 MCU devices
include devices up to 1 MB of flash. It does not support PSoC 6 MCU devices with a USB interface.

Choose PSoC Creator if you are inclined towards using a graphical editor for design entry and code generation, and if
the PSoC MCU that you are planning to use is supported by the IDE or if you are intending to use the UDBs on the
PSoC MCU.

The sections that follow provide detailed steps to create an application for PSoC 6 MCU. Navigate to section

My First PSoC 6 MCU Design Using ModusToolbox if you would like to use ModusToolbox. Navigate to section My
First PSoC 6 MCU Design Using PSoC Creator if you would like to use PSoC Creator development environment.

WWW.Cypress.com Document No. 002-21774 Rev. *C 13

A,
e

CYPRESS

g~ EMBEDDED IN TOMORROW® Getting Started with PSoC 6 MCU

5 My First PSoC 6 MCU Design Using ModusToolbox IDE
This section does the following:
® Demonstrates how to build a simple PSoC 6 MCU-based design and program it on to the development Kkit.
m Provides detailed steps that make it easy to learn PSoC 6 MCU design techniques and how to use the

ModusToolbox IDE.

5.1 Using These Instructions
These instructions are grouped into several sections. Each section is devoted to a phase of the application development
workflow. The major sections are:
m Part 1: Create a New Application
® Part 2: Implement the Design
®m Part 3: Write the Firmware
m Part 4: Build the Application
m Part 5: Program the Device
m Part 6: Test Your Design
If you are familiar with developing projects with ModusToolbox, download and use ModusToolbox version of the code
example CE221773 — PSoC 6 MCU Hello World Example Using ModusToolbox directly. It is a complete design, with
all the firmware written for the CY8CKIT-062-WiFi-BT kit. You can walk through the instructions and observe how the
steps are implemented in the code example.
If you start from scratch and follow all the instructions in this application note, you use the code example as a reference
while following the instructions.
This design is developed for the CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer Kit. You can also use CY8CKIT-
062-BLE PSoC 6 BLE Pioneer Kit or CYSCPROTO-062-4343W PSoC 6 Wi-Fi BT Prototyping Kit to test this example
by selecting the appropriate kit or device while creating the application.

5.2 About the Design

This design uses the CM4 CPU of PSoC 6 MCU to execute two tasks: UART communication and LED control.

At device reset, the CM0O+ CPU enables the CM4 CPU. The CM4 CPU uses the UART personality to print a “Hello
World” message to the serial port stream and when the user presses the enter key, the LED on the PSoC 6 MCU Wi-
Fi-BT Pioneer Kit starts blinking.

WWW.Cypress.com Document No. 002-21774 Rev. *C 14

& CYPRESS

EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

5.3 Part 1: Create a New Application

This section takes you on a step-by-step guided tour of the design process. It starts with creating an empty application
and guides you through hardware and firmware design development stages.

Launch ModusToolbox and get started.

1. Select a new workspace.
At launch, ModusToolbox presents a dialog to choose a directory for use as the workspace directory. The
workspace directory is used to store workspace preferences and development artifacts. You can choose an

existing empty directory by clicking the Browse button, as Figure 7 shows. Alternatively, you can type in a directory

name to be used as the workspace directory along with the complete path and ModusToolbox will create the
directory for you.

Figure 7. Select a Directory as Workspace

Eclipse Launcher @
Select a directory as workspace

ModusToolbox IDE uses the workspace directory to store its preferences and development artifacts,

Wiarkspace: C:\LIsers\snvn\Desktop\CEEBSéil_mtm-{ vl Browse... I

[] Use this a3 the default and do not ask again

¢ Recent Workspaces

Launch l I Cancel

2. Create a new ModusToolbox Application.
A. Click New Application in the Start group of the Quick Panel.

B. Alternatively, you can choose File > New > ModusToolbox IDE Application, as Figure 8 shows.
The ModusToolbox IDE Application window appears.

WWW.Cypress.com Document No. 002-21774 Rev. *C 15

A,
e

-

CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

Figure 8. Create a New ModusToolbox IDE Application
B mbw - ModusToolbox IDE
File | Edit Mavigate Search Project Run WPL Window Help
New Alt+ShiftsN » | ™ Project..

|] Other... Ctrl+N

Open File..,

Open Projects from File System...

| B¢ ModusToolboxIDE Application Ctrl+7

e s g s

Claose All Ctrl +Shift +4

Save Ctrl+S

Ctrl+Shift+S

Mowve..,

Rename... F2
Refresh FS
Conwvert Line Delimiters To >
Print... Ctrl+P
Import...

Export...

Properties Alt+Enter

Switch Workspace »
Restart
Exit

B4 Qui... Qui... Yari... Exp... Bre... =" m|

» [ModusToolbox™ B

v Start

MNew &pplication

3. Select PSoC 6 MCU as the target device.

ModusToolbox presents two options to get you started with the application creation process: Dev/Eval Kit or
Custom Hardware. In both the cases, ModusToolbox speeds up the development process by automatically setting
various workspace/project options for specified development kits or target devices.

Use the Dev/Eval Kit option for creating this example and follow the steps below. See Figure 9 for help with this
step.

You start from Dev/Eval Kit in case you have a Cypress PSoC 6 MCU development kit on hand. In this case,
ModusToolbox provides you with an application template, with all kit resources pre-configured. You must configure
and enable additional resources that you intend to use in your application.

Custom Hardware provides you an option to choose the target device directly in case you have a PSoC 6 MCU-
based custom board on hand. In this case, you must configure all resources like UART, pins, and peripheral clocks
that you intend to use in your application.

A. Click Dev/Eval Kit.

B. Inthe Choose Target Hardware dialog, choose the Kit Name that you have. The steps that follow assume
CY8CKIT-062-WIFI-BT.

WWW.Cypress.com Document No. 002-21774 Rev. *C 16

o CYPRESS

~amp> EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

Click Next.
In the Starter Application dialog, select PioneerKitApp application.

In the Name field, type in a name for the application.

mmo o

Click Next. The application summary dialog appears.
G. Click Finish to let ModusToolbox create the application projects for you.

ModusToolbox uses CY8C6247BZI-D54 as the default device that is mounted on the CY8CKIT-062-WiFi-BT PSoC
6 Wi-Fi-BT Pioneer Kit along with the CYW4343WKUBG Wi-Fi/BT radio.

The PioneerKitApp application template has the all the resources available on the Pioneer kit pre-configured and
ready for use. These resources include user LEDs, user switches, I12C bridge and UART bridge. Additionally, the
template includes the system clock configuration.

Figure 9. Start from a Development/Evaluation Kit

MadusToalbox IDE Application o == ModusToolbox IDE Application = [
Choose Target Hardware Choose Target Hardware

Start your application with a pre-configured setup for a supported board or select a target chip on your custarn hardware.

lH Dev/Eval Kit

Choase 3 Cypress kit ta statt your application with a pre-configured device setup or create a custom application with
your awn choice of MCU andyor connectivity device.

B KitMame MCU Radio =
CYSCKIT-062-WIFI-BT
YCKIT-062-BLE CYBC6I4BZI-BLDSI - —_—

CY8CKIT-062-WIF-BT _ CYBC6247BZI-D54 CVWA4343WKLEG |
CYVA207T0EWCDEVAL CYi2070642 -

The PSoC 6 WiFi-BT Pioneer Kit is a low-cost |
hardware platform that enables design and debug of |~

CYWI20T19Q40EVE-01 CYW20719B1 - the PSoC 62 MCU (CY8C6247BZI-D54) and the
CYWI4390TARVALIF CYW43S0TKWEG - Murata LBEESKL1DX Module (CYW4343W WiF1
MEB1DX_01 STM3I2F42920IT6 CVW4343WKUBG + Bluetooth Combo C]_“p),

Custom Hardware

The LBEESKL1DX module supports IEEE

802.11a/h/ai Bluetooth, with best-in-
Alann manms o mem TAT Feizondler mmaall =2
®@ < Back Next » Finish Cancel @ [<Baek | near [Ench [canca |
MadusToalbox IDE Application o == ModusToolbox IDE Application = [

Starter Application Summary

| H arter code for your CYBCKIT-062-WIFL-BT, Verify application creation information,
Mame: | CE223541] Browse... fYou selected:

ErnailClient

Basic peripheral configuration for the PSaC § Pioneer kits (CVACKIT-062-*). Debug is enabled and ~ Device: CYBC62476Z1-D54
EmptyPSaCtitpp platform clocks are set for high performance (144bHz CLK_FAST for Ch4 core and 72MHz Connectivity device: CYWA34IWKUIBG
mptyUWice dWii CLK_SLOW far W10 +) butwith a peripheral-friendhy CLK_PERI frequency (73MHz), In adsition the Board: CYBCKIT-062-4IFI-BT
TTPSServer user LEDs and switch, KitProg3 LIART and 12€ bridges, and CapSense buttons and slider are Example; Pioneerkithpp
configured,

Press "Finish" ta create "CE223541" application,

ToneerRichppl
Protokiohpp
PratokithppFreeRTOS

reel

O5/NS: “ < »
©) <Ea:k Finish Cancel @ [Bk | e i Fish | [Cancel |

If you are using a custom hardware based on PSoC 6 MCU, or a different PSoC 6 MCU part number, this is the
place you choose the Custom Hardware option and select the appropriate part number.

If you are using the Custom Hardware option, follow the steps below. See Figure 10 for help with this step.
A. Click Custom Hardware.

B. Inthe Choose the Target MCU dialog, pick a device from the list. You can filter the device list by typing in the
filter control just above the list. Pick CY8C6247BZI-D54 for the steps that follow or if you have a custom board
with a different PSoC 6 MCU part number, choose the appropriate device here.

Click Next.

o

In the Choose the Connectivity Device dialog, select No Connectivity Device. The application that you will
develop will target only the PSoC 6 MCU device.

Click Next.
In the Starter Application dialog, select PioneerKitApp application.

In the Name field, type in a name for the application.

I o T m

Click Next. The application summary dialog appears.

Click Finish to let ModusToolbox create the application projects for you.

WWW.Cypress.com Document No. 002-21774 Rev. *C 17

o CYPRESS

~am»> EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

ModusToolbex IDE Application

Choose Target Hardware

Figure 10. Start from a Custom Hardware

=

Start your application with 3 pre-configured setup for a supported board or select a target chip on your custom hardware.

Dev/Eval Kit

Filter:

Choose the Target MCU

Run the application on a wireless or Bluetoath SaC, with embedded ARM processor, or an MCU that may optionally be
combined with a Cypress connectivity device.

Pick a device fram the lst, You can filter
the list by typing in the filter control below,

9., 63*bld or bld33

ModusToolbox IDE Application

CYSC6247BZI-D34

CY8CE247BF-D54

B
W Custom Hardware

[YBCE247820-AUDS4
[fBCE247671-D34
Y8C6247671-Ddd

CYeCE247FDI-002

CY8CE247FDI-D32
CYBCE247FDI-D52

The CY8C6247BZI-D54 is a member of Cypress' PSoC 62 series.
This device features:

m

« CapSense

=+ Cryptographic support
- USB

- || Foracomplete spscifimycu can view the datasheet on-line
here 2
@ <Back Hext > Einish @ [<k [Mes» || Ewen [cama |
ModusToslbox IDE Application MadusToslbox IDE Application
Choose the Connectivity Device Starter Application
our selected target MCU may be combined with any af these Cypress connestivity devices. e arter code faryour CYBC6Z4TBZL-D54,
[<k Mame: | CE223541]
TP/ 1343WREG
CYWAAWWEG BlinkyLED Basic peripheral configuration for the PSaC § Pioneer kits (CYBCKIT-062-*), Debug is enabled and
CEZLOEL PowerMades platform clocks ate set for high performance (L44hiHz CLK FAST for Chid core and T2MHz
CEZZO0G0 WatchdogTimer | CLK_SLOWY for GMI+) but with » periphersl-friendly CLI_PER frequency (72MHz. In addition the
CE220263_PSaCE_GPIO =|| userLEDs and switch, KitProg3 U&RT and I2C bridges, and CapSense buttons and slider are
|: E221773_PSoCE_HellowWorld configured.
H OS/NS:
B ModusTaolbax IDE Applicatian
)
Summary

frou selected:

Vierify application creation information

Device: CY8C6247BZI-D54
Example: Pioneerkitapp

Press "Finish" to create "CE223541" application,

Hext »

You have successfully created a new ModusToolbox application for PSoC 6 MCU.

WWW.CYpress.com

Document No. 002-21774 Rev. *C

18

& CYPRESS

EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

54

Part 2: Implement the Desigh and Generate Source Code

Now that you have an application set up from an existing Pioneer kit template, it is time to add additional resources in
hardware design required for this application. The template includes configuration for pins, UART and clocks required
for this example. If you are using the code example directly, you already have a complete design.

Before you add additional resources to the design, a quick tour of the ModusToolbox project explorer is in order.
Figure 11 shows the ModusToolbox project explorer interface displaying the structure of the application projects.

In the ModusToolbox IDE, a PSoC 6 MCU application consists of several projects to develop code for each CPU, and
the drivers for each. The config project includes a project folder with a base set of cycfg_ files that are already created

for you. These files contain the design configuration. You can modify the design configuration by double-clicking the
design.modus file in the config project.

The CM4 application project (_mainapp) contains relevant files that help you create an application for the CM4 CPU,
while the CMO+ application project (_mainapp_cmOp) contains those for the CM0+ CPU. Notice that both the projects
refer to the config project. This ensures that the design configuration files are available for the source files of both
CPUs. Additionally, there are two PDL driver projects, one for each CPU that bring in the peripheral driver library files
to be compiled into the application.

The projects have dependencies. The Quick Panel provides a one-click link to build the application, so you don’t have
to consider which project depends on which.

Note that each CPU application project points to a modus.mk file. It contains instructions on how to recreate the project.

The makefile required to compile and link the projects is created automatically by the IDE, and is in _mainapp/Debug
folder after the application is built. This file contains the set of directives that the inbuilt make tool uses to compile and
link the corresponding application project.

