

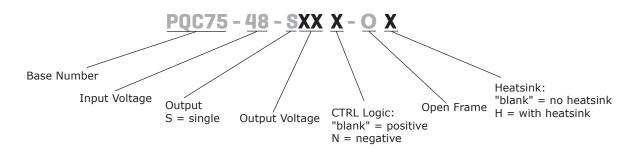
07/21/2023

1 of 12

SERIES: PQC75-0 **DESCRIPTION:** DC-DC CONVERTER

FEATURES

- 75 W isolated output
- industry standard DOSA 1/16 brick
- 2:1 input range (36 ~75 Vdc)
- -40 ~ 85°C operating temperature
- over-current, input under-voltage, over-voltage and output short-circuit protection
- remote on/off control
- EN/BS EN/UL 62368 certified



MODEL		nput oltage	output voltage		itput rrent	output power	ripple and noise ¹	efficiency ²
	typ (Vdc)	range (Vdc)	(Vdc)	min (mA)	max (mA)	max (W)	max (mVp-p)	typ (%)
PQC75-48-S5-O	48	36~75	5	0	15,000	75	150	92
PQC75-48-S12-O	48	36~75	12	0	6,250	75	150	92
PQC75-48-S28-O	48	36~75	28	0	2,678	75	150	90

Notes:

- Ripple and noise are measured at 20 MHz BW, 5%~100% load by "tip & barrel" method. Ripple & Noise at <5% load is 5%Vo max. Ripple & Noise at 28V output is 2%Vo max.
 Efficiency is measured at nominal input voltage and rated output load.
- 3. All specifications are measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.

PART NUMBER KEY

INPUT

		36	48	80	Vdc	
at nominal input volta	age		1,669/10	1,776/30	mA	
at nominal input volta	age		30		mA	
				36	Vdc	
		26	29		Vdc	
at nominal input voltage & constant resistance load				100	ms	
for maximum of 1 second		-0.7		80	Vdc	
nonitivo lonio	module ON: CTRL pin open or	pulled hig	h (4.5~12Vdc))		
positive logic	module OFF: CTRL pin pulled low to GND (0~1.2Vdc)					
nontive legie	module ON: CTRL pin pulled low to GND (0~1.2Vdc)					
negative logic	module OFF: CTRL pin open or	pulled hig	gh (4.5~12Vdc	:)		
CTRL pin pulled low			3	10	mA	
Pi filter						
	at nominal input volta at nominal input volta for maximum of 1 sec positive logic negative logic CTRL pin pulled low	at nominal input voltage & constant resistance load for maximum of 1 second positive logic negative logic The property of t	at nominal input voltage 26 at nominal input voltage & constant resistance load for maximum of 1 second -0.7 positive logic module ON: CTRL pin open or pulled hig module OFF: CTRL pin pulled low to GND module OFF: CTRL pin open or pulled hig module OFF: CTRL pin pulled low to GND module OFF: CTRL pin open or pulled hig control pulled low Pi filter	at nominal input voltage 26 29 at nominal input voltage & constant resistance load for maximum of 1 second -0.7 module ON: CTRL pin open or pulled high (4.5~12Vdc) module OFF: CTRL pin pulled low to GND (0~1.2Vdc) module ON: CTRL pin pulled low to GND (0~1.2Vdc) module OFF: CTRL pin open or pulled high (4.5~12Vdc) module OFF: CTRL pin open or pulled high (4.5~12Vdc) Total pin pulled low 3 Pi filter	at nominal input voltage 30 36 26 29 at nominal input voltage & constant resistance load 100 for maximum of 1 second -0.7 80 positive logic module ON: CTRL pin open or pulled high (4.5~12Vdc) module OFF: CTRL pin pulled low to GND (0~1.2Vdc) module OFF: CTRL pin pulled low to GND (0~1.2Vdc) module OFF: CTRL pin open or pulled high (4.5~12Vdc) TRL pin pulled low 3 10 Pi filter	

