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INTRODUCTION

Jitter on analog-to-digital and digital-to-analog converter sam-
pling clocks presents a limit to the maximum signal-to-noise

ratio that can be achieved (see Integrated Analog-to-Digital and
Digital-to-Analog Converters by van de Plassche in the References

section). In this application note, phase noise and jitter are defined.

The power spectral density of phase noise and jitter is developed,
time domain and frequency domain measurement techniques
are described, limitations of laboratory equipment are explained,
and correction factors to these techniques are provided. The
theory presented is supported with experimental results applied
to a real world problem.

GENERAL DESCRIPTION

There are numerous techniques for generating clocks used in
electronic equipment. Circuits include R-C feedback circuits,
timers, oscillators, and crystals and crystal oscillators. Depend-
ing on circuit requirements, less expensive sources with higher
phase noise (jitter) may be acceptable. However, recent devices
demand better clock performance and, consequently, more
costly clock sources. Similar demands are placed on the spectral
purity of signals sampled by converters, especially frequency
synthesizers used as sources in the testing of current higher
performance converters. In the following section, definitions
of phase noise and jitter are presented. Then a mathematical
derivation is developed relating phase noise and jitter to their
frequency representation. The frequency domain representations,
or power spectral densities, are shown to directly provide a
measure of phase noise/jitter. The theory developed is associated
with analog-to-digital and digital-to-analog converters. A
spectrum analyzer and an oscilloscope are used to measure a
variety of signals. Finally, theory is coupled with experimental
results applied to an AD9235 analog-to-digital converter (ADC).
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DEFINITIONS

Phase noise and jitter have various interpretations. In the context
of this application note, phase noise and jitter are defined as

follows:

Consider the sinusoidal signal,

sin(wt + A)
where:
w = 2mf.

fis the desired frequency.
A is a constant phase offset.
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Figure 1. Normalized Sinusoidal Signal
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Phase noise is defined as an arbitrary function ®(t) such that

Equation 1 becomes

sin(wt + A + O(t))
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Figure 2. Sinusoidal Signal with Phase Noise
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The function ®@(t) can be composed of frequency components
not related to wt, for example, thermal noise, shot noise, and 1/f
noise (flicker noise). However, in most cases, it is modeled as
Gaussian noise (see Frequency Synthesizers Theory and Design
Third Edition by Manassewitsch in the References section).

Similarly, a sample clock can be considered a periodic square
wave with rising and falling edges repeating at a fixed time
interval, T, such that

T=1/f 3)
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1.0}
05}
0
-0.5 L L L 2
0 0.5 1.0 15 20 §
PERIOD (T) g

Figure 3. Sampling Clock
JITTER

Jitter can be defined as an additive time variation A(t) to the
fixed interval T, giving
7+ A(t) = 1/f+ A(t) (4)
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Figure 4. Sampling Clock with Jitter

Likewise, A(t), is typically characterized as Gaussian noise.
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0 Noise analysis is straightforward above 5 kHz until the active
-20 devices are limited at high frequency. Noise below 5 kHz exceeds
b the shot noise and thermal noise. This noise varies inversely
g with frequency and is identified as 1/f noise. Figure 5 shows a
60| . . . . .
g typical noise spectrum of an oscillator (see Manassewitsch in
o 80t the References section).
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Figure 5. Single-Sideband Noise Spectrum of an Oscillator
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POWER SPECTRAL DENSITY

Time domain signals have a direct relation to the frequency
domain through the Fourier transform (see Discrete-Time Signal
Processing by Oppenheim in the References section). The
Fourier transform can be viewed as the magnitude and phase
spectrum of a signal. A signal’s power can also be viewed in the
frequency domain. The power spectrum or power spectral
density is given by

Syy(w) = Y(w) x Y(w) ©)
where Y(w) is the Fourier transform of y(f).

As stated previously in the Definitions section, ®(t) can be any
arbitrary undesired signal. To simplify this analysis, O(t) is set
to a single frequency. Consider the following:

O(t) = Oasinwmt (6)
Such that Equation 2 becomes
Y(t) = sin(wt + Oasinwmt) (7)

The result is a phase-modulated signal, y(t), with maximum
phase deviation in radians, 64, at a frequency, fm, with wm = 2nfa,
and no offset, A = 0.