Figure 11. Project Explorer View

rritw - ModusToolbox IDE

= & Mavigate Search Project Run WPRL
Project Explorer .
5%~ Bit-0-a
4 De il config Project
BT -

4 =% CE223541 config
4 [= GeneratedSource
[£] cycfg_capsense.c
lg] cycfg_capsense.h
[e] cycfg_clocks.c
lg] cycfg_clocks.h
[g] cycfg_connectivity.c
lg] cycfg_connectivity.h
lg] cycfg_natices.h
lg] cycfg_peripherals.c
[e] cycfg_peripherals.h
L€l cycfg_pins.c
L] cycfg_pins.h
L] cycfg_platform.c
L] cycfg_platform.h
L] cycfge
Double click to set up) rycfgh
. . . —1— design.modus
design configuration R T
[Includes
» (= CE223541 config
(= psocBsw-10
» (= Source
= cydcfhe_omd_dualld
= makefile.init CMOD Applicati
> Lo rodusk J o Sl

CM4 Application
Project

- _setup readme.
a =5 CE223541_mainapp_cmip
+ ! Ineludes
modus.mk —> (= CE223541_config
» (= psochsw-10
(= Source_cmlp
= cyPofed_cmiplus.ld

= makefile.init PDL Driver Projects

> g madus.mk

Y= CE223541_mainapp_cmlp_psochpd]
- 125 CE223541 mainapp_psochpd|

WWW.Cypress.com Document No. 002-21774 Rev. *C 19

o CYPRESS

~am»> EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

Double-click the design.modus file in the config project in the Project Explorer view or click on the Configure
Device link in the Quick Panel. Figure 12 shows the resulting window called the Device Configurator window.

Figure 12. design.modus Overview

il

e Y e .fDesktopKCE223541,thHCE22354l,conﬂgfdeslgn‘mnj Parameters Pane =8 EcE ==

TIE 7N o
I Peripherals | Pins I PlatFarm I Peripheral-Clocks | DA ‘I Serial Communication Block (SCB) 5 - Parameters a8 x
J'L'—‘—“‘—‘—‘—‘.. ,_;| = Enter Filter bext,., ,_L| =
List of Resources
< ; \ Personality Alias Mame Value -
> Analog 4 General =
4 Communication ‘3'\ Com Mode Standard

[Inter-IC Sound Bus J25) 0
[PDM-PCM Converter 0
[T Quad Serial Memony Interface (QSPD 0

115200
&

[Serial Communication Block (SCB) 7
[Serial Communication Block (SCB) &
[Universal Serial Bus {LISB) 0

> Digital

> System

[Serial Communication Block (SCB) 0 LSE First
[Serial Communication Block (SCE) 1 B bits
[Serial Communication Block {SCB) 2 i X Mane
[Serial Communication Block (SCB) 3 "
Serial Communication Block (SCB) 4 L bit ‘ Code Preview Pane
[0 Serial Communication Black (SCE}5 | UART-L0 < |UART | g 2 B
|| Serial Communication Block (SCB) 6 Code Preview g x

/% NOTE: This is a preview only. It combines elements of the .c *

#include "cy_sch_uart.h” =
#include "cy_sysclk.h”

#define UART HW SCES

Notices Pane ‘

const oy _stc_sch_uart config t UART config =
{

.uartMode = CY_SCB UART STANDARD,

.enahleMutliProcessorMode = falze,

swartCardRetryOnlack = false, -
4 LU (2

Analog Diagram Code Preview

Motice List a8 x
[o 1] Errnrsl I 0 Warnings] D 0 Tasks | o 1] Infos]
Fix Description Lacation

Ready

The Device Configurator window provides a Resources Categories pane. Here can you can choose between
different resources available in the device such as peripherals, pins, and clocks from the List of Resources.

You can choose how a resource behaves by choosing a Personality for the resource. For example, a Serial
Communication Block (SCB) resource can have an EZI2C, 12C, SPI or UART personalities. The Alias is your
name for the resource, which is used in firmware development.

The Parameters pane is where you enter the configuration parameters for each enabled resource and the selected
personality. The Code Preview pane shows the configuration code generated per the configuration parameters
selected. This code is populated in the cycfg_ files in the config project. Any errors, warnings, and information
messages arising out of the configuration are displayed in the Notices pane.

The design uses several resources: three digital pins, a UART, a Timer, and an Interrupt. In the following steps,
you will note the settings of the resources already enabled, and you will add the Timer resource to the design and
configure it.

WWW.Cypress.com Document No. 002-21774 Rev. *C 20

A,
e

-

CYPRESS

EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

1. UART Configuration.

Serial Communication Block (SCB) 5 is already configured as KIT_UART by the application template. To view the
pre-configured settings, follow the steps below. See Figure 13 for help with this step.

A.
B.

Expand the Peripherals resources tab and navigate to Communication group.

Notice that Serial Communication Block (SCB) 5 is configured as a UART personality with KIT_UART as

the alias/name. Notice that the hardware resource SCB5 is given an alias KIT_UART_HW by the configurator.
See the Code Preview window in Figure 13. This alias will be used later in the firmware.

Also notice that the baud rate is set to 115200 bps and the SCB is configured to 16 bit Divider 0 clk as the

clock source. The RX and TX signals are also routed to port pins P5[0] and P5[1] respectively, as Figure 13

shows.

B

Figure 13. SCB 5 Resource as UART

Peripherals | Pins | Platform I Feripheral-Clocks | DM |

|Enter filker bext...

ZEm %@

Serial Cammunication Block (SCB) 5 (kIT_UART) - Parameters

|Enter Filker text...

Resource Personality Alias Mame Walue o
> Analog 4 General C
4 Communication (7) Com Made Standard |
[Inter-IC S.Dumd Bus 125 11 I 7) Baud Rate (bps) 115300
[] Quad Serial rdermary Interface (QSPT 0 o . .
[Serial Communication Block (SCEY D wersample h
[] Serial Comrmunication Block (SCB) 1 L3E First ME
D Serial Cammunication Block {SCB) 2 2 bits -
Serial Communication Block (SCB) 3 [EZI2C-10 = [KIT_12C | F Hone -
=] Ser?a\ Cnmmun?catmn Block {SCB) 4) Stap Bits 1 bit -
|= Seial Communicztion Block (SC) 5 [UART-10 = [KIT_UART 1] 2) Enable Digite! Filer o 4
=] Ser!a\ Cnmmun!catmn Elock (SCB) 6 - ‘Support RS 465 L
1 Ser!a\ Cnmmun!catmn Block {(SCBY 7 > [Elleanal rc
[] Serial Comemunication Block (SCE) 8 4 Connections LT
[] Universal Serial Bus (USB) 0 — —
. Digital (2) Clock @ || 16 bit Divider 0 clk (KIT_UART Clock) [USED] -
> System (@) R & || P3[0] digital_inout (KIT_UART R [USED] -
@ T & || P3[1] digital_incut (KIT_ART_Tx [USED] -
(2) RX Trigger Cutput <unassigned >
(2) TX Trigger Output <uhassigned i
Code Preview 7 X
/7 NOTE: This is a preview only. It combines elements of the .c and .h filea. */ ol
[
#include "cy_sch_wart.h”
#include "oy _sysclk.h” B
#define KIT_UART_HV 3CB5 | -
| Analog Diagram | Code Preview ‘
WWW.Cypress.com Document No. 002-21774 Rev. *C 21

A

wos CYPRESS

~am»> EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

2. Config

ure the Timer.

The TCPWM resource is configured as a timer to generated interrupts every 500 milliseconds. Note that the
application template does not pre-configure the timer for you.

Figure 14. Enable and Configure TCPWM[0] Counter O Resource

Peripherals | Pins | Platform | Peripheral-Clocks | oma | TCPWMID] 32-bit Counter 0 - Parameters g x
Enter filter test. .. ‘_L| B ‘Enter Filker text... ,_L‘ =
Resource Alias MName Walue
+ Analog 4 General
> Communication (2) Clock Prescaler | Divide by 1 -
4 Digital (3) Counter Resolution | (% 32-bits
7] PDM-PCM Converter 0 A) o Mod =
4 Timer, Counter, and Pt (TCPWM) 0 w2 fun Moge 2T
[TePwiia] 32-bit Counter 0| Timer - Counter-L0 ~[Tirmer | L2) Courtt Divection |Up h
[T TCPWMD] 32-bit Counter 1 | \2) Period 1000
[7] TCPWM[0] 32-bit Counter 2 (2) Cornpare or Capture | Capture -
[T TCPWM[0] 32-bit Counter 3 ,
[C] TCPAWM[O] 32-hit Counter 4 . [—
[C] TCPWM[0] 32-bit Counter 5 D (2) Interrupt Source lOverﬂow&t Underflow A
[C] TCPAWM[0] 32-bit Counter 6 e
[C] TCPWI[O] 32-bit Counter 7 @) Clock S | Bl E e e
> Timer, Counter, and PAsM (TGP 1 | L2) Clock Signa |16 bit Dvider Lclk [USED] -
> System (2) CountInput Disabled -
(2) Stop Input Disabled -
'?\ Reload Input Disabled hd
(Z) Start Tnput Disabled -
© Ouytputs
¢ Advanced
Code Preview 8 X
/% NOTE: This is a preview only. It combines elements of the .c and .h £ *
=
#include "oy _topum_counter.h'
#include "cy_sysclk.h”
#include "cycfy conmectivity.h”
4 m >
‘ Analog Diagram | Code Preview ‘

Follow the steps below to configure the TCPWM 32-bit Counter 0 to be used as a software timer.

A. In the Peripherals resources tab, expand the Digital > Timer, Counter and PWM (TCPWM) 0 group, and
select the checkbox next to TCPWM (0) 32-bit Counter 0 to configure it. Select Timer-Counter-1.0 as the
personality. Set the alias as Timer here for use in the firmware.

B. Enter the desired period in the Period field of General parameters group. For this example, you will use 1000.

Set Overflow & Underflow as the Interrupt Source. Whenever the timer overflows, this setting will cause it

to generate an interrupt.

Now, you will set the clock connections to the TCPWM resource.

D. Select 16 bit Divider 1 clk as the Clock Signal. When you select the peripheral clock, ModusToolbox
automatically enables the corresponding peripheral clock, but does not set the divider. Click the link icon next
to the selected clock signal. This will take you to the 16 bit Divider 1 settings. You will set the divider value in
the next step.

WWW.CYpress.com

Document No. 002-21774 Rev. *C

22

A,
e

- EMBEDDED |

CYPRESS

N TOMORROW™

Getting Started with PSoC 6 MCU

3. Peripheral-Clocks.

In this step, you configure the peripheral clock divider that is required to source the Timer resource. You will also
note the settings of the peripheral clock divider sourcing the UART resource.

A.

C.

At this point, the Peripheral-Clocks tab must be in focus. Notice that the 16 bit Divider 1 is already enabled
the with Divider value set to 1 and connected to TCPWM(0) 32-bit Counter 0 clock, as Figure 15 shows.

Set the alias to Timer_Clock. This is an optional step to identify the clock divider and is not necessary for

firmware.

Set the Divider value to 36000. This would generate a clock of 2 kHz because the CLK_PERI is configured to
be 72 MHz in the application template. You will see this in a later step.

Figure 15. 16 bit Divider 1 Configuration

|Perlpherals I Pins | Platform ‘ Peripheral-Clocks

» 165 bit
> 24,5 bit

DA 16 bit Divider 1 (Timer_Clock) - Parameters g X
|Enter Filter et ,_L| = & a3 |Enter Fiker text... ._L‘ =]
Resource Personality Alias MName Value

> Bbit = Peripheral Documentation
4 16 bit A | General -
16 bit Divider 0 Peripheral Clock-1.0 KIT_UART Clack ,-;,\ Saurce Clock {3 CLK_PERI (72 MHz * 13
I:lﬁ bit D!wderl Peripheral Clock-1.0 ‘TlmerﬁC\nck ‘ I /?.: Divider ‘36000 I
|71 16 bit Divider 2 — -
[Z] 16 bit Divider 3 @ Frequency (2 2kHz £ 1% /ﬂ
[T 15 bit Divider 4 7) Startan Reset
] 16 bit Divider 5 | @ Peripherals | @ || TcPwm0] 32-bit Counter 0 clack (Timer) [USED]
[7] 16 bit Divider
[] 16 bit Divider 7
[7] 16 bit Divider &
[] 16 bit Divider 9
[] 16 bit Divider 10
[7] 16 bit Divider 11
[] 16 bit Divider 12
[T] 16 bit Divider 13
[16 bit Divider 14
[T] 16 bit Divider 15 Code Preview 8 x

/% NOTE: This is a preview only. It cowbines elements of the .c and .h Eilei *
#include "cy_sysclk.h” N
f#define Timer Clock_HW CY_SYSCLE_DIV_16_BIT
#define Timer_Clock_NUM 10 o
<

i] 3

|Analng Diagram ‘ Code Preview ‘

Also notice that 16 bit Divider 0 is already selected with the Divider value set to 78 and connected to Serial

Communication Block (SCB) 5 clock, as Figure 16 shows.

The alias has also been set to KIT_UART_Clock. This is optional and is used to identify the clock divider.

Figure 16. 16-bit Divider O Configuration

‘ Peripherals | Pins | Platform | Peripheral-Clocks 16 bit Divider 0 (KIT_UART_Clock) - Parameters g2 x
|Enter filker tet... i_L| = & Ga 3 |Enter Filter text... ,_L‘ =]
Resource Personality Alias me Walue
> B hit c Peripheral Documentation
4 16 hit 4 General
I 16 bit Divider 0 | Peripheral Clock-1.0 KIT_UART Clack

=
(2) Source Clock

(% CLK_PERI (72 MHz = 134

|| 16 bit Divider 1
[] 16 bit Divider 2
[] 16 bit Divider 2
[] 16 bit Divider 4
[] 16 bit Divider 5
[] 16 bit Divider &
[T] 16 bit Divider 7
[T] 16 bit Divider &
[] 16 bit Divider 9
[] 16 bit Divider 10
[16 bit Divider 11
[] 16 bit Divider 12
[T] 16 bit Divider 12
[T] 16 bit Divider 14
[T] 16 bit Divider 15

> 16,5 bit

b 245 bit

[78
= 073 kHz = %
| || serial Communicstion Block (SC8) 5 clack (KIT_UART} [USED] ...