OUTPUT

parameter	conditions/description	min	typ	max	units
	5 Vdc output			6,000	μF
maximum capacitive load4	12 Vdc output			2,000	μF
·	28 Vdc output			1,000	μF
line regulation ⁵	full load, input voltage from low to high		±0.2	±0.5	%
load regulation	5% to 100% load		±0.5	±0.75	%
voltage accuracy	5% to 100% load		±1	±3	%
switching frequency ⁶	PWM mode		300		kHz
transient recovery time	25% load step change, nominal input		200	500	μs
	25% load step change, nominal input				
transient response deviation	5 Vdc output voltage		±3	±8	%
· ·	all other outputs		±3	±7	%
temperature coeffecient	full load			±0.03	%/°C
trim		90		110	%
remote sense compensation				105	%

- 4. The maximum capacitive load offered were tested at input voltage range and full load.
 5. Line regulation for 0%~100% load is ±3%.
 6. Switching frequency is measured at full load. The module reduces the switching frequency for light load (below 50%) efficiency improvement.

PROTECTIONS

parameter	conditions/description	min	typ	max	units
over voltage protection		110	125	160	%
over current protection		110	140	190	%
short circuit protection	auto recovery, continuous				

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units
isolation voltage	input to output for 1 minute at 1 mA max.	1,500			Vdc
isolation resistance	input to output at 500 Vdc	1,000			MΩ
isolation capacitance	input to output at 100kHz/0.1V 1,000 p		pF		
vibration	10-150Hz, 10G, 30min. along X, Y and Z				

SAFETY AND COMPLIANCE (CONTINUED)

parameter	conditions/description	min	typ	max	units
safety approvals	certified 62368: EN, BS EN, UL	certified 62368: EN, BS EN, UL			
conducted emissions		CISPR32/EN55032 CLASS A (see Fig.2 for recommended circuit) CISPR32/EN55032 CLASS B (see Fig.3 & 4 for recommended circuit)			
radiated emissions		CISPR32/EN55032 CLASS A (see Fig.2 for recommended circuit) CISPR32/EN55032 CLASS B (see Fig.3 & 4 for recommended circuit)			
ESD	IEC/EN61000-4-2 Contact ±6kV/Air ±8KV, perf. Criteria B				
radiated immunity	IEC/EN61000-4-3 10V/m, perf. Criteria B				
EFT/burst	IIEC/EN61000-4-4 100kHz ±2kV (see Fig. 2 for recommended circuit), perf. Criteria B				
surge	IEC/EN61000-4-5 line to line ±2kV (see Fig. 2 for recommended circuit), perf. Criteria B				
conducted immunity	IEC/EN61000-4-6 3 Vrms, perf. Criteria B				
MTBF	as per MIL-HDBK-217F at 25°C	500,000			hours
RoHS	yes				

ENVIRONMENTAL

parameter	conditions/description	min	typ	max	units
operating temperature	see derating curve	-40		85	°C
storage temperature		-55		125	°C
storage humidity	non-condensing	5		95	%

MECHANICAL

parameter	conditions/description		min	typ	max	units
	5 & 12 Vdc output model no heatsink	33.02 x 22.86 x	9.75 [1.300	x 0.900 x	0.384 inch]	mm
dina an aigna	5 & 12 Vdc output model with heatsink	33.02 x 22.86 x	12.7 [1.300	x 0.900 x	0.500 inch]	mm
dimensions	28 Vdc output model no heatsink	33.02 x 22.86 x	10.05 [1.300	x 0.900 x	(0.396 inch]	mm
	28 Vdc output model with heatsink	33.02 x 22.86 x	13.0 [1.300	x 0.900 x	0.512 inch]	mm
weight	without heatsink			14.6		g
weight	with heatsink		21.4		g	
cooling method	natural convection or forced air					

MECHANICAL DRAWING

5 VDC & 12 VDC OUTPUT MODEL WITHOUT HEATISINK

units: mm[inch]

tolerance: $\pm 0.50[\pm 0.020]$

pin section tolerance: $\pm 0.10[\pm 0.004]$

pin 1,2,3,5,6,7: Ø1.0mm

pin 4,8: Ø1.5mm

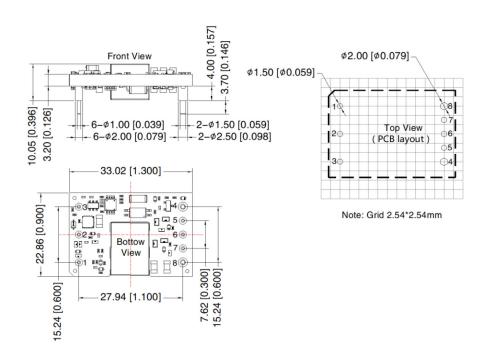
Note: The layout of the device is for reference only, please refer to the actual product.