The Jacobi-Anger expansion (see Concise Encyclopedia of
Mathematics by Weisstein in the References section) states that

eizcos(e) — Zin]n (Z)eine (8)
or
eizsin(O) — Z ]n (z)einO (9)

can be manipulated with the help of Euler’s identity to give

cos(zsin®) = J, (2) +2x 3. ], (2) cos(2n6) (10)
and
sin(zsin®) =2x 3"/, (2) cos[(2n—1)] (11)

where the J,(z) factors are Bessel functions of the first kind.

Using trigonometric identities, Equation 7, Equation 10, and
Equation 11 can be manipulated to give

(1) = Jo(Ba)sin(w.t)

+ J1(6a) [sin(we+ wm)t — sin(we — wm)t]

+ J2(0a) [sin(wc+ 2wm)t — sin(we — 2wm)t]

+ J3(0a) [sin(we+ 3wm)t - sin(we — 3wm)t]

+ ... (12)

From Equation 12, it can be seen that y(t) has a first-order Bessel
component at the carrier frequency, f, and Bessel-weighted
signals at multiples of the modulation frequency, fm, offset from
the carrier.

The power spectral density, Syy(w), of the function y(t) for f. =
32,768 Hz and fn = 1024 Hz with a phase deviation of 500 mrad
(where mrad means milliradians) is shown in Figure 6.
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Figure 6. Power Spectral Density, Syy(w)
Figure 6 is a plot of
Syy(w) = Y(w) x Y(w)
where Y(w) is the Fourier Transform of y(t).
Syy(w) displays the magnitude of the power at the frequency; f.
The power spectral density of the signal, y(t), modulated by a

single frequency, fm, only has components at f. and f, with
Bessel-squared magnitudes.

The higher order Bessel coefficients attenuate very quickly. A
log power scale provides better dynamic range, showing the
higher order components in the same view as the large carrier
component. The log of Syy(w) is given by the following equation:

Lpy(w) = 10logi(Syy(w)) (13)

and is shown in Figure 7.
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Figure 7. Log of Power Spectral Density, Syy(w)
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Additional terms are now clearly visible. As the phase deviation
increases, the magnitude at the carrier frequency decreases and
the magnitude of the modulation terms increases. 500 mrad of
phase deviation reduces the carrier power by ~12%.

For small phase deviations, 84 << 1 rad, Jo(84) = 1, J1(6a) = 64/2,
and J2(04) ... Ju(B4) = 0 (see Manassewitsch in the References
section).
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As the phase deviation approaches zero, the carrier power
approaches 100%. Furthermore, small phase deviations have a
smaller percentage of the carrier frequency power distributed
among the modulation terms. This, in turn, results in a sum of
modulation terms that approximate the power of ®(t) more
accurately.

Bessel functions have the following property:
1=J,(B)* +2x 3], (B)* (14)
n=1

Taking advantage of the small phase deviation properties, the
root mean square (rms) power of ®(t) (for single-tone
sinusoidal modulation) is approximately given by

Po=2x31,(B) (15)
or
Prns = 1 = Jo(B)? (16)

The phase deviation can also be expressed in terms of rms
amplitude.

Avms = N Poms (17)
EXAMPLE 1

For a phase deviation, 84, of 100 mrad,

P = 1 = Jo(0.1)*
Prns = 1 -0.9950094
Prns = 1 - 0.0049906
Arms = 0.0706444

Comparing this result with the power of a sinusoidal signal,

e(t) = Asin(wt)
Pe = AZ/Z

For A = 0.1, the rms power is Pe = 0.005 and Aums = A/V2 =
0.0707107, which confirms that, for small phase deviations,
the modulating terms sum to provide a good approximation
of the rms power.

This argument can be extended to more complex modulating
signals. More complex modulation functions can be treated as a
superposition of many frequency terms, each affecting the
spectrum. The power spectral density has additional terms that
sum to represent the rms power of the modulating signal. The
rms power for an arbitrary function, ®(t), with small amplitude,
(04 << 1 rad), is given by

Prns = [Syy(w)dw - Syy(w = w.) (18)

Equation 18 states that the rms power of a phase modulating
signal is equal to the sum of all the components minus the
power at the fundamental (or carrier frequency).