Code Preview g x

/% NOTE: This iz a preview only. It combines elements of the .c and .h file; *

#include "oy sysclk.h”

#define KIT_UART_Clock_HW CY_SYSCLE_DIV_l6_BIT
#define KIT UART Clock NUM OU S
<

. +

| Analog Diagram Code Preview

WWW.CYpress.com

Document No. 002-21774 Rev. *C

23

A,
e

-

CYPRESS

EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

4. LED Pin Configuration.

The user LED on the PSoC 6 Wi-Fi BT Pioneer Kit is active LOW; that is, the logic HIGH pin-drive state turns OFF

the LED, and the logic LOW pin-drive state turns it ON. Figure 17 shows the configuration. The configuration is
already set by the application template.

A.
B.

that the alias is set to KIT_LED2 for use in the firmware.

C.

In the Device Configurator window, navigate to the Pins resources tab.

Notice that the Drive Mode has been set to Strong Drive, Input buffer off.

Figure 17. Output Pin Resource

| Peripherals | Pins | Platform | Peripheral-clocks | oma | P12[7] (KIT_LED3) - Parameters 8 x
[Emter fer text... Z]E @ % BB Q T et o . Z]B
Resource Personality Alias 13 1211 10 &9 8 7 &6 5 4 3 2 1 Marne Walue
> Port0 - Peripheral Documentation
ey e (i 11 ..
> Portl o R o B (7) Drive Mode | Strong Drive, Input buffer off -
b Port3 (7) Initial Drive Staste | High (1) -
> Portd " om v c 4 Input
b Parts e
> Port6) () (ma) (R - | & o (2) Threshold [cmos -
. Port] ~ (7) Intermupt Trigger Type | Nane -
. ports EPRRETRRY L E + Output
> Port Y F (2) Slew Rate [Fast -
> Port10 (Z) Drive Strength [Full -
> Portll Y| 4 Terminals
> Port 12
4 Port13 n = H (@) dnalog [<unassigned> =
2] p1z(0 'Y I F (7) Digital Output [¢unassigned» -
[P13y - 4 Advanced
Ol Ptz & o= PO« (%) Store Canfig in Flash
[REZEE)
[p13l4) L na L Cade Preview a8 x
1 P13ys) B] . W 4% HOTE: This is a preview only. It coubines elements of th *
P1i[6 3
P13(7] [Pin-10 - |[KITLED2 . N #include "cy_gpic.h”
» Portld #Fdef: KIT_LEDZ_PORT GPIO_PRT13
efine
CYBC6247B21-DH (124_BGA) #define KIT LEDZ PIN 707 i
Fesigned Ponier == (] 4 m] »
Dedicasd @ Eror [Canalog Diagram | code revien |

Expand the Port 13 group and notice that the checkbox next to P13[7] is checked to enable the pin. Notice

Navigate to the Port 5 group and notice that P5[0] and P5[1] pins are pre-configured for your application use as

UART pins.

WWW.CYpress.com

Document No. 002-21774 Rev. *C

24

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

5. System Clocks.

The design uses default values for the high-frequency system clock settings as set up in the template. Although
you do not modify high-frequency clocks for this design, you should know how ModusToolbox manages them. If
you are working with your own board, you may need to modify these clocks.

A. Inthe Device Configurator window, navigate to the Platform resources tab.
B. Expand the System Clocks Group.

Here, you can see the clock tree, and modify the clock/clock dividers as required. Note that there are
checkboxes for different types of clocks under FLL+PLL, High Frequency Clocks, Input Clocks, and
Miscellaneous Clocks groups.

C. Click PLL clock under the FLL+PLL group. By default, the starter application template enables PLL and sets
the frequency to 144 MHz.

Alternatively, you can click on the PLL clock block in the clock diagram and the parameters show up in the
Parameters tab as Figure 18 shows.

Figure 18. System Clock Configuration

Peripherals | Pins | Platform | Peripheral-Clocks | DMa | PLL - Parameters a8 x

Erter Fiter text. . ile @, Q FI [g fitertent.. Z]B
Resource Personality Alias e Value
Debug Debuy le53-1.0 < |General
— Powel 4ings L1 (@) seurce Frequency (%) 8 MHz
4 [U] Syster Clacks Syxcliuckx—lﬂ @ Lowfrequency mode []
= FLLPLL Configuration Automatic -
[AL (7) Desired Frequency (MHz) (144000
PATH_MLND | PATH_MLX-L0 (%) Optimization Min Paver -
PATH_MUXL | PATH_MUX-L0 @ Feedback (22-113) = 38
PATH_MUX2 | PATH_MLUX-1.0 2) Reference (1-18) &1
c] PATH_MUX3 | PATH_ilix-1.0 CLK_FAST R @ output (2-16)]
PATH ML | PATH hL-10 7) Actual Frequency (MHz) | () 144:10000%
PLL Pl D Mo ._‘ CLK_HFO CLK_PERI CLK_SLOW ‘
4 High Frequency
V! -1
CLKFAST [CLK fAsT-L0 o TR
CLKHFO | CLKHF-10 RO
[CLK_HFL er

i SYS_TICK

EXTCLK

[CLK_HF2 E
7] CLK_HF3 E L CLK_HF1 Audo
F CLK HF4 iz (RSFOMPCH)
K CLK_PERL | CLKPERL-L0
CLK_SLOW | CLKBLOWY-10 E —‘Mf Qusd L

o Tnput

[Eco 3 CLK_HF3 =

[ExTCLE

1o 1L0-10

o] CLK_HF4 Exterral Fin Code Preview g %

MO IMO-10

1 Fo — /% NOTE: This is a previev only. It combines elements of *
CLK_PUIMP

[weo - #include "cy_syscli.h"

> Miscellaneous

#define CY_CFG_SYSCLK_PLLO_ENABLED 1
CLK BAK
static const cy_stc_pll mamual_config t srss 0 clock 0_|
eedbackDiv =
x

1z

o o
| Anslog Disgram | code preview |

D. Expand the High Frequency Clocks group and select the already enabled CLK_FAST clock. Note that the
Divider for this clock is set to 1. This sets CLK_FAST to 144 MHz. This clock path sources the CM4 CPU in
PSoC 6 MCU.

E. Inthe High Frequency Clocks group, select the already enabled CLK_PERI clock. Note that the Divider for
this clock is set to 2. This sets the CLK_PERI to 72 MHz. This clock path sources the peripheral clock dividers
in PSoC 6 MCU.

F. In the High Frequency Clocks group, select the already enabled CLK_SLOW clock. Note that the Divider
for this clock is set to 1. This sets the CLK_SLOW to 72 MHz. This clock path sources the CMO+ CPU in
PSoC 6 MCU.

Click File > Save in the ModusToolbox Configurator window, as Figure 19 shows. This step causes the configurator to
generate the design configuration and save it to the design.modus file. This step also completes the code generation
process for the configuration. The configuration structures and associated code are saved to the cycfg_ files.

WWW.Cypress.com Document No. 002-21774 Rev. *C 25

Vs

ws CYPRESS

~amp> EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

Figure 19. Save Design Configuration

Wiewe Help

L Mew Ctrl+M

= Open.., Ctrl+0
Close calewe [

|EJ Save Ctrl+3

Save Bs..,

1 CifUsers/snvn, CYSEMI/Desktop/CE223541 rtn/CE223541_config/design.modus
2 CifUsersfsrvn, CYSEML ribnr/CE223541_configfdesign.modus

Update Referenced Libraries

Exit Alt+F4

6. Add Retarget I/O Software Component.

In this step, you will add the Retarget I/0O software component to redirect standard input and output streams to the
UART configured in Step 1.

OO0 w

In the Project Explorer panel, navigate to the _mainapp project.

In the Quick Panel, click on the Select Middleware link.

In the Middleware Selector dialog, select the Retarget 1/O software component.
Click OK.

The files necessary to use the Retarget I/O component are added in the psoc6sw-1.0 > components >
psoc6pdl| > utilities > retarget_io folder, and the Source folder under the _mainapp project as Figure 20
shows.

psoc6sw-1.0 > components > psoc6pdl > utilities > retarget_io: retarget_io.c

Source: stdio_user.c and stdio_user.h

WWW.CYpress.com

Document No. 002-21774 Rev. *C 26

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

Figure 20. Add Retarget I/O Software Component
Middleware Selectar [= |FE =]

Search:

Middlewars Cornponents

[sbex.iib This is a WICED Object Exchange Pratocol library for 2071381 platform., -
[pbap_lib This is 3 WICED Phanebaok Access Profile library for 2071881 platform. ©
[7] Protocols This is WICED Protocel Suppart.

> [l Includes

s = CE223541_config [] RTOS Threadx This is the ThreadX Operating System Includes,

> = psochan-10 [] Test cade Test cade - Malloc debug -~ Trace?

> (= Source [Tracex This s the WICED TraceX Wrapper.

cy8c6>o<?_cm4_dual.ld] UPHP This is WICED UPNP Support.

= makefile.init [usex This is USBX Driver Sources. I

L& modus.mk [] Web Socket This is Websocket Library source, m
= setup_readme e

= P [7] WICED BESL MBEDTLS This is WICED BESL/MBEDTLS Security Code,

T

&
T
&
T
o

CE223541_mainapp_cmip

o]
=

<)

; CE223541_mainapp_crmlp_psoctpd] —

CE223541_mainapp_psochpdl

3

>

>

Eypr. 2|40, #R. EPr. = 0O
=@ -
Bo ED w=v E'E %8B = 8 » =% CE223341 config
4 35 CE223541_mainapp

> [Includes
» (= CE223541 config

ModusToolbox™ B | & Pt LD

4 = components

»

- Start = psochm
Mews Application L = psocﬁp.dl
= o = devices
& Search Online for Code Exarmples 4 (= utilities
~ CE223541_mainapp 4 & retargetio
» @ retarget.c
@, Build CE223541 Application a (= Source

[s L€ main.c

o | g stdio_user.c

> | [stdio_user.h

=] cydched_cmd_dual.ld

< Clean CE223541 Application
B8 Project Build Setti

B Configure Device

o Select Middleware

|Z| makefile.init

i L@ modus.mk

= setup_readrme b

£ CE223541 mainapp_cralp

= CE223541_mainapp_crnlp_psoctpdl
=< CE223541 mainapp_psocipd!

Y T

>

>

B B B

WWW.Cypress.com Document No. 002-21774 Rev. *C 27

& CYPRESS

EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

55 Part 3: Write the Firmware

At this point in the development process, you have created an application, completed the hardware design with the
assistance of an application template/Configurators, and generated the code. In this part, you write the firmware that
implements the design functionality.

The steps in this part discuss the firmware for the design that you configured in Part 2: Implement the Design.

The code example has all the required code. If you are working from scratch, you can copy the respective source code
to the main.c of the CM4 application project from the code snippet provided in this section. If you are using the code
example, files are already in your application.

Firmware Flow
In the remaining steps, we examine the code in the main.c files of CM0+ and CM4 applications.

When the PSoC 6 MCU device is reset, the firmware first performs system initialization, which includes setting up the
CPUs for execution, enabling global interrupts, and enabling other peripherals used in the design.

The CMO+ CPU comes out of reset and enables the CM4 CPU. The resource initialization for this example is performed
by CM4 CPU. It configures the system clocks, pins, clock to peripheral connections, and other platform resources. The
CMO+ CPU code snippet is given below.

#include "cy device headers.h"
#include "cy syslib.h"
#include "cy syspm.h"

int main (void)
{

__enable irqg();

/* Allow the CM4 core to run */
Cy_SysEnableCM4 (CY_CORTEX_ M4 APPL_ADDR);

for(;;)
{

Cy SysPm DeepSleep(CY SYSPM WAIT FOR INTERRUPT);
}

The retarget_io middleware must be configured to use the UART resource to output the serial data. Navigate to Source
folder of your CM4 application project, open stdio_user.h.

Note that IO_STDx_UART is defined as KIT_UART_HW. The KIT_UART_HW points to the SCB resource used by the
UART. The redirection is highlighted in yellow as shown below.

#include "cy device headers.h"
#include "cy cfg.h"

/* Must remain uncommented to use this utility */
#define IO _STDOUT ENABLE

#define IO STDIN ENABLE

#define IO STDOUT UART KIT UART HW

#define IO STDIN UART KIT UART HW

When the CM4 CPU is enabled, the UART peripheral is initialized and started. It prints a “Hello World!” message on
the terminal emulator. A Timer Counter PWM (TCPWM) peripheral is configured to generate an interrupt every 500
milliseconds. At each Timer interrupt, the CM4 CPU toggles the LED state on the kit.

Copy the following code snippet to main.c of your CM4 application project.

#include "cy device headers.h"
#include "cycfg.h"

#include "cy sysint.h"
#include "stdio.h"

#include "stdio user.h"

[KKk ok ok ok K K K K K K Kk ko ok ok ok R R K R R R K K K Kk ok R ok kR R R R R R K K Kk sk kR ok kR R R A A R K K Kk kR ok ok ok ok ok

* Macros

WWW.Cypress.com Document No. 002-21774 Rev. *C 28

o CYPRESS

> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

**/

#define LED ON (Ou)
#define LED OFF (1u)

/***

* Function Prototypes
**/
void UartInit (void);

void TimerInit (void);

void Isr_Timer (void);

JRF Kk k ok k kA A KKK KKK KKk k ok kAR KKK KKk ko k ki ok ok kA A XA A KKK K Kk kkkk kA A& K&K Kk kKK kokokokox

* Global Variables
**/

bool LEDupdateFlag = false;

/* The instance-specific context structure.

* The driver uses this as a scratch pad for its operations.
* Do not modify this structure.