PIN CONNECTIONS		
PIN	Function	
1	+Vin	
2	CTRL	
3	-Vin	
4	0V	
5	Sense-	
6	Trim	
7	Sense+	
8	+Vo	

28 VDC OUTPUT MODEL WITHOUT HEATISINK

units: mm[inch]

tolerance: $\pm 0.50[\pm 0.020]$


pin section tolerance: $\pm 0.10[\pm 0.004]$

pin 1,2,3,5,6,7: Ø1.0mm

pin 4,8: Ø1.5mm

Note: The layout of the device is for reference only, please refer to the actual product.

PIN CONNECTIONS		
PIN	Function	
1	+Vin	
2	CTRL	
3	-Vin	
4	0V	
5	Sense-	
6	Trim	
7	Sense+	
8	+Vo	

□ □ _{□ 7} ⊚

[0.300]

62

Bottow

27.94 [1.100]

88

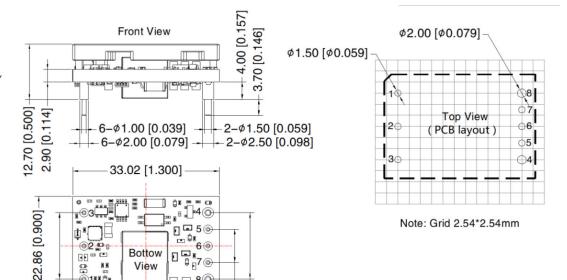
0

15.24 [0.600]

MECHANICAL DRAWING (CONTINUED)

5 VDC & 12 VDC OUTPUT MODEL WITH HEATISINK

units: mm[inch]


tolerance: $\pm 0.50[\pm 0.020]$

pin section tolerance: $\pm 0.10[\pm 0.004]$

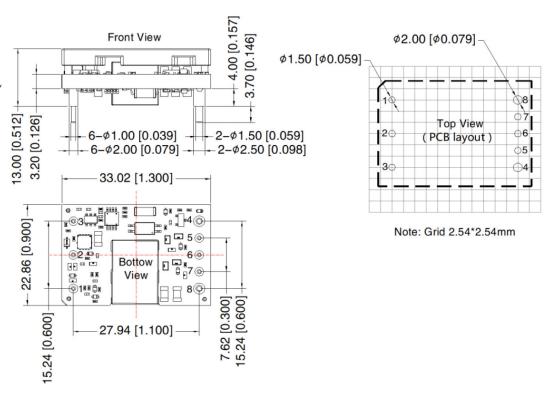
pin 1,2,3,5,6,7: Ø1.0mm pin 4,8: Ø1.5mm

Note: The layout of the device is for reference only, please refer to the actual product.

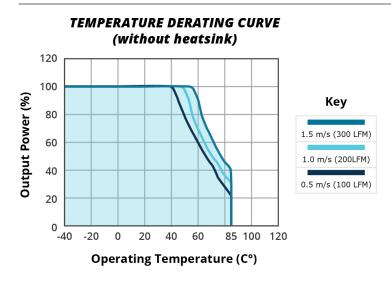
PIN CONNECTIONS		
PIN	Function	
1	+Vin	
2	CTRL	
3	-Vin	
4	0V	
5	Sense-	
6	Trim	
7	Sense+	
8	+Vo	

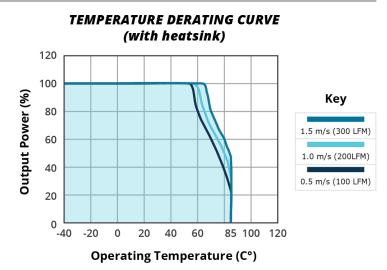
28 VDC OUTPUT MODEL WITH HEATISINK

units: mm[inch]

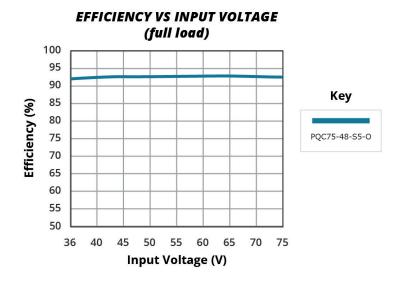

tolerance: $\pm 0.50[\pm 0.020]$

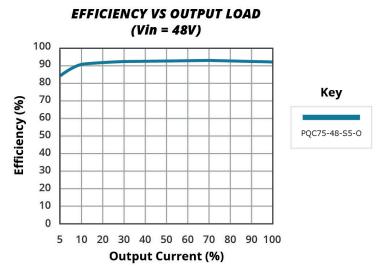
pin section tolerance: $\pm 0.10[\pm 0.004]$


pin 1,2,3,5,6,7: Ø1.0mm pin 4,8: Ø1.5mm


Note: The layout of the device is for reference only, please refer to the actual product.