For a sinusoidal signal, y(t), phase modulation produces a symme-
tric power spectral density, such that the rms power can also be
given by

P,.=2x [Syy(w)do (19)

®>0,

This is referred to as a single-sideband measurement technique
and is usually taken per root Hz (see Manassewitsch in the
References section).

The rms modulation can be expressed in several ways.
Arms = \/P rms
As = 360 X \VPrs/270 (20)

in radians (shown in Equation 19)

Equation 20 expresses the phase deviation in degrees.

To relate phase noise to time jitter, use the following equation:
Alp = TX P21 (1)

where 7 = 1/f. expresses the phase deviation in time.

EXAMPLE 2—PHASE NOISE

Consider a noisy sinusoidal signal sampled with an ideal clock
y(t) = sin(w.t + N(t))
where:

W = 21m26,2144.
N(¢) is Gaussian noise with a standard deviation, o = 10 mrad.

The constructed signal is sampled at 4 million samples per
second for 15 ms, acquiring 65,000 samples. The log of the
power spectral density is normalized to 0 dB and is shown in
Figure 8.
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Figure 8. 260 kHz, 10 mrad Phase Noise
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The fundamental is at around 260 kHz, and there is noise across
the spectrum.
Using the discrete form of Equation 18,

N/2

Prms = ZS)’)’(”)) n# nc (22)
n=0

Sum the magnitude of the power at all frequencies from 0 to
Nyquist, not including the power at the fundamental. The
resulting noise power is

Prs=1.0017 x 107
The rms amplitude is Ams = 0.010008 rad.

Note that the 0.008 mrad discrepancy is several orders of
magnitude smaller than the exact rms noise amplitude of
10 mrad, giving a very good approximation.
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The input signal at Time to with a phase deviation of ®(to) =0
has Amplitude Ao. A noisy input signal with phase deviation
®(to) = Aomrad at Time to has Amplitude Ao. By the same
token, the input signal sampled at a time deviation, t: = to + Ay,
has Amplitude A-.
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Figure 9. Effects of Timing and Phase Deviation on Sinusoidal Signal

Figure 9 shows that there exists a time deviation, A,, and a phase
deviation, Ao, that produce the same amplitude, Aa. For all intents
and purposes, a phase deviation, A, with rms amplitude equal
to the jitter, A, rms time deviation produces identical results.

EXAMPLE 3—JITTER

In Example 2, the power spectral density of a signal with phase
noise, N(t), has a Gaussian distribution and standard deviation
of 0 = 10 mrad. Now consider a signal sampled with a jittery
clock having Gaussian noise, n(t). Equation 21 can be used to
determine the rms jitter to produce the same effect as 10 mrad
of phase noise. The resulting output is

¥(t) = sin(wd(t + 7(1)))
where the carrier frequency is again 260 kHz and n(t) is
Gaussian noise with a standard deviation of 6.0713 ns.
The constructed signal is sampled at 4M samples per second for

15 ms, acquiring 65k samples. The log of the power spectral
density is normalized to 0 dB.
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Figure 10. 65k FFT of a Phase Noise Modulated 260 kHz Tone
Sampled at 4 MSPS

Using Equation 22, sum the magnitude of the power at all
frequencies from 0 to Nyquist, not including the power at the
fundamental. The resulting noise power is

Prs =1.0031 x 107

and the rms amplitude is
Arms =0.010016 rad

Insert the results into Equation 21 to obtain
Alvps = 4.86455 x 107% or A'ms = 49 ns

The results match those obtained in Example 2.