*/

cy_stc_scb_uart_context t KIT_UART context;

/* Isr Timer configuration structurex/

cy stc sysint t Isr Timer config = {
.intrSrc = (IRQOn Type) Timer IRQ,
.intrPriority = 7u

bi

VAR R EEEE RSt AR R EE SRR AR R

* Function Name: main
**~k/

int main (void)

{
/* Set up the device based on configurator selections */
init cycfg all();

/* Start the UART peripheral */
UartInit();

/* Enable global interrupts */
__enable irqg();

/* \x1b[2J\x1b[;H - ANSI ESC sequence for clear screen */
printf ("\x1b[2J\x1b[;H");

Printf(ll******************CE221773 —_ PSOC 6 MCU:"\
" Hello World! Example******xk*xkxkxkxkx*xx\r\n\n");

printf ("Hello World!!!\r\n\n");
printf ("Press Enter key to start blinking the LED\r\n\n");

/* Wait for the user to press Enter key */
while (getchar() != '\r');

/* Start the TCPWM peripheral. TCPWM is configured as a Timer */
TimerInit () ;
printf ("Observe the LED blinking on the kit!!!\r\n");

for (; ;)
{
if (LEDupdateFlag)
{
/* Clear the flag */
LEDupdateFlag = false;

/* Invert the LED state*/
Cy GPIO Inv(KIT LED2 PORT, KIT LED2 PIN);

WWW.Cypress.com Document No. 002-21774 Rev. *C 29

o CYPRESS

> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

return (0) ;

/***

* Function Name: UartInit
***/
void UartInit (void)
{
/* Configure the UART peripheral.
UART config structure is defined by the UART personality based on
parameters entered in the Component configuration*/
Cy SCB_UART Init (KIT UART HW, &KIT UART config, &KIT UART context);

/* Enable the UART peripheral */
Cy SCB_UART Enable (KIT UART HW) ;

JRF Kk k ok k kA A KKK KK KKKk k ok ko kAR XA KKKk ko k ok ok ok kA A XA A KKK K Kk kkkh ok kA A A& &Kk Kk kkkokokokx

* Function Name: TimerInit
***/

void TimerInit (void)
{
/* Configure the TCPWM peripheral.
Counter config structure is defined based on the parameters entered
in the Component configuration */
Cy_TCPWM Counter Init(Timer HW, Timer NUM, &Timer config);

/* Enable the initialized counter */
Cy_ TCPWM Counter Enable(Timer HW, Timer NUM) ;

/* Start the enabled counter */
Cy TCPWM TriggerStart (Timer HW, Timer MASK);

/* Configure the ISR for the TCPWM peripheral*/
Cy_SysInt _Init(&Isr_Timer config, Isr Timer);

/* Enable interrupt in NVIC */
NVIC EnableIRQ((IRQn Type)Isr Timer config.intrSrc);

/***

* Function Name: Isr Timer
********************:**/
void Isr_Timer (void)
{

/* Clear the TCPWM peripheral interrupt */

Cy TCPWM ClearInterrupt (Timer HW, Timer NUM, CY TCPWM INT ON TC);

/* Clear the CM4 NVIC pending interrupt for TCPWM */
NVIC ClearPendingIRQ(Isr_ Timer config.intrSrc);

LEDupdateFlag = true;

WWW.Cypress.com Document No. 002-21774 Rev. *C 30

o CYPRESS

~amp> EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

Figure 21. Firmware Flowchart

[sTART)
1 CMo+ CPU

Y 1 CM4CPU
Device initialization
Enable CM4 CPU
A 4
Initialize pins, clocks and On TCPWM Interrupt
platform resources ¢

v

Initialize and enable the
UART peripheral

¢ \4
Print the message

“Hello World”
on to UART terminal

Clear the TCPWM Interrupt

Set the LEDupdateFlag

\ 4

Exit TCPWM
Interrupt Handler

“Enter” key
pressed?

Initialize and enable
TCPWM and the Timer
Interrupt

LEDupdateFlag
=true?

Clear LEDupdateFlag
Toggle LED state

I

This completes the summary of how the firmware works in the code example. Feel free to explore the source files for
a deeper understanding.

WWW.Cypress.com Document No. 002-21774 Rev. *C 31

EMBEDDED IN TOMORROW"

& CYPRESS

Getting Started with PSoC 6 MCU

5.6 Part 4

: Build the Application

This section shows how to build the application.

1. Build the Application.

A. Click on the Build <name> Application shortcut under the Start group in the Quick Panel. It selects the
Debug build configuration and compiles/links all projects that constitute the application.

B.

The Console view lists the results of the build operation, as Figure 22 shows.

Figure 22. Build the Application

mtw-ModusTooIboxIDE
File Edit Mavigate Search Project Bun WPL Window Help

;=<J>' ha v ot | RF:' *7&”'0'%'@»)'
. - hd - -
ByP. @ #D. SR, Bp. = B

0@ -

> [l=+ CE223541 config

o s CE223541 rnainapp

2 (2% CE223541 rnainapp_cmillp

o (2% CE223541 rnainapp_cmilp_psocpd]
s (2% CE223541 rnainapp_psocpdl

o 2Q @V &E %E = O

ModusToolbox™ E

- Start B

= Eom ===

Quick Access = |

=8 Zox = O

An outline is not
available,

Mew &pplication

B Consale &2 Problerns hermony [eanes
& Search Online for Code Exarnples

i Irmport Application

4: MCU CORE : ARM_CH4
I @ Build CE223541 Application - -

9 Clean CE223541 Application No ELF section .cychecksum found, creating cne

No ELF section .cymeta found, creating one
B Confiqure Device Checksum calculated and stored in ELF section .cymeta

Checksum calculated and stored in ELF section .cymeta

B ERE & BN

COT Build Consale [CE223541 mainapp]
A } 21 CHEP_LOC @ CihUsershisnvn. CYSEMIVMEWACEZ23541 _malnapp_cm@p/Debug/CE223541 malnapp_crm
CE223541_config 31 CMA_LOC @ C:\Usersisnwn. CYSEMI\MEW\CE223541_mainapp/Debug/CE223541_mainapp.elf

fpplication checksum calculated and stored in ELF section .cychecksum

fpplication checksum calculated and stored in ELF section .cychecksum

= 0

m

If you are working from scratch and encounter errors, revisit prior steps to ensure that you accomplished all the required

tasks. You can work to resolve errors or switch to the code example for these final steps.

WWW.CYpress.com

Document No. 002-21774 Rev. *C

32

y__\

- A

e
. 4

CYPRESS

EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

5.7 Part 5: Program the Device

This section shows how to program the PSoC 6 MCU device.

ModusToolbox uses the OpenOCD protocol to program and debug applications on PSoC 6 MCU devices. For

ModusToolbox to identify the device on the kit, the kit must be running KitProg3. ModusToolbox includes a command-

line tool fw-loader to update CY8CIT-062-WiFi-BT and CY8CKIT-062-BLE kits, and switch the KitProg firmware from

KitProg2 to KitProg3. Refer to the PSoC 6 MCU KitProg Firmware Loader section in the ModusToolbox IDE User

Guide for more details.

If you are using a development kit with a built-in programmer (the CY8CKIT-062-WiFi-BT Pioneer Kit, for example),

connect the board to your computer using the USB cable.

If you are developing on your own hardware, you may need a hardware programmer/debugger; for example, a Cypress

CYB8CKIT-005 MiniProg4.

1. Program the Application.

A. Connect to the board and perform the following step.

B. Selectthe CM4 _mainapp application project and click on the <application name> Program (KitProg3) shortcut
under the Launches group in the Quick Panel, as Figure 23 shows. The IDE will select and run the appropriate
run configuration.

Figure 23. Programming an Application to a Device
gy P 2 De... Re... Pe. = B
= -
o L CE223541 config
. =% CEZ23581_manapp_cmilp
> =% CE223541 mainapp_crlp_psocipd|
» 2% CE223541 mainapp_psoctpd!
B Q. |2 D. w=V.. & E. %B. = O
ModusToolbox™ B3
- Start
Mew Application
& Search Online for Code Bamples
fag Import Application
» CEFFE5HL mainapp
« Launches
A CE223541 Debug {)-Link)
5 CE223541 Debug (KitProg3)
Q) CE223541 Program {J-Link)
The Console view lists the results of the programming operation, as Figure 24 shows.
Figure 24. Console — Programming Results
B Console 7 X% BEREE 0 -8-=0
<terminated> CE221773 Program (KitProg3) [GDB OpenQCD Debugging] openccd
[35%] [HHHHHEHHHEE] [Programming] ~
[42] [#ssssssnssng] [Programming]
[S1¥] [#Esssssssssns] [Programming]
[B84%] [HEsHEHHRHHHERHHRR] [Programming]
[71%] [SHHEHEHHEHHE] [Programming]
[93%] [] [Programming]
[1ee%] [] [Programming]
wrote 35848 bytes from file D:\ModusToolbox\CodeExamples\newCE221773_mtw\CE221773_mainapp\Debug\CE221773_mainapp_final.elf in 1.524877s (22.953 KiB/s)

** programming Finished *=*
“* Resetting Target **

Warn : Only

resetting the Cortex-M core, use a reset-init event handler to reset any peripherals or configure hardware srst support.

** Program operation completed successfully **
shutdown command invoked

WWW.Cypress.com Document No. 002-21774 Rev. *C 33

&2 CYPRESS

EMBEDDED IN TOMORROW Getting Started with PSoC 6 MCU

5.8 Part 6: Test Your Design
This section describes how to test your design.

Follow the steps below to observe the output of your design. Note that the below steps use Tera Term as the UART
terminal emulator to view the results. You can use any terminal of your choice to view the output.

1. Select the serial port.
Launch Tera Term and select the USB-UART COM port as shown in Figure 25.
Figure 25. Selecting the USB-UART COM Port in Tera Term

W

File Edit

2=0 Tera Term: Mew connection bt

O TCPAP myhost.example.com
History
Telnet
SSH 55H2
Other

22

UNSPEC

® Serial Port: [COM5: USB Serial Device [COM5] ¢ vl

| 0K | | Cancel Help

2. Set the baud rate.
Set the baud rate to 115200 under Setup > Serial port as Figure 26 shows.
Figure 26. Configuring the Baud Rate in Tera Term

i

Tera Term: Serial port setup X

Port: COM5 ~

File Edit

Baud rate: Imm vl

Data: 8 bit ™ Cancel i

]
Parity: none w !
Stop: 1 bit v Help |

Flow control:

Transmit delay

EI msecjchar EI msecfline

3. Reset the device.

Press the reset switch (SW1) on the Pioneer Kit. The following message appears on the terminal as Figure 27
shows.

WWW.Cypress.com Document No. 002-21774 Rev. *C 34

& CYPRESS

> EMBEDDED IN TOMORROW

Getting Started with PSoC 6 MCU

Figure 27. UART Message Printed from CM4 CPU

Y COMS - Tera Term VT

— O *
Eile Edit Setup Contrel Window Help

E221773 — PSoC 6 HCU: Hello UWorld?! Examplesscessesxssessssmescmnsex [N
Hello World?t?

Press Enter key to start blinking the LED
]

4.

Enable the LED Blinking functionality.

Press the Enter Key to start blinking the LED. When the LED starts blinking, the following message will be
displayed on the UART terminal as shown in Figure 28.

Figure 28. UART Message from CM4 CPU

M COMS - Tera Term VT

- O x
File Edit Setup Contrel Window Help

E221773 — PSoC 6 MCU: Hello YWorld?! Examplesssssxssssssxmns [N
Hello YWorld??®?

Press Enter key to start blinking the LED
Observe the LED blinking on the kit?t*?

WWW.Cypress.com

Document No. 002-21774 Rev. *C 35

o CYPRESS

~amp> EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

6 My First PSoC 6 MCU Design Using PSoC Creator

This section does the following:
® Demonstrates how to build a simple PSoC 6 MCU-based design and program it on to the development kit.

m Provides detailed steps that make it easy to learn PSoC 6 MCU design techniques and how to use the PSoC
Creator IDE.

6.1 Using These Instructions

These instructions are grouped into several sections. Each section is devoted to a particular phase of the application
development workflow. The major sections are:

m Part 1: Create a New Project from Scratch

® Part 2: Implement the Design

m Part 3: Generate Source Code

m Part 4: Write the Firmware

m Part 5: Build the Project and Program the Device
m Part 6: Test Your Design

If you are familiar with developing projects with PSoC Creator, you can use the PSoC Creator version of the code
example CE221773 — PSoC 6 MCU Hello World Example directly. It is a complete design, with all the firmware written.
You can walk through the instructions and observe how the steps are implemented in the code example.

If you start from scratch and follow all the instructions in this application note, you use the code example as a reference
while following the instructions.

You can download the code example from the Cypress website by clicking the link above. You can also use the PSoC
Creator File > Code Example command. Set the Device family to PSoC 62. Select the PSoC MCU Hello World
Example. Download the code example by clicking on the download icon adjacent to the example and then click on
Create Project, and follow the on-screen instructions.

This design is developed for the CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer Kit. You can also use CY8CKIT-
062-BLE PSoC 6 BLE Pioneer Kit to test this example by selecting the appropriate device from the Device Selector.

WWW.Cypress.com Document No. 002-21774 Rev. *C 36

& CYPRESS

EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

6.2 About the Design
This design uses the CM4 CPU of PSoC 6 MCU to execute two tasks: UART communication and LED control. At device
reset, the CM0O+ CPU enables the CM4 CPU. The CM4 CPU uses the UART Component to print a “Hello World”
message to the serial port stream and when the Enter Key is pressed by the user, the LED on the PSoC 6 MCU Wi-Fi-
BT Pioneer Kit starts blinking.

Figure 29. My First PSoC 6 MCU Design

Clock[_J—{>clock
1kHz

Timer
Timer Counter

ovrflw =]
undrflw |-
=

capt_out

interrupt Isr_Timer

P6_VDD

LED X¥

Pin_GreenLED

Lo

The TCPWM generates an interrupt to the CM4 CPU once per second.
On each interrupt the CM4 CPU toggles the LED state.

UART

UART

Standard

Baud rate: 115200 bps
Data width: 8 bits
Stop bits: 1

Parity: None

The UART component prints a "Hello World"
message in a terminal window

PSoC 6 MCU RGBLED

RESET SWITCH

WWW.CYpress.com

Document No. 002-21774 Rev. *C

37

& CYPRESS

EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

6.3 Part 1: Create a New Project from Scratch

This section takes you on a step-by-step guided tour of the design process. It starts with creating an empty project and
guides you through hardware and firmware design development stages.

Note: These instructions assume that you are using PSoC Creator 4.2. The overall development process is the same
for subsequent versions of PSoC Creator; but the user interface may change over time.