Broadband noise modulating the clock or input signal results in
a power spectrum with distributed noise. Furthermore, noise
modulating the input signal or clock produces symmetric noise
about the carrier. The power spectral density can be used to deter-
mine the phase noise or jitter associated with specific frequency
components or frequency ranges. Large symmetric terms may
highlight specific frequencies that are modulating the signal
and/or clock. The rms power associated with specific frequen-
cies can be extracted directly from the power spectral density.
For ranges of frequencies, the following equation can be used:

Bp)
P, = 2. Syy(n) (23)
n=fi
Or for single sideband,
P, =2x [Syy(w)dw (24)

o)
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APPLICATION TO CONVERTERS

Current high speed converters have sampling rates higher than
100 MSPS at resolutions greater than 12 bits. Signal-to-noise ratios
(SNR) better than 70 dBc are routinely achieved with a spurious-
free dynamic range (SFDR) better than 100 dBc. Digital-to-analog
converter (DAC) performance is directly impacted by the sampling
clock jitter. Tones produced by DACs sampled with a noisy
clock can produce a signal with phase noise. ADCs are affected
by noise on both the sampling clock and the input signal. The
results derived in the Example 3—Jitter section can be applied
to converters.

Associating the results to an ADC, consider the configuration
shown in Figure 11.

IDEAL
INPUT SIGNAL
A sin(wt) CONVERTER
N BITS

/\/—> ADC [yl

A

SAMPLE CLOCK
PERIOD T

08932-011

Figure 11. ADC Functional Block Diagram

The ADC samples the input signal, Asin(wt), at a time instant, t
(having Period 1), producing a quantized output of N bits.

Assuming the noise on the input signal and the noise on the
sampling clock are independent, the total noise is given by the
root-sum square (RSS). If the magnitude of the noise is large
enough, the maximum performance of the converter is affected.

The quantization noise is directly proportional to the number of
bits. The maximum error a sample has within the ADC’s range
is the least significant bit resolution, Qy, divided by 2 (Qx/2) (see
van de Plassche, Oppenheim, and Delta-Sigima Data Converters
Theory Design and Simulation by Norsworthy, Schreier, and Temes
in the References section). The error is defined by the signal
being sampled. For randomly changing signals, the quantization
error is uncorrelated and consequently lies anywhere within
+Qn/2. If the error is statistically independent of the signal being
sampled, it can be shown that the maximum SNR that can be
achieved is given by

SNR =6.02N + 1.8 (25)

For a 12-bit converter, the theoretical maximum SNR is ~74 dBc.
A total quantization noise power of 74 dBc corresponds to

Pgn~1074
Pgn ~39.8107 x 10

It is desirable to have a test setup that is 10 dB better than the
converter being tested. To test a 12-bit converter, the desired
test setup noise power is 84 dBc.

Pgn = 107%*
Pgn = 3.98107 x 107

Using Equation 17, this noise power can be related to an rms
phase deviation.

Apms = 0.0631 mrad
For a 10 MHz input signal, this corresponds to jitter of
Al = X P2
Alps = 100 x 107 (V3.98107 x 10~)/27
Alrps = 1.004 x 107 sec
Table 1 lists converter SNR limits due to quantization noise and

comparable phase noise rms amplitude.

Table 1. Converter SNR Limits

Test Setup
Bit | Theoretical Corresponding 10dB | 6dB
No. | SNRLimit (dB) | Phase Noise (mrad) | (mrad) | (mrad)
8 49.96 3.177 1.005 1.592
10 62 0.794 0.251 0.398
12 | 74.04 0.199 0.063 0.1
14 86.08 0.0497 0.016 0.025
16 98.12 0.0124 0.004 0.006

Table 1 also provides the phase noise rms amplitude for test
setups at 10 dB and 6 dB better than the converter. In some
cases, a test setup of 6 dB better than the converter is acceptable
(especially when 10 dB is difficult to obtain).

Equivalent jitter amplitude is easily obtained using Equation 21.

Converter SNR performance is typically determined using the
power spectral density. The sampling frequency and the num-
ber of data samples directly determine the frequency resolution.
A 4k FFT for a converter sampling at 32 MHz accumulates enough
data to resolve frequencies down to 8 kHz. Consequently, the
power spectral density displays information in 8 kHz intervals.
Each 8 kHz bin provides the sum of the power of the frequen-
cies within that interval and frequencies aliased into that interval.
The magnitude of a component that is 1 kHz from the carrier
cannot be determined under these circumstances. The frequency
resolution is improved by taking larger FFTs. Low frequency
phase noise, such as 1/f noise, can be resolved to 32 Hz by taking a
1M FFT for a converter sampling at 32 MHz.
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EXAMPLE 1 A close-up view (see Figure 13) shows skirting around the
fundamental. The frequency resolution is 8 kHz, and the 2 kHz
modulation terms have combined with the fundamental and the
surrounding bins.