Launch PSoC Creator and get started.
2. Ensure that PSoC Creator can find the PDL.

This should be set correctly automatically during installation, but nothing works if this isn’t set up right. Refer to
Figure 30 for help with this step.

A. Choose Tools > Options.
B. On the Project Management panel, check the path in the PDL v3 (PSoC 6 Devices) location field.

C. Ensure that it is correct. If it is not, click the Browse button and locate the installed directory of the PDL. The
default location is C:\Program Files (x86)\Cypress\PDL\3.0.1.

Figure 30. Peripheral Driver Library (PDL) Location

Options (-2 e
[#)- Project Management Projects location
: E::Igg;asgtgjuppnn C:AUsershsnvn, E.IYSEM\\D.Ucuments\PSDE Creator
i Test Editar My Template projects location:
- Program/Debug C:\Usershsrvn CrSEMINDocumentstPS oC CreatorsMy Templates
Environment PDL «2 [Fi0+ devices] location:
B\
PDL w3 [PSoC B devices) location: c
i_E CE221773 - PSoC Creator 4.2 -t C:%Progdsm Files [#861\CppresshPDLY3.0.1 L‘ Browse...
- A - - A -
File Edit View Project Build d_J\ lools | Window Help Always show the Ermar List window if a build has emars
j] :::I =A™ W= NN WEENF-Y ﬂ Find new components Always display the workspace in the Workspace Explorer
- 3 w ﬂ B Find new devices Display the Dutput windows when a build starts
— T Reload open documents when a workspace is opened
Workspace Explorer (1 project) * 3 X Install drivers for uVision
% . [Reload the last workspace on statup
" =) Datapath Config Tool... nteBadopdelos
Weork: 'CE221773" (1 Project: i
ﬂé}--ﬂoi’:&fjicci 'FSoC_B_MtCU_TIJin:_)Wm 3 " DMA Wizard.. Don't show Kell registration dialog every time PSoC Creator starts
T . -] Component Tuners 3
{Z] TopDesign.cysch g
E}jg Design Wide Resources (PSol_£ % | [&] Bootloader Host..
P Pins a
i Options... =
-\ Analog E 3

Fiestore All Defaults QK l ’ Apply] ’ Cancel

Optional: Jump to Part 2: Implement the Design.

WWW.Cypress.com Document No. 002-21774 Rev. *C 38

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

3. Create a new PSoC Creator project.
Choose File > New > Project, as Figure 31 shows. The Create Project window appears.

Figure 31. Create a New PSoC Creator Project

i_ﬁ PSoC Creator 4.2

Eile | Edit View Project Build Debug Tecls Window Help

= 3 |£ﬂ Project... b ga - _
pen * |] Eile..

o2

Note: If you are using the code example, choose File > Open > Project/Workspace, as Figure 32 shows. The
Open window appears. Point to the location of the code example workspace and open the workspace.

Figure 32. Open Existing Code Example Workspace

i_i PeoC Creator 4.2

File | Edit View Project Build Debug Tools Window Help
New r B3 FE X L R

| Open '| :ﬁ Project/Workspace ge
Code Example ... [File.. Ctrl+0

4. Select PSoC 6 MCU as the target device.

PSoC Creator speeds up the development process by automatically setting various project options for specified
development kits or target devices. See Figure 33 for help with this step.

A. Click Target device.

B. In the family drop-down menu, select PSoC 6.

C. Inthe device drop-down menu, select PSoC 62.

D. Click Next. The Select project template panel appears.

PSoC Creator uses CY8C6247BZI-D54 as the default device in the PSoC 6 MCU family. This device is mounted
on the CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer Kit.

If you are using custom hardware based on PSoC 6 MCU, or a different PSoC 6 MCU part number, this is the place
you choose to Launch Device Selector option in Target device and select the appropriate part number.

Figure 33. Selecting Target Device

Create Project - CY8C6247BZ1-D54 (9. [t

Select project type
Choose the type of project - design, library, or workspace.

Design project:
() Target kit:
B () Target module:] B\ C \
A O N
I % Target device: ’PSOCG v”PSoC -
() Library project
() Workspace

e =

WWW.Cypress.com Document No. 002-21774 Rev. *C 39

o CYPRESS

~amp> EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

5. Pick a project template.
A. Choose Empty Schematic.
B. Click Next.
Figure 34. Pick a Project Template

Create Project - CYBC6247B71-D54 (B[

Select project template
Choose a schematic template or start your design with a kit or example project.

ﬂ Code example
nn10| (Choose from our library of code examples.

2 | Pre-populated schematic
[—=| Start with typical MCU functions (ke UART, ADC, etc.).
A

Empty schematic
Create a full custom design by adding functionality from the component catalog.

B\
| <Boc [Net> || concel

h

6. Select target IDE(S).

If you expect to export the code from the project, specify the target IDE. By default, all export options are disabled.
You can modify this setting later if circumstances change.

Click Next to accept the default options.
Figure 35. Select Target IDEs (All Disabled)

Create Project - CY8C6347BZI-BLD53 ==

Select target IDE(s)
Choose zero or more build taigets

CMSIS Pack: |Disable -
16R EW-4AM: | Disable -
1 akefile: [Dizable >]

’ < Back ”I Nest > l I Cancel]

7. Create the project.

In this step, you set the name and location for your workplace, and a name for the project. See Figure 36 for help
with this step. A workspace is a container for one or more projects.

A. Set the Workspace name.

B. Specify the Location of your workspace.

C. SetaProject name. The project and workspace names can be the same or different.
D

Click Finish.

WWW.Cypress.com Document No. 002-21774 Rev. *C 40

o CYPRESS

~am»> EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

Figure 36. Project Naming and Location

Create Project - CY8C6247BZ1-D54

Create Project
Choose a name and location for your design

Create new workspace

Workspace name: CE221773
Location: C:\PSoC Creator Projects’.

Project name: PSoC 6 MCU - Hello Word Example

[< Back H ==t

|

Cancel

L

You have successfully created a new PSoC Creator project.

WWW.Cypress.com Document No. 002-21774 Rev. *C

41

W & CYPRESS

EMBEDDED IN TOMORROW"

Getting Started with PSoC 6 MCU

6.4 Part 2: Implement the Design

Now that you have a project file, it is time to implement the hardware design using PSoC Creator Components. If you
are using the code example directly, you already have a complete design.

Before you implement the design, a quick tour of the PSoC Creator interface is in order.

Figure 37 shows the PSoC Creator application displaying an empty design schematic.

The project includes a project folder with a base set of files. You view these files in the Workspace Explorer pane to
the left. The project schematic opens by default. This is the TopDesign.cysch file. Double-click the file name in the
explorer pane to open the schematic at any time. In a new project, the schematic is empty. If you are using the code

example, this is the schematic for the design.

The Component catalog is on the right side of the window. You can open it with the View > Component Catalog menu

item. You can search for a particular Component by typing the name of the Component in the Search for... text box
and then pressing the enter key. See Figure 37.
Figure 37. Schematic and Component Catalog
r;_E CE221773 - PSoC Creator 4.2 [CM..\PSoC_6_MCU_Hello_World_Example.cydsn\TopDesign\TopDesign.cysch] = |68 &1
File Edit View Project Build Debug Tools Window Help
- Workspace | 4 @ & 3B X |9 & _ @A Debug - L Component
hns Serif -0 - B rU(ElE=A-F- b0 Catalog [iiy
‘Workspace Explorer (1 project) > X start Page”” TopDesign.cysch] 1 | |Component Catalog (115 compone. - & X @
% @ Wo B e z
(1] Worltspaoe czzzn?a (1 Projects) FL. Component L:L_ 33 Searchfor.. §
E’ o SearCh BOX Cvpress] Off-Chip 4 P %
BH P DEs\gn Wlde Rescurces (PScC_6_M (= Ll Cypress Compenent Catalog -
----- Pins 2 @] &8 Analog
i ’\;"\- Analog 3 N [y CapSense
0% DMA E g Communications
[S~
{8 Clocks =4 BHeg Digital
)# Interrupts E T (&4 Ports and Pins
- System 2| = g System
- §=—_ Directives %
EHLZ CMOp [Core 0) =
iy Header Files g‘
=M Source Files
] main_cmOp.c E
EHE CM4 (Core 1) =
i) Header Files
=M Source Files
g] main_cmd.c
EHL? Shared Files
Lo[n] cyapicallbacks.h
< [il = N -._Pagel q b
Qutput | Motice List
Ready 0Errors 0 Warnings 0 Notes

8. Place Components in the design.

This design uses several Components: three digital output pins, a UART, a Watchdog Timer, and an Interrupt. In
this step, you add them to the design. You configure them in subsequent steps. Figure 38 shows the result.

A. Inthe Component Catalog, expand the Communications group, drag a UART (SCB) Component into the
schematic, and drop it. It doesn’t matter where you put a Component.

B. Expand the Ports and Pins group, and drag a Digital Output Pin into the design.

C. Expand the Digital group, and drag a Timer Counter (TCPWM) Component into the design.

D. Expand the System group, and drag an Interrupt Component and a Clock Component into the design.

WWW.Cypress.com Document No. 002-21774 Rev. *C

42

A

w CYPRESS

~am»> EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

Figure 38. Place Components in the Design

B/ 00 7]

& SiartPageJ’ TopDesign.cysch -

Drag and

Components UART

Drop

UART 1

Standand

Counter_1
. | Timer Counter

ovrflwe
undrflw

e
5
m.:t_:-uu%~

CHxclock

intermupt l51

B Pin_1~ggel

Clock_1 k)
oMz o

Sysint_1

Component Catalog (115 compone., ~ & X

il B

@ Search for...
Cypress [Off-Chip 4Pk
Cypress Component Cataleg -
@ Analog |

88 CapSense
E}@ Communicaticns
-
g 125
|§| PDM to PCM [fixed function) [v
&g SPI
288 UART
&[] UART (SCB) [v2.0]
EHeg Digital
E-@g Functions
i-[2] CRC[v2.50]
[#] PWM [TCPWM) [v1.0]
[¢] Quadrature Deceder (TCPWI
5] Timer Counter (TCPWM) [v1
&g Logic
&g Registers
o Utility
[Hgg Ports and Pins
~| 2} Analeg Pin [v1.0]
@ Digital Bidirectienal Pin [+1.0]
|#} Digital Input Pin [v1.0]
|2} Digital Qutput Pin [v1.0]

/

m

I

T—

|
¢ Clock [v1.0]

(%] DMA [v2.0]

~[#] Emulated EEPROM [v2.0]
@8 External Memory Interface
\Jﬂ» Glokal Signal Reference [v2.10]
~[@] Interrupt [v1.0] <

PSoC Creator gives each Component a default name and properties. Default values may or may not be suitable
for any given design. In subsequent steps, you modify the name and some of the properties.

WWW.Cypress.com

Document No. 002-21774 Rev. *C

43

~
W

-

CYPRESS

EMBEDDED IN TOMORROW"

Getting Started with PSoC 6 MCU

9. Configure the LED pin.

The output pin drives the LED. The LED on the PSoC 6 Wi-Fi-BT Pioneer Kit is active LOW; that is, the logic HIGH
pin-drive state turns OFF the LED, and the logic LOW pin-drive state turns it ON. Figure 39 shows the configuration.

Double-click the Component placed on the schematic to open the configuration dialog. Then perform the following
steps.

D. Change the name of the Component instance to Pin_GreenLED.
E. Deselect HW connection. The firmware will drive the pin.
F. Set the Drive Mode to Resistive Pull Up.
Figure 39. Configuring an Output Pin Component

ure 'Pin_GreenlLED' T || ren
A T
L —
Name | Pin_GreenLED I :
~ Pins |* Builtn 4 b *g
Number of pins: 1 ||:| Display as bus | H e o+ | i B : 8
AN pins] General | irput | Output 1T cu Crl+X
~ B Pin_GreenLED_0 Type Drive mode Initial drive state: Sa| Copy Curl+C
[7] Analog Resistive Pull Up - [H\gh) v] A
[7] Digital input . Min. supply voltage: % Delete Del
Select All Ctri+A
B Digital output B — —
; 100 i - B
3
[C] Output enable [Hot swap Shape—
[] Bidirectional Configure...
Edemal teminal | Open PDL Documentation...
; ; Disable
@—E Click to view PDL 4
- =" Open Dstasheet ...
Documentation
Find Code Example .
i i Open Compenent Web Page
ick to view P P 9
Component datasheet
| Datashest I 0K Aoply — Generate Macro
b 4

Tip: Each Component has an associated datasheet that can be accessed from the configuration window. The
Component datasheet provides more information on the Component configuration, the application programming
interface (API), and the electrical specifications.

Tip: You can open the API reference document of the associated PDL driver of a Component by right-clicking the
Component and clicking on Open PDL Documentation... link. See Figure 39.

Tip: For a pin, if you enable External terminal, you can add external “off-chip” Components to a design. External
Components on the schematic are included for descriptive purposes only; they have no effect on the generated
code. Off-chip Components are optional, but can assist the hardware design team understanding how the design
works. You can also add text boxes to a design with descriptions. Figure 40 shows how you could enhance the
design for the LED. In this case, the off-chip components were configured with the Instance_Name_Visible option
unchecked. The resistor was configured with the Value field left blank. The power terminal was configured with the
Supply_Name set to P6_VDD.

Figure 40. An Output Pin with Off-Chip Components

P6_VDD

>
< Pin_GreenLED AN

WWW.Cypress.com Document No. 002-21774 Rev. *C 44

A

wos CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

10.Configure the UART Component.

Double-click the Component to open the configuration window. The design uses this Component to display
messages in a terminal window at a baud rate of 115200 bps.

A. Change the Name of the Component instance to UART.

B.

Click OK.

The design uses default values for all other settings.

Figure 41. Configuring the SCB-Based UART Component

A Configure 'SCB_UART_PDL v2_0' &Iﬂ—hJ
Name: UAR
Basic [* Advanced |* Pins |* Builtin 14k
=l Clock Source
Enable Clock from Terminal |[C]
=l General
Com Mode Standard > || e
TA/RX Mode TH = RX v || fixd
L 5 () 115200 ﬂ Actual baud rate (bps): 115741 (i)
Cwersample 12 flx)
Bit Order LSE First > || fixg)
Data Width 8 bits v || fixd
Parity Mone v || fixd
Stop Bits 1 v || fixd
Enable Digital Filter = [o0 |

11.Configure the Timer Counter (TCPWM) Component to trigger an interrupt.

In this step, you configure the Timer Counter (TCPWM) Component to trigger an interrupt every second (1 Hz).
The clock source of the TCPWM is the peripheral clock (Clk_Peri). The design will use this interrupt to toggle the
LED state. Open the Component customizer and follow the steps illustrated in Figure 42.

A.

B
C.
D

Change the Name to Timer.
Set the Period to 1000 and Interrupt Source as Overflow/Underflow.
Click OK to complete the configuration of the TCPWM Component.

Connect the clock terminal of the TCPWM to the 1-kHz clock source. In the schematic, use the wire tool button
or press the ‘W’ key to start wiring the Clock Component to the clock terminal of the TCPWM Component.

WWW.Cypress.com Document No. 002-21774 Rev. *C 45

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

Figure 42. Configuring the TCPWM Component

.
Configure Timer' @I&J
B Basic [Inputs | Builtin 4 b
Lount Lirecticn up | . | T .
Period 1000 fx)
Compare or Capture | Capture | ~ | fixd
El Capture T
. Timer
Capture Input | Disabled | - ” fix) = T
= Interrupts ovritw =1
| 5 i . undrfiw =
Interrupt Source | Cverflow/Underflow | A ” fix) §~ Sy dra([ingp capt out-_:
Period (kHz): 0.001 - |
Caplure __ 4 [} +] [} [[} [l
1000 1 M H m i 4 M
0 | i | | | Ciock[> clock
i 1 THE. interrupt |=)
i J_IJ : ,_I
LI
[) i) ¥ ! 4
[[4 + s 0 s
[)) + +
copwereg 0 11w [1 [[v [ww [1 | s
Capture Bl Reg [0 | © I T T] sm | 1 w1

12.Configure the interrupt Component.

In this step, you configure the Sysint Component to map the TCPWM interrupt to the CM4 CPU. Open the
Component customizer and follow the steps illustrated in Figure 43.

A. Change the Name to Isr_Timer.
B. Click OK to complete the configuration of the Sysint Component.
Figure 43. Sysint_PDL Settings

Configure Tsr_Timer'

ame: Isr_Timer

Basic | Builtin

Deep Sleep Capable |[C] fx)
T Auto-Select Trigger [[

As the final step, connect the interrupt output of the TCPWM Component to the Isr_TCPWM Component input. This
routes the TCPWM interrupt to the CM4 CPU (the selection of the CM4 CPU for this interrupt will be set in the system
interrupt configuration in a later step). In the schematic, use the wire tool button or press the ‘W’ key to start wiring the

Components.
Figure 44. Connect TCPWM Peripheral Interrupt to CM4 CPU

[l
Timer
o Timer Counter
N ovrfiw|&
= undrfiw £
capt_outf=]
T
@

Clock[_]{»clock
18 interrupt —=]lsr_Timer

WWW.Cypress.com Document No. 002-21774 Rev. *C 46

A

ws CYPRESS

~am»> EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

13.Set the physical pins for each Pin Component.

One task remains to complete the design. You must associate each Component with the required physical pins on
the device. The choice of which pin to use is driven by the board design. You can find this information in the kit
schematic. Figure 45 shows the result of this step. You can connect external LEDs to the selected pins.

To set a pin, type either the port number or pin number in the corresponding field, or use the drop-down menu to
pick the port or pin. Typically, the port number is used instead of the pin number since these nhames are independent
of the specific package being used.

A.

Workspace Explorer (1... ~

2

Open the pin selector.

In the Workspace Explorer pane, double-click the Pins item under the Design Wide Resources. The pin
selector for this device appears.

Set each pin as shown in Table 1.
Table 1. Physical Pin Assignments for CY8CKIT-062-WiFi-BT Pioneer Kit

1}

& Workspace 'CE22177% »
E|:| Project "PSoC_6_
,ﬂ' TDpDESIgn cysi

=

-+ CMOp (Core 0)
E} =] ARM GCCC
j tel] cyBebe
E| I ARMIAR G

B b

x

ad4nos

uopeUaWwnIeg | sjusuodwaon

s)nsay

Pin Component Name Port Name
UART: rx P5[0]
UART: tx P5[1]
Pin_GreenLED P1[1]

Figure 45. Pin Assignment

Start Page / PSoC_6_MC...mple.cydwr |

10 9 8 7 6 5 4 3 2 1

@ s (oo
=

mm o mm o omm

s mE S

-~ QO @

w | (R (P (PR (P PR e
"@@@@0

el -1 1-1-1-1-1-

CYECE34 7821 BLD5A
116-BGA-BLE
(bottom view)

~~Q90000000

T r X « I 0O T MmMmOooOo W >

-4k X
B ’
Mame Port Pin Lod|
\ILRT: FXY Bs[0] |v|Le -
WITART: txh, BS[1] |~ |®&

/(i

Pin GreenIED|PL[1] |~ |F2

4

m

&t Pins [\\ Analog E." DMA |- (4 Clocks Interrupts |- #% System
il 1]

14.Configure System Clock.

I

Directives

The design uses default values for the high-frequency system clock settings. Although you do not modify high
frequency clocks for this design, you should know how PSoC Creator manages them. If you are working with your
own board, you may need to modify these clocks.

A.

In the Workspace Explorer pane, double-click the Clocks item under Design Wide Resources. The list of

clocks appears.

Click Edit Clock. The Configure System Clocks dialog appears.

Here, you can see the clock tree, and modify the clocks as required. Note that there are tabs for different types
of clocks such as Source Clocks, FLL/PLL, High Frequency Clocks, and Miscellaneous Clocks.

Click on the FLL/PLL tab. By default, PSoC Creator enables FLL and sets the frequency to 100 MHz.

Click on the High Frequency Clocks tab.

You can set the CM4 CPU clock by setting the divider in Clk_Fast. By default, the divider is set to 1.

WWW.CYpress.com

Document No. 002-21774 Rev. *C

47

o CYPRESS

> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

F. You can set the CMO+ CPU clock by setting the divider in Clk_Slow. By default, the divider is set to 1. See

Figure 46.
Figure 46. Clock Configuration
Workspace Explorer (1 proje... ~ & X Start Page]/TopDesign.cysm)/PSn(_s_HC...mple.cydwr]
& 3 (Add Design-Wide Clock... (1 Delete De;ignml (# Edit Clock... |
Werkspace 'CE221773' (1 P; 5 =
EHE Project 'PSoC_6_MCU, Configure System Clocks [
@ TDPDESIQH cysch /EI C WFLL!PLLII/High Freguency Clocks }/Misoellaneous Clocks] q b

E] [ﬁg Design Wide Resoun

g Pins
Do ' °
Desired: 100 MHz Path 0
MO Actual: 100 MHz £2.4%
(8 MHz) > [:]
= ECO .
----- @ Directives (7 MHz)

EHLZ CMOp (Core 0)

E| A5 ARM GCC Generi
H -1 cyBeBuxT_cn
E| 53 ARM IAR Generic
b oyBcBuxT_cn
£ ARM MDK Gener
L] cyBebuxT_cn
£ Header Files T Source Clocks H D ~{ High Frequency Clocks WMismllaneous Clocks] 4 b

|ﬂ cy_ipc_confic

ExtCll »
(7 MHz)

AMHF: BLE ECO,
(? MHz) >

IMO (8 MHz) -

[s:”nsaa/l uonpquamn:oq/l squauodmo:)/l aonos

ILO -
Configure System Clocks

! |ﬂ system_psoct Path O
ML Source Files (100 MHz)
E| {E} ARM GCC Ge Path 1
L Leand) startup_p G MHn ™
{E} ARM IAR Ger Fath2 | S
L] start (SuHz ™
I;J@ ARM M;EGP Divider: Divider 1 B
¢ Path 3 a -
sgh] startup_p (8 MHz) » 50 MHz +2.4% 50 MHz +2.4%
-[€] main_cm0p.c Path 4
----- |j system_pscct {8 MHz) > E

EHLD CM4 (Core 1)

E| E} ARM GCC Generi
S cyBeBuT e
E| E} ARM IAR Generic
-1 cyBcbuxT_cn
E}E} ARM MDK Gener = | & ||

=
<o v - | fﬁ Pins }\{V\. Analog }\E,'E DMA\@ Clocks }\;f Interrupts }\9 System }\@ Directives

[output | notice List |

g raan

| - e FEVITT—

Ready

15.Configure System Interrupts.
In this step, you configure the system interrupts. See Figure 47.

A. Inthe Workspace Explorer pane, double-click the Interrupts item under Design Wide Resources. The list
of interrupts appears.
B. Enable Isr_Timer for the CM4 CPU.

The interrupt numbers are generated automatically by PSoC Creator when you generate the code in Part 3:
Generate Source Code.

WWW.Cypress.com Document No. 002-21774 Rev. *C 48

&= CYPRESS

> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

Figure 47. Interrupt Configuration

1
{ CE221773 - PSoC Creator 42 [C:\..lPSoC_G_MUJ_Her_WorId_Emrrple,cydwr]_ E=mREy X

Eile Edit View Project Build Debug Tools Window Help

{68 AR ENSSH @ G 8 S E X0 ¢ L Debug]

Start Page)/ PSoC_6_MC...mple.cydwr | 4 b X e

ol

. . ;| Interrupt | ARMCMO+ » ARMCMO+ = ARMCMO+ | ARMCM4 5 ARMCM4 g

Workspace 'TE221773' (1 Instance Name Mumber Enable Priority (1 - 3) Vector (2-29) | Enable Pricrity (0 - 7) =

" " m

= {7] Project PSoC_6 MC st Timer | o | - | - B z

@ TopDesign.cysch B =4
EHi® Design Wide Resol UART_SCBIRQ &/ 42 — — -

EHLD CMOp (Core 0)
B+ ARM GCC Gene
L[] cyBebun o
EHES ARMIAR Gene
D cyBebuT
EHES ARM MDK Gen
: D cyBebu o _

l sq|nsag/l uopeje Lunaou/l s:uauodl.uo:]/l a3.nos

S -

4 LI} L3

* System ‘g Directives

4 b

Qutput I Notice List]
Ready

0Errors 0 Warnings 20 Notes .
—

The next part in the development process is to generate code.

Note: This exercise does not detail how to export your work to a target IDE. However, if you wish to use a target IDE,
this is the point in the workflow where you would ensure that the correct target IDE is selected before you generate the
source code.

WWW.Cypress.com Document No. 002-21774 Rev. *C 49

& CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

6.5 Part 3: Generate Source Code

PSoC Creator generates the source code based upon the design. The recommended workflow is to generate code
before writing firmware. PSoC Creator will automatically create macros, constants, and API calls that you may then use
in your firmware.

1. Generate the application.

Choose Build > Generate Application. PSoC Creator generates the source code based on the design and puts
the files in the Generated_Source folder. See Figure 48. PSoC Creator will alert you to errors or problems that may
occur. If you are working from scratch and encounter errors, revisit the configuration steps in Part 2: Implement the
Design to ensure you have performed them correctly.

Figure 48. Generate Application

File Edit View Project | Build | Debug Tools Window Help
83% ~ # | Build PSoC_6_MCU_Hello_World_Example Shift+F6
B - ZSE (o Clean PSoC_6_MCU_Hello_World_Example
Workspace Explorer (1 project) ¥ Cleapn and Build PSoC_6_MCU_Helle_World_Example
2@ 9
&1 Workspace 'CE221773' (1P .
&+¥2] Project 'PSoC_6_MCU| —
| E]' TopDesign.cysch ‘g Generate Application I
=3 P Design Wide Resour{ =] Generate Project Datasheet
b \.‘/ﬁ Pins =
-\ Analeg é 3
Liom i
(&) Clocks = T
w2 Interrupts
=] =
{8 System g =
% Directives 3
BHD CMOp (Core 0) =
BHD CM4 (Core 1))
EHLD) Shared Files

EH Generated_Source
EHD PSoCe

1) pel

EHD) Clock

EHD) Pins and Interrupts

EHID Timer

[+

[+

synsary

-2 UART

) UART_SCBCLK

~] cycodeshareexportld

~] cycodeshareimport.ld

-~] cycodeshareimport.scat

] cydevice trm.h
] ecydevicegnu_trm.inc
] cydeviceiar_trm.inc
] eydevicerv_trm.inc
] cydisabledsheets.h

-] cyfitterh

-|€] cyfitter_cfg.c

-] cyfitter_cfg.h

€] cymetadata.c

- n] projecth

o

Background: PSoC 6 MCU is a dual-CPU platform. You can target firmware to run either on Cortex-M4 or Cortex-
MO+. You set this at the source file level by accessing the file properties. Right-click on a source file, and select
Properties. Figure 49 shows the Properties dialog window. By default, the main_cmOp.c file is targeted to the Cortex-
MO+ and the main_cm4.c file is targeted to the Cortex-M4. You do not need to modify the properties for any other file.
They are already set in the code example.

By convention, files targeted to run on the CMO+ CPU are located in the CMOp folder and files targeted to run on the
CM4 CPU are located in the CM4 folder.