For a 12-bit ADC sampling at 32M samples per second with
20 ps of clock jitter, the input signal is at 4 MHz with a 2 kHz,
1 mrad phase noise component and 0.5 mrad of Gaussian phase

noise. Acquiring 4k samples using this configuration produces 0

the power spectral density shown in Figure 12. of-
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Figure 12. 4k FFT of a Modulated 4 MHz Tone Sampled at 32 MSPS Two new symmetric terms are discovered, implying a phase

Using Equation 22, calculate a noise power of 6.6287 W, However modulation. Once these terms are added into the integrated

; ; -7
the theoretical value should be 5.67777 W, which is the RSS of noise power, calculate a noise power of 5.696" W.
the jitter and phase noise and quantization noise.
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Figure 13. Close-Up View of 4 MHz Fundamental Showing Skirting Due to
Low Bin Resolution
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TEST EQUIPMENT

Phase noise and jitter can be viewed as a time deviation using
an oscilloscope or as a frequency spectrum using a spectrum
analyzer.

OSCILLOSCOPES

Oscilloscopes fall into two categories: real-time and sampling
(see XYZs of Oscilloscopes by Tektronix in the References
section).

Real-time oscilloscopes capture a stream of samples on a single
trigger event. The cycle-to-cycle deviation is extracted from the
data at a fixed threshold. This method is limited by the time inter-
val measurement accuracy of the oscilloscope and its internal
jitter. The Tektronix TDS7404 specifies an accuracy of +8.5 ps
and a typical jitter noise floor of 1.5 ps rms. The Tektronix
TDS694C has an accuracy of £15 ps. Increased accuracy can
be achieved with statistical methods by including the vertical
resolution of the oscilloscope and large record lengths in the
processing. Tektronix claims a 1.5 ps jitter measurement accu-
racy using the latter technique (see Analyzing Clock Jitter Using
Excel and Understanding and Performing Precise Jitter Analysis
by Tektronix in the References section).

Sampling oscilloscopes accumulate input signal data with each
trigger. To obtain a time deviation, the input signal is repeti-
tively sampled, acquiring a distribution of points at a horizontal
cross-section. The horizontal and vertical scales are adjusted
depending on the magnitude of the time deviation being meas-
ured. This method of time deviation measurement is mainly
limited by the trigger jitter. Sampling oscilloscopes have a much
better time interval accuracy and, more importantly, a sampling
interval as low as 10 fs. The time interval accuracy of a Tektronix
11801C s 1 ps + 0.0004% x (position) and the trigger jitter is
typically 1.1 ps rms. The TDS8000B Tektronix sampling oscillos-
cope specifies a trigger jitter of 800 fs (see Automatic Measurement
Algorithms and Methods for the 8000 Series Sampling Oscilloscopes
by Tektronix in the References section).

SPECTRUM ANALYZERS

Spectrum analyzers display a signal in terms of its frequency
content. The spectrum displays a series of measurements within
the resolution bandwidth (RBW) settings. Spectrum analyzers
display the voltage and/or power of a signal in a linear or log
display. Viewing the power of a signal is analogous to the power
spectral density plots obtained through Fourier analysis.

Random noise in electronics has a Gaussian distribution. There-
fore, samples within the RBW of the spectrum analyzer have a
probability distribution; however, the samples are displayed as
simple magnitudes. The spectrum analyzer actually measures
with the in-phase (I) and quadrature (Q) components (see
Spectrum Analyzer Measurements and Noise by Hewlett Packard
in the References section). The I/Q components provide the
magnitude and phase of the signal. Band-passed noise has a
Gaussian distribution independently in both the I and Q
components.
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Figure 15. Spectrum Analyzer Envelope Detector Input Distribution

The magnitude is obtained with an envelope detector and is
given by

v:1lv?+vé (26)

The noise magnitudes form concentric rings about the center of
Figure 15. The count within each ring provides a distribution of
the noise magnitude. The distribution function for the noise
envelope is actually a Rayleigh distribution (see Probability,
Random Variables, and Stochastic Processes by Papoulis in the
References section).

2

D,, () =—2¢ 2 27)
(e}

Knowing the probability density function, the average of the
voltage envelope can be determined using

- T
v= E[vDW v)dv = 0\/; (28)

The average power is given by

(29)

— v 26°
= |—D,,, ()dv =

p _([ R env( ) R
Calculating the power by squaring the average envelope voltage
then dividing by R does not provide the same results as
Equation 29. The result is 1.05 dB smaller.

2

v?/R o’nR
10log(—=)=101lo
8( » ) g(402R)
T
=10log(—
og(4)
=-1.05dB
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Further considerations must be taken when using a spectrum
analyzer in its logarithmic display mode. In the logarithmic display
mode, the input signal passes through a log amplifier. This in
turn results in a logged probability density function. Addition-
ally, the spectrum analyzer displays an average of the log. Log
processing results in a response to noise that is 2.51 dB lower.

PROOF
Proof of 2.51 dB underestimation of noise follows.
Piog =10 log(v?) or 20 log(v) (30)
Take the derivative of both sides,
20 1
dp, =——x—dv 31
Piog In10 v (31)
Plog
y=10 20 (32)
and
Poe (1010
dv =10 20 (Wjdplug (33)
Use Liebniz’s rule (see Weisstein in the References section)
dx
£, = f 0= (34)
dy
or per Papoulis (see the References section)
L (%) -
fy(y)=—£ atx=T"'{y} (35)
y
dx
To obtain
52
Dy (p) = L) 10
8 dp10g /dv
) . (36)
2 20 A
:10 XDem/(]'O ) atv:lozg
20/In10

The result is the probability distribution of log power of the
input envelope.

The average log power is then given by

Tog = jplungog (Plog )dplog (37)

From Liebniz’s rule (and Papoulis)

Hdy = fulx)dx

Therefore,
ch = jplogDenv (V)dV

(v)dv (38)

env

0
= IZOlog(v)D
0

= IZOlog(v)Lzeigdv
0 c

Let

2.2
2010g(v)=1010g[20 4 j

206°
) (39)
:1010g(202)+1010g( Y 3 ]
2c
To obtain
an = 1010g(202)jlzeigdv
c
’ ) (40)

0 V2 v 7"72
+|101 —e 2d
_([ og( Pyl el v
The first integral goes to 1 because this is simply the integral of
the Rayleigh probability density. Let

Uu=—- (41)

GZ

in the second integral, giving
D — 10 %
=10log(20?) + —— [In(u)e ™“du 42
Prog g(20%) lnm{ () (42)

The first term is the log of the average power; the second term
is the negative of the Euler-Mascheroni constant (see Weisstein
in the References section). The Euler-Mascheroni constant has
been calculated to 7,000,000 digits and is denoted by Y. Y is
approximately equal to 0.5772, making the last term equal to
—-2.5067.

Most modern spectrum analyzers feature noise measurements
that apply the necessary correction factors.

In addition to known correction factors, which must be applied
as necessary, spectrum analyzers must be configured correctly
to provide accurate results. Smaller input signals are measured
more accurately by lowering the reference level. However, lowering
the reference level increases the gain of the input IF stage. Care
must be taken so that the initial IF stage is not overloaded.
Overloading the IF input sections may cause distortion products
(see Fundamentals of Spectrum Analysis by Rauscher in the
References section). Furthermore, finer frequency and ampli-
tude resolution measurements are obtained by enhancing the
resolution bandwidth (RBW) and video bandwidth (VBW),
respectively. However, enhanced resolution comes at a cost of
longer sweep times. Fortunately, software is available that takes
the desired measurements and applies the appropriate correction
factors.
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LAB RESULTS
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Figure 16. Oscilloscope Setup
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’_‘ Figure 19. Close-Up View of Rising Edge
o
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Taking a horizontal histogram at the rising edge cross-section

CSA8000B
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displays a standard deviation in a time of 2.218 ns and a peak-
to-peak deviation of 6.6 ns.