WWW.Cypress.com Document No. 002-21774 Rev. *C 50

o CYPRESS

~am»> EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

Figure 49. Setting Target Processor for a Source C File

WWW.Cypress.com

-
i} CE221773 - PSoC Creator 4.2 [E=EEE
File Edit View Project Build Debug Tools Window Help
EDSEHS S A] % X9 & 8 Debug
R g
Workspace Explorer (1 project) >3 X Start Page] - d b X |
B3 Lea - - ~NlE
[d Properties M 2
E}El Project 'PSoC_6_MCU_Hello_World_Example E %
:]
1@' TepDesign.cysch £ %
L‘—Jﬁg Design Wide Rescurces {PSD’C_E_MCU_HE”E% '+ Build filt
: ; Sta ilters .
ﬁ Pins = q Configurations All -Lasttim
3 d [Cores Cortex2_| owldor
E F Processors Al ust right-
o Toolchains Al
the grar
K
§ 4 General
3 2 Red File Type SOURCEC
) Directives F Full Path C:\Users'whvk'\Desktop'PSoC 6 MCU Hello World
EHED CMOp (Core 0) = g Name main_cmd.c
BHD Header Files g Y| Relative Path main_cm4.c
B+ Seurce Files = K
L./c] main_cmOp.c a g
EHED CM4 (Core 1) = a =
) Header Files I The name of the item. roject tak
[EHL Source Files before E
main_cm4 me to relz
EH Shared Files
|ﬂ cyzpicallbacks.h 0K | l Cancel
. -
< 1] (e b
[output | notice List |
Ready 0 Errors 0 Warnings 19 Motes |
Document No. 002-21774 Rev. *C 51

EMBEDDED IN TOMORROW"

& CYPRESS

Getting Started with PSoC 6 MCU

6.6 Part 4: Write the Firmware

At this point in the development process, you have created a project, implemented a hardware design, and generated
the code. In this part, you write the firmware that implements the design functionality.

The steps in this part discuss the firmware for the design that you configured in Part 2: Implement the Design.

The code example has all the required code. If you are working from scratch, you can copy the respective source codes
to main_cmOp.c and main_cm4.c from the code snippet provided in this section. If you are using the code example,
files are already in your project.

Firmware Flow
In the remaining steps, we examine code in the main_cmOp.c and main_cm4.c file.

When the PSoC 6 MCU device is reset, the firmware first performs system initialization, which includes setting up the
CPUs for execution, enabling global interrupts, and enabling other Components used in the design.

The initialization is split across the CPUs. The CM0+ CPU comes out of reset and enables the CM4 CPU. The CMO+
CPU code snippet is given below. Copy the following code snippet to the main_cmOp.c file of your project.

/* Header files includes*/
#include "project.h"
int main (void)
{
__enable irq(); /* Enable global interrupts. */

/* Enable CM4. CY CORTEX M4 APPL_ADDR must be updated
if CM4 memory layout is changed. */
Cy_ SysEnableCM4 (CY CORTEX M4 APPL ADDR);

for(;;)

{

}
}

/* [] END OF FILE */

When the CM4 CPU is enabled, the UART Component is started and prints a “Hello World!” message on the terminal
emulator. A Timer Counter PWM (TCPWM) Component is configured to generate an interrupt every second. At each
interrupt, the CM4 CPU toggles the LED (LED5) state on the kit. Copy the following code snippet to main_cm4.c of
your project.

/* Header files includes*/
#include "project.h"

VAR AR EEEEE St AR EEEE e EEEEEE et EE RS EEE

* Macros
***/
#define LED ON (0)

#define LED OFF (!LED_ON)

/***~k~k~k~k~k~k~k************************

* Function Prototypes
***/
void UartInit (void);

void TimerInit (void);

void Isr Timer (void);

KKk ok ok ok ok kK K A K K K Kk ko k ok ok ok kA A A K K K Kk ko k ok ok ok kA A K K K Kk ko k ok ok ok ok kA A K K K K Kk kR ok ok ok ok ok

WWW.Cypress.com Document No. 002-21774 Rev. *C 52

o CYPRESS

> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

* Global Variables
***/
bool LEDupdateFlag = false;

VAR AR EEEEE SRR R R EE R E R R R e

* Function Name: main
***/

int main (void)
{
/* Start the UART peripheral */

UartInit();

/* Enable global interrupts. */

__enable irq();

/* \x1lb[2J\x1b[;H - ANSI ESC sequence for clear screen */

Cy SCB UART PutString(UART HW, "\xlb[2J\xlb[;H");

Cy SCB UART PutString (UART HW, "****xxxxxxxxxxxxxxCE221773 - PSoC 6 MCU:"\

" Hello World! Example******kxkxkxkxkxxx\r\n\n");

Cy SCB UART PutString(UART HW, "Hello World!!!\r\n\n");
Cy SCB_UART PutString (UART HW, "Press Enter key to start blinking the LED\r\n\n");

/* Wait for the user to Press Enter key */
while (Cy SCB_UART Get (UART HW) != '\r');

/* Start the TCPWM peripheral. TCPWM is configured as a Timer */
TimerInit () ;

Cy_SCB_UART_PutString (UART HW, "Observe the LED blinking on the kit!!!\r\n");

for(;;)
{
if (LEDupdateFlag)

{
/* Clear the flag */
LEDupdateFlag = false;

/* Invert the LED state*/
Cy GPIO Tnv(Pin GreenLED 0 PORT, Pin GreenLED 0 NUM);

}

/***‘k‘k‘k‘k‘k‘k‘k************************

* Function Name: UartInit
***~k/

void UartInit (void)

{
/* Configure the UART peripheral.
UART config structure is defined by the UART PDL component based on

parameters entered in the Component configuration*/

Cy SCB UART Init (UART HW, &UART config, &UART context);

WWW.Cypress.com Document No. 002-21774 Rev. *C 53

o CYPRESS

N> EMBEDDED IN TOMORROW” Getting Started with PSoC 6 MCU

/* Enable the UART peripheral */

Cy SCB UART Enable (UART HW) ;
}

/***~k~k~k~k~k~k~k~k~k~k~k~k~k

* Function Name: TimerInit
***/

void TimerInit (void)
{
/* Configure the TCPWM peripheral.
Counter config structure is defined based on the parameters entered
in the Component configuration */

Cy_TCPWM_Counter Init (Timer HW, Timer CNT_NUM, &Timer config);

/* Enable the initialized counter */

Cy_TCPWM Counter Enable (Timer HW, Timer CNT_NUM) ;

/* Start the enabled counter */

Cy TCPWM TriggerStart (Timer HW, Timer CNT MASK) ;

/* Configure the ISR for the TCPWM peripheral*/

Cy SysInt Init(&Isr Timer cfg, Isr Timer);

/* Enable interrupt in NVIC */

NVIC EnableIRQ((IRQn Type)Isr Timer cfg.intrSrc);
}

/**

* Function Name: Isr Timer
***/

void Isr Timer (void)
{
/* Clear the TCPWM peripheral interrupt */

Cy TCPWM ClearInterrupt (Timer HW, Timer CNT NUM, CY TCPWM INT ON TC);

/* Clear the CM4 NVIC pending interrupt for TCPWM */
NVIC ClearPendingIRQ(Isr Timer cfg.intrSrc);

LEDupdateFlag = true;

}
/* [] END OF FILE */

WWW.Cypress.com Document No. 002-21774 Rev. *C 54

o CYPRESS

N EMBEDDED IN TOMORROW Getting Started with PSoC 6 MCU

Figure 50. Firmware Flowchart

™ Ccmo+ CPU

1 CM4 CPU
Device Reset and
Initialization
CMO+ CPU Initialization On TCPWM Interrupt

Enable CM4 CPU

v

Configure and Start the
UART Component

¢ A

Print the message Set the LEDupdateFlag

“Hello World”
Exit TCPWM
Interrupt Handler

Clear the TCPWM Interrupt

on to UART terminal

“Enter” key
pressed?

Configure TCPWM
Interrupt

LEDupdateFlag
= true?

Clear LEDupdateFlag
Toggle LED state

I

This completes the summary of how the firmware works in the code example. Feel free to explore the source files for
a deeper understanding.

WWW.Cypress.com Document No. 002-21774 Rev. *C 55

& CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

6.7 Part 5: Build the Project and Program the Device

This section shows how to program the PSoC 6 MCU device. If you are using a development kit with a built-in
programmer (the CY8CKIT-062-WiFi-BT Pioneer Kit, for example), connect the board to your computer using the USB
cable. If you are developing on your own hardware, you may need a hardware programmer/debugger; for example, a
Cypress CY8CKIT-002 MiniProg3.

If you are working from scratch and encounter errors, revisit prior steps to ensure that you accomplished all the required
tasks. You can work to resolve errors or switch to the code example for these final steps.

1. Select the debug target.
PSoC Creator can debug one CPU at a time.
A. In PSoC Creator, choose Debug > Select Debug Target, as Figure 51 shows.
Figure 51. Selecting Debug Target

i CE221773 - PSoC Creator 4.2

File Edit View Project Build | Debug | Tools Window Help
ENgEHa S &) | Windows C
I_ﬁ,:l - % i ‘5 a ﬁ B %m Program Ctrl+F5
Workspace Explorer (1 project) %fﬁ Select target and program...
% g ﬁ Select Debug Target...
B3] Workspace 'CE221773' (1 Projects) Debu F5
p j g
EEI lgro!rt!ctD'PSOC_ﬁ_MhCU_Hello_\ FE Debug without Programming Alt+F5
opDesign.cysc
Efjg | j& Select target and debug...
|5k Attach to Running Target...
. JF Toggle Breakpoint Fa
Mew Breakpoint 3
4
-

B. Connect to the board.
In the Select Debug Target dialog box, select the CM4 target, then click OK/Connect, as Figure 52 shows.

Figure 52. Connecting to a Device

Select Debug Target l P
EH3 KitProg2/041012E003336400 PSeC 62 CYBC6247BZ1-D54 (CM4)

PSoC 62 CYBC6247BZ1-D54 (CMOp) PSoC 62 (CortexMp Cortext4)
Silicon |D: (e6BAD2477
* PSoC 62 CY8C6247BZ1-D54 (CM4) Cypress |D: xE2062100
Revision: PRODUCTION

Target unacquired

Show all targets -

0K/ Connect

TIP: For programming the board, you can pick either target. The CPUs share the same memory space.
Programming either CPU programs both CPUs. However, if you are debugging, this choice matters. The debugger
will see only the CPU you connect to. These instructions do not use the debugger.

L

WWW.Cypress.com Document No. 002-21774 Rev. *C 56

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

2. Program the board.
Choose Debug > Program to program the device with the project, as Figure 53 shows.

Figure 53. Programming the Device

E_E CE221773 - P5oC Creator 4.2

File Edit VNiew Project Build erug|IooIs Window Help

BhasHas $| | Windows E
I“EI - % éﬁ a ﬁ& B a Program Ctrl+F5
Workspace Explorer (1 project) a Select target and program...
e % Select Debug Target...
B3 Workspace 'CE221773' (1 Projects) Debu F5
P] g
E‘EI Project "PSoC_6_ MCU_Hello §% Debug without Programming ~ Alt+F5
él’ TopDesign.cysch
Design Wide Resources (PSo & Select target and debug...

0

Attach to Running Target...

]

Toggle Breakpoint F9

Mew Breakpoint 3

-

... Directives

You can view the programming status in the lower left corner of the PSoC Creator window, as Figure 54 shows.
Figure 54. Programming Status
1 1
[« |

Page 1 |

||Programming - Erasing... I

TIP: The Debug > Debug command also programs the board. If any code needs to be generated or rebuilt, that
happens automatically when you issue a Program or Debug command. You can also debug without programming the
board. However, these instructions do not use the debugger.

NOTE: The KitProg2 firmware on the kit might require an update. See the respective kit user guide for step-wise
instructions on updating the firmware.

WWW.Cypress.com Document No. 002-21774 Rev. *C 57

& CYPRESS

EMBEDDED IN TOMORROW Getting Started with PSoC 6 MCU

6.8 Part 6: Test Your Design
This section describes how to test your design.

Follow the steps below to observe the output of your design. Note that the below steps use Tera Term as the UART
terminal emulator to view the results. You can use any terminal of your choice to view the output.

2. Select the serial port.
Launch Tera Term and select the KitProg2 USB-UART COM port as shown in Figure 55.
Figure 55. Selecting the KitProg2 USB-UART COM Port in Tera Term

Y| Tera Term - [disconnected] VT = | E G

File Edit 5§ Tera Term: New connection lﬁJ

TCPAP myhost.example.com
History
Telnet

55H 55H2
Other

22

UNSPEC

[Port: |cOM218: KitProg2 USB-UART (COM21 ~|

[0K l | Cancel | | Help |

3. Setthe baud rate.
Set the baud rate to 115200 under Setup > Serial port as Figure 56 shows.
Figure 56. Configuring the Baud Rate in Tera Term

r ¥

7 COM218 - Tera Term VT =|=j x
b
Tera Term: Serial port setup [&J

Port: |COM218 ~| l oK l

Baud rate: |1152I]I] vI

Data: |3m17v| ‘ Cancel ‘
Parity: |r||]n37v|
Stop: |1Im7v| ‘ Help ‘
Flow control: [none +|

Transmit delay

0 msecichar I} msecfline

WWW.Cypress.com Document No. 002-21774 Rev. *C 58

A ,‘
ws CYPRESS
Getting Started with PSoC 6 MCU

> EMBEDDED IN TOMORROW

4. Reset the device.
Press the reset switch (SW1) on the Pioneer Kit. The following message appears on the terminal as Figure 57

shows.
Figure 57. UART Message Printed from CM4 CPU

(= B] |

| COM218 - Tera Term VT

Eile Edit Setup Control Window Help

e se e e m s me v CE2 21773 — PSoC 6 MCU: Hello World?! Example
Hello HWorld**?

Presz Enter key to stawrt blinking the LED

5. Enable the LED Blinking functionality.
Press the Enter Key to start blinking the LED. When the LED starts blinking, the following message will be

displayed on the UART terminal as shown in Figure 58.
Figure 58. UART Message from CM4 CPU

f [B [|

| COM218 - Tera Term VT

File Edit Setup Control Window Help
exaese e e e CE221 773 — PSoC 6 MCU: Hello World? Example sessess s s sics o

Hello Worldtt?
Prezz Enter key to start blinking the LED

Ohzerve the LED blinking on the kitt!??

L

7 Summary
This application note explored the PSoC 6 MCU device architecture and the associated development tools. PSoC 6
MCU is a truly programmable embedded system-on-chip with configurable analog and digital peripheral functions,
memory, and a dual-CPU system on a single chip. The integrated features and low-power modes make PSoC 6 MCU

an ideal choice for smart home, I0T gateways, and other related applications.

59

WWW.Cypress.com Document No. 002-21774 Rev. *C

o CYPRESS

~amp> EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

Related Application Notes and Code Examples

For a complete and updated list of PSoC 6 MCU code examples, please visit our code examples web page. For more
PSoC 6 MCU-related documents, please visit our PSoC 6 MCU product web page.