Figure 17. Spectrum Analyzer Setup

A modulated signal generated by a Rohde & Schwarz SML-01 °
was measured using a Tektronix CSA8000B and a Rohde & °
Schwarz FSIQ7. A second nonmodulated SML-01 set to the same -10
frequency as the first SML-01 is used to trigger the CSA8000B. -20

Phase noise due to large single-tone modulation, large Gaussian
noise modulation, and small noise modulation was analyzed. In
all cases, the source used is a Rohde & Schwarz SML-01.

POWER (dB)
I8
o

50
An alternative oscilloscope setup uses a broadband resistive 0
splitter to feed both the trigger and the sampling inputs. This o

method rejects low frequency noise, which may produce 1 m/ \'MJ I n
artificially low noise measurement results. ot AT e

_90 I I I I I I I I I
SIGNAL 1 95 96 97 98 99 100 101 102 103 104 105
FREQUENCY (MHz)
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Figure 20. Single-Frequency Phase-Modulated Frequency

The spectrum analyzer clearly shows a spectrum due to single-
frequency phase modulation. The first term to the right of the
carrier has a Bessel factor of J1(04). Because J1(04) = 04/2, the
modulation can be approximated at 200 mrad.

SIGNAL 2

ooy || [

©
]
<
&
@
2
2
3

CH1 100.0mV/0.0V MAIN 10.0000ns 210.00n
Figure 18. SML-01 at 10 MHz, Modulated 200 mrad at 101 kHz
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Figure 21. SML-01 at 10 MHz with 67 mrad RMS
of Gaussian Noise Modulation
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20.302n
Figure 22. Close-Up View of Rising Edge Figure 25. Close-Up View of Rising Edge
A horizontal histogram at the rising edge cross-section displays In this case, the deviation is so small that it is below the trigger
a standard deviation in a time of 1.005 ns and a peak-to-peak jitter of the oscilloscope. The result shows a standard deviation
deviation of 7.92 ns. The oscilloscope trigger input accuracy of 837.3 fs and a peak-to-peak deviation of 5.56 ps.
decreases at lower slew rates. 10
10 o
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Figure 23. 10 MHz Signal with Noise Out to 1 MHz from Carrier
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Figure 26. Full-Scale 1 GHz Signal with 1.6 mrad RMS of Phase Noise

The spectrum analyzer is centered at 1 GHz and set to a span of

Figure 23 shows a spectrum due to broadband noise out to 2 MHz. The dynamic range can be enhanced by changing the
1 MHz from the carrier. Using a single sideband phase noise frequency range so that the large carrier is outside the span.
measurement (see Equation 19), the calculated phase noise has -70
an rms amplitude of 0.0676 radians, corresponding to about
1.075 ns of time jitter. l]
-80
SIGNAL 3 \[LL
oy || ] g -«AM,WJ |
N Y - L‘LM.
5 I
Q -100 0
by M
-110 b L TEN
_120 I I I I I I I I I
10000 10004  1000.8 10012 10016 10020
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CH1 100.0mV/0.0V MAIN 200.000ps 20.5072
Figure 24. SML-01 Set to Produce a Clean 1 GHz
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Figure 27. Single Sideband 1 GHz Signal with 1.6 mrad RMS Phase Noise
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With the range now starting 5 kHz from the carrier, Figure 27 0
shows that there is broadband phase noise to 1 MHz from the 20
carrier. A reference level that is too low causes the distortions
appearing in Figure 27. To obtain accurate results, the measure- 40
ments must be made in smaller intervals. Measurements within _60
10 kHz of the carrier must have a reference level that will not _
overload the input IF stage. g MWWM‘ WM*H
With a single sideband measurement (see Equation 19), the -100 Lt 1
phase noise is measured at 1.6 mrad. This corresponds to 255 fs, 120 i cachillhi VI
far below the trigger jitter resolution of the oscilloscope. W‘ML
-140
-160 g
10 100 1K 10k 100k M 10M §

08932

(H2)

Figure 28. Single Sideband 1 GHz Signal with 1.6 mrad RMS Phase Noise and
Nonoverloaded Input Stage
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HIGH SPEED CONVERTER

Phase noise and jitter were introduced to an AD9235 application.
The results obtained were verified using a spectrum analyzer
and correlated to the developed theory. The AD9235 is a high
speed analog-to-digital converter that features a 65M sample
clock and SNR around 70 dBc. The experiment was executed on
a CTS5340 tester. Rohde & Schwarz SMGUs generated both the
input tone and clock. The input frequency was set to 2.4 MHz,
and the clock input was set to 259.995 MHz divided down to
produce a sampling rate, f; = 65 MSPS. The sampling rate was
decimated to produce an effective sampling rate, fe = £/15.

The application normally generates an SNR around 70 dBc.
A typical power spectral density, using a 4k FFT with the
fundamental aliased into Bin 1827, is shown in Figure 29.
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Figure 29. FFT of AD9235 ADC Application, Sample Rate Decimated to
~65MSPS/15 and Input Frequency Set to 2.4 MHz
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The signal ®(t) = 0.01 sin2110,000t was modulated onto the
fundamental. The resulting power spectral density is shown in
Figure 30.
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Figure 30. FFT of AD9235 ADC Application with a
10 kHz Tone Modulating the Fundamental
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Figure 30 shows symmetric peaks about the fundamental,
indicating a modulation. The bin width for the FFT is ~1057 Hz.
Counting bins, the main peaks are found in the ninth and 10th
bins from the fundamental, implying a modulation between
9.5 kHz and 10.5 kHz. The modulation term is spread out due
to a sampling rate that is not a direct multiple of 10 kHz and a
nonwindowed FFT. For small signal modulation (a safe assump-
tion because the modulation peaks are more than 50 dBc), the
first modulation Bessel term, Ji(84), is approximately 64/2. Sum
the power for eight highest peaks around the modulation term
to obtain

P), ~2.0324x10°
04/2 = VP, ~ 0.0045
6= 0.009

Even though the modulation terms are spread throughout the
spectrum, most of the modulation energy is centered around

fc + f. Summing eight terms results in an approximation within
10% of the actual value.

The power spectral density of a fundamental with added phase
noise is shown in Figure 31.
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Figure 31. FFT of AD9235 ADC Application with
Phase Noise Modulating the Fundamental

The CTS5340 tester sends a filtered signal to the application
board. The equivalent noise bandwidth for the 2.4 MHz filter is
approximately 300 kHz. The bandlimited noise is clearly seen
around the fundamental, indicating phase modulated noise on the
2.4 MHz input tone. The phase noise results in an SNR of 58 dBc.
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Figure 32. Single-Sideband Noise Spectrum of Fundamental
with 1.5 mrad of Phase Noise

A single sideband measurement of the input signal shows
1.5 mrad of phase noise.

Prms = 142

Prns=2.25%107¢ = -56.478 dB

This matches the source phase noise with the application test
results.

The results of jitter added to the sampling clock are shown in
Figure 33.
0
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0 0.54 1.08 1.62
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Figure 33. FFT of AD9235 ADC Application Sampled with Jitter Clock
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In this case, the power spectral density noise floor has been
slightly raised, resulting in an SNR of 64 dBc. The clock source
is a Rohde & Schwarz SML-01 set to 259.995 MHz. A single
sideband measurement of the SML-01 clock source is shown in
Figure 34.
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Figure 34. Phase Noise
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The clock source has 66.9 mrad of phase noise.

Alrms = 0.0669/(211259.995 x 10°)
= 40.953 ps

The phase noise on the sampling clock corresponds to about
41 ps of clock time jitter. The jitter can be related to radians of
phase noise on the 2.4 MHz input signal.

Alps = (40.953 x 1071%) x (2m2.4 x 10°)
~0.618 mrad

41 ps of clock jitter corresponds to 0.618 mrad of phase noise
on the 2.4 MHz fundamental.

Prms = Azrms
Prns=3.814x 107 = —-64.187 dB

The noise on the sampling clock matches the application test
results.
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CONCLUSION

The theory presented in this application note provides a direct
relationship between phase noise and jitter and their frequency
domain representation. Analysis of phase noise and jitter in the
frequency domain highlights the content of the noise signals.
Furthermore, measurements in the frequency domain provide
enhanced resolution at higher frequencies.
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