Table 2 lists the system-level and general application notes that are recommended for the next steps in learning about
PSoC 6 MCU and PSoC Creator.

Table 2. General and System-Level Application Notes

Document Document Name

AN210781 Getting Started with PSoC 6 MCU with Bluetooth Low Energy (BLE) Connectivity
AN218241 PSoC 6 MCU Hardware Design Considerations

AN219434 PSoC 6 MCU Importing Generated Code into an IDE

AN219528 PSoC 6 MCU Low-Power Modes and Power Reduction Techniques

Table 3 lists the application notes (AN) and code examples (CE) for specific peripherals and applications.
Table 3. Documents Related to PSoC 6 MCU Features

Document Document Name

System Resources, CPU, and Interrupts

AN215656 PSoC 6 MCU Dual-CPU System Design

AN217666 PSoC 6 MCU Interrupts

CE221773 PSoC 6 MCU Hello World Example

CE216795 PSoC 6 MCU Dual-Core Basics

CE216825 PSoC 6 MCU Real-Time Clock Basics

CE218129 PSoC 6 MCU Wake up from Hibernate Using Low-Power Comparator
CE218541 PSoC 6 MCU Fault-Handling Basics

CE218542 PSoC 6 Custom Tick Timer Using RTC Alarm Interrupt

CE218552 PSoC 6 MCU UART to Memory Buffer Using DMA

CE218964 PSoC 6 MCU RTC Daily Alarm

CE219339 PSoC 6 MCU MCWDT and RTC Interrupts (Dual Core)

CE219521 PSoC 6 MCU GPIO Interrupt

CE219881 PSoC 6 MCU Switching Power Modes

CE220060 PSoC 6 MCU Watchdog Timer

CE220061 PSoC 6 MCU Multi-Counter Watchdog Interrupts

CE220120 PSoC 6 MCU Blocking Mode Flash Write

CE220169 PSoC 6 MCU Periodic Interrupt Using TCPWM

GPIO
CE219490 PSoC 6 Breathing LED Using SMART IO
CE219506 PSoC 6 Clock Buffer Using SMART 10
CE220263 PSoC 6 MCU GPIO Pins Example
CapSense

AN92239 Proximity Sensing with CapSense

ANB85951 PSoC 4 and PSoC 6 MCU CapSense Design Guide
Bootloader
AN213924 PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide
CE213903 PSoC 6 MCU Basic Bootloaders

WWW.Cypress.com Document No. 002-21774 Rev. *C 60

A

ws CYPRESS

~am»> EMBEDDED IN TOMORROW®

Getting Started with PSoC 6 MCU

Document Document Name
Communications

CE220541 PSoC 6 MCU SCB Ezl2C

Audio

CE218636 PSoC 6 MCU Inter-IC Sound (12S) Example
CE219431 PSoC 6 MCU PDM-to-PCM Example

RTOS

CE217911 PSoC 6 MCU FreeRTOS™ Example Project
Security

CE220465 PSoC 6 MCU Cryptography — AES Demonstration
CE220511 PSoC 6 MCU Cryptography — SHA Demonstration

WWW.CYpress.com

Document No. 002-21774 Rev. *C

61

o CYPRESS

~amp> EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

Appendix A. Glossary

This section lists the most commonly used terms that you might encounter while working with Cypress’s PSoC family
of devices.

Component Customizer: Simple GUI in PSoC Creator that is embedded in each Component. It is used to customize
the Component parameters and is accessed by right-clicking a Component.

Components: Components are used to integrate multiple ICs and system interfaces into one PSoC Component that
is inherently connected to the MCU via the main system bus. For example, the BLE Component creates Bluetooth
Smart products in minutes. Similarly, you can use the Programmable Analog Components for sensors.

KitProg: The KitProg is an onboard programmer/debugger with USB-12C and USB-UART bridge functionality. The
KitProg is integrated onto most PSoC development kits.

MiniProg3 / MiniProg4: Programming hardware for development that is used to program PSoC devices on your
custom board or PSoC development kits that do not support a built-in programmer.

Personality: A personality expresses the configurability of a resource for a functionality. For example, the SCB
resource can be configured to be an UART, SPI or I12C personalities.

PSoC: A programmable, embedded design platform that includes a CPU, such as the 32-bit Arm Cortex-MO, with both
analog and digital programmable blocks. It accelerates embedded system design with reliable, easy-to-use solutions,
such as touch sensing, and enables low-power designs.

ModusToolbox: An Eclipse based embedded design platform for IoT designers that provides a single, coherent, and
familiar design experience combining the industry’s most deployed Wi-Fi and Bluetooth technologies, and the lowest
power, most flexible MCUs with best-in-class sensing.

PSoC Creator: PSoC 3, PSoC 4, PSoC 5LP, PSoC 6 MCU and PSoC 6 BLE Integrated Design Environment (IDE)
software that installs on your PC and allows concurrent hardware and firmware design of PSoC systems, or hardware
design followed by export to other popular IDEs.

Peripheral Driver Library: The Peripheral Driver Library (PDL) simplifies software development for the PSoC 6 MCU
architecture. The PDL reduces the need to understand register usage and bit structures, thus easing software
development for the extensive set of peripherals available.

PSoC Programmer: A flexible, integrated programming application for programming PSoC devices. PSoC
Programmer is integrated with PSoC Creator to program PSoC 3, PSoC 4, PRoC, PSoC 5LP, PSoC 6 MCU, and PSoC
6 BLE designs.

WICED: Cypress's WICED (Wireless Internet Connectivity for Embedded Devices) is a full-featured platform with
proven Software Development Kits (SDKs) and turnkey hardware solutions from partners to readily enable Wi-Fi and
Bluetooth connectivity in system design.

WWW.Cypress.com Document No. 002-21774 Rev. *C 62

& CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

Appendix B. PSoC 6 MCU Development Kits

B.1 CYB8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer Kit

The PSoC 6 Wi-Fi-BT Pioneer Kit shown in Figure 59 is a development kit from Cypress that supports the PSoC 6
MCU family of devices. The following are the features of the PSoC 6 Wi-Fi-BT Pioneer kit baseboard:

Expansion headers that are compatible with Arduino Uno 3.3-V shields and Digilent Pmod modules
Type 1DX ultra-small 2.4-GHz WLAN and Bluetooth functionality module
512-Mbit external quad-SPI NOR flash that provides a fast, expandable memory for data and code

KitProg2 onboard programmer/debugger with mass storage programming, USB to UART/I2C/SPI bridge
functionality, and custom applications support

EZ-PD CCG3 USB Type-C power delivery (PD) system with rechargeable lithium-ion polymer (Li-Po) battery
support

CapSense touch-sensing slider (five elements) and two buttons, all of which are capable of both self-capacitance
(CSD) and mutual-capacitance (CSX) operation, and a CSD proximity sensor that allows you to evaluate Cypress’
fourth-generation CapSense technology

1.8-V to 3.3-V operation of PSoC 6 MCU is supported. An additional 330-mF super-capacitor is provided for backup
domain supply (Vbackup)
Two user LEDs, an RGB LED, a user button, and a reset button for PSoC 6 MCU. Two buttons and three LEDs for
KitProg2.

Figure 59. CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer Kit

L
L
(d
>
L
L4
£
L
*®
Ll
L

The kit includes a TFT display shield with the following features:

A 2.4-inch TFT LCD display with 240x320 pixel resolution.

A three-axis acceleration and three-axis gyroscopic motion sensor.

A PDM microphone for voice input.

A 32-bit stereo codec with microphone, headphone, and speaker amplifier capability.

An audio jack with a provision of connecting both AHJ and OMTP headphones. The headset standard can be set
by an onboard switch.

An ambient light sensor IC made of an NPN phototransistor.
An LDO that converts 3.3 V to 1.8 V for the digital supply of the audio codec.

For more details, refer to CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer kit user guide.

WWW.Cypress.com Document No. 002-21774 Rev. *C 63

W & CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

B.2 CY8CKIT-062-BLE

The PSoC 6 BLE Pioneer Kit shown in Figure 60 is a BLE development kit from Cypress that supports the PSoC 6 BLE
family of devices.

Following are the features of the PSoC 6 BLE Pioneer kit baseboard:

m Can be powered by a coin-cell battery or through the Type-C USB interface. The Type-C USB interface also
supports up to 12 V, 3 A power delivery (PD) consumer and provider profiles.

m Enables development of battery-operated low-power BLE designs that work in conjunction with standard, Arduino
Uno connector-compliant shields or the onboard PSoC 6 BLE device capabilities, such as the CapSense user
interface and serial memory interface.

Supports third-party programming, debugging, and tracing with the Cortex Debug/ETM connector.

Includes an additional header that supports interfacing with Pmod™ daughter cards from third-party vendors such
as Digilent.

Supports PDM-PCM microphone for voice-over-BLE functionality.
Includes QSPI NOR flash and F-RAM™.,

The kit includes the following:

m A USB-BLE dongle that acts as a BLE link master and works with the CySmart Host Emulation Tool to provide a
BLE host emulation platform on non-BLE Windows PCs.

® An E-INK display.

The kit consists of a set of BLE example projects and documentation that help you get started on developing your own

BLE applications. Visit the CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit webpage to get the latest updates on the kit
and download the kit design, example projects, and documentation files.

Figure 60. CYBCKIT-062-BLE PSoC 6 BLE Pioneer Kit

36097 "

i cemr_m iz piiie
g

3 s [alélase
oo | M ‘— S8 7147

Yacs: g o
CrecssseLTI-LPo3w [

SLI0ER,
BINL

f
> . RXO - RXL
2__Pps PROG (a 1) (svzr

WWW.Cypress.com Document No. 002-21774 Rev. *C 64

W & CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

B.3 CYBCPROTO-063-BLE

The PSoC 6 BLE Prototyping Kit shown in Figure 61 is a development kit from Cypress that supports the PSoC 6 BLE
family of devices. It offers an open footprint breakout board to maximize the end utility of the PSoC 6 MCU with
Bluetooth Low Energy Connectivity (PSoC 6 BLE) device. This kit provides a low-cost alternative to device samples
while providing a platform to easily develop and integrate the PSoC 6 BLE device into your end-system.

Following are the features of the PSoC 6 BLE Prototyping kit:
m CYBLE-416045-02 PSoC 6 BLE module.

= 3.3-V operation.
m Two user LEDs, a user button, and a reset button for PSoC 6. One mode switch and two LEDs for KitProg2.

The kit consists of a set of loT example projects and documentation that help you get started on developing your own
IoT applications. Visit the CYS8CPROTO-063-BLE PSoC 6 BLE Prototyping Kit webpage to get the latest updates on
the kit and download the kit design, example projects, and documentation files.

Figure 61. CYSCPROTO-063-BLE PSoC 6 BLE Prototyping Kit

s
@
-
3
5
uw
a
o

WWW.Cypress.com Document No. 002-21774 Rev. *C 65

A
e
-

CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

B.4

CY8CPROTO-062-4343W

The PSoC 6 Wi-Fi-BT Prototyping Kit shown in Figure 60 is a development kit from Cypress that supports the PSoC 6
MCU family of devices with 2 MB flash memory.

Following are the features of the PSoC 6 Wi-Fi-BT Prototyping kit:

PSoC 6 MCU with SDHC.

Type 1DX ultra-small 2.4-GHz WLAN and Bluetooth functionality module based on CYW4343W.
microSD card slot.

512-Mbit external quad-SPI NOR Flash that provides a fast, expandable memory for data and code.

A thermistor to measure ambient temperature and two PDM microphones for voice input.

KitProg3 onboard programmer/debugger with CMSIS-DAP mode, USB to UART/I2C bridge functionality.

CapSense touch-sensing slider (5 elements), two buttons, all of which are capable of both self- capacitance (CSD)
and mutual-capacitance (CSX) operation.

A micro-B connector for USB device interface.

Expansion headers that are compatible with Digilent Pmod modules.

1.8-V to 3.3-V operation of PSoC 6 MCU is supported.

One user LED, a user button, and a reset button for PSoC 6 MCU. One mode switch and two LEDs for KitProg3.

The kit consists of a set of loT example projects and documentation that help you get started on developing your own
10T applications. Visit the CYS8CPROTO-062-4343W PSoC 6 Wi-Fi BT Prototyping Kit webpage to get the latest updates
on the kit and download the kit design, example projects, and documentation files.

Figure 62. CYSCPROTO-062-4343W PSoC 6 Wi-Fi BT Prototyping Kit

WWW.Cypress.com Document No. 002-21774 Rev. *C 66

o CYPRESS

~amp> EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

Document History

Document Title: AN221774 — Getting Started with PSoC 6 MCU
Document Number: 002-21774

Revision ECN Orig. of | Submission Description of Change
Change Date
o 6049560 | SNVI' | 0312812018 | New application note
*A 6332672 SNVN 10/04/2018 | Updated for ModusToolbox
*B 6372351 SNVN 10/31/2018 Updated images
*C 6385422 SNVN 11/15/2018 | Updated for public release

WWW.Cypress.com Document No. 002-21774 Rev. *C 67

& CYPRESS

EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products PSoC® Solutions
Arm® Cortex® Microcontrollers cypress.com/arm PSoC 1 | PSoC 3| PSoC 4 | PSoC 5LP | PSoC 6 MCU
Automotive cypress.com/automotive .
w Cypress Developer Community
Clocks & Buffers cypress.com/clocks))) o
Community | Projects | Videos | Blogs | Training |
Interface cypress.com/interface Components
Internet of Things cypress.com/iot .
Technical Support
Memory cypress.com/memory
) cypress.com/support
Microcontrollers cypress.com/mcu
PSoC cypress.com/psoc
Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

A

o Cypress Semiconductor
- e CY P R E s s 198 Champion Court
‘ San Jose, CA 95134-1709

~gge” EMBEDDED IN TOMORROW™

© Cypress Semiconductor Corporation, 2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress
under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and
treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual
property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing
the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its
copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware
products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly
through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed
by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products.
Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security
measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as
unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known
as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only
for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical
devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses
where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety
or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising
from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages,
and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

WWW.Cypress.com Document No. 002-21774 Rev. *C 68