PIN CONNECTIONS		
PIN	Function	
1	+Vin	
2	CTRL	
3	-Vin	
4	0V	
5	Sense-	
6	Trim	
7	Sense+	
8	+Vo	




DERATING CURVE

EFFICIENCY CURVES

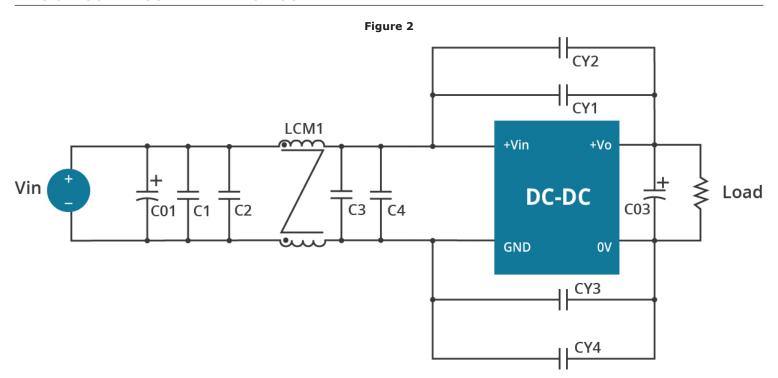
APPLICATION NOTES

Cin

Please ensure that at least a 100µF electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.

Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

Figure 1 Vin +Vo DC-DC Load Cout

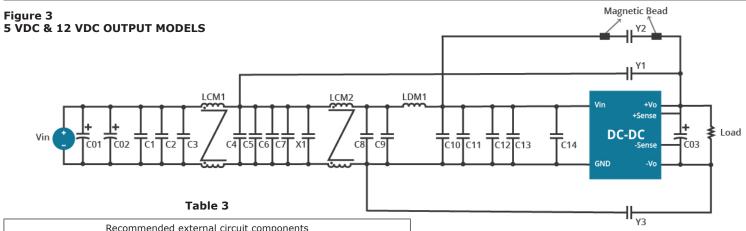

0V

Vout Cin Cout (Vdc) $(\mu F/V)$ $(\mu F/V)$ 5 12 100µF/100V 330µF/63V 28

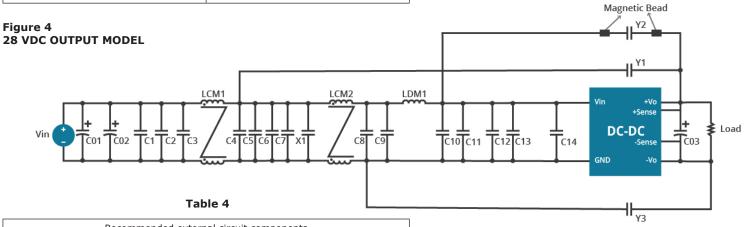
Table 1

EMC CLASS A RECOMMENDED CIRCUIT

GND



Notes: For EMC tests we use Part 2 in Fig. 2 for immunity and part 1 for emissions test. Selecting based on needs.


Table 2

Recommended external circuit components			
C01	2000μF/100V electrolytic capacitor		
C03	330µF/100V electrolytic capacitor		
C1, C2, C3, C4	4.7μF/100V		
CY1, CY2, CY3, CY4	222M/400V		
LCM1	2.0mH		

EMC CLASS B RECOMMENDED CIRCUITS

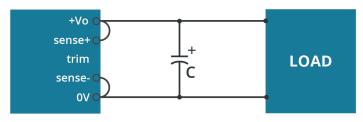
Recommended external circuit components			
C01, C02	1000µF/100V electrolytic capacitor		
C03	330µF/100V electrolytic capacitor		
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14	4.7μF/100V		
X1	0.22μF/250V		
Y1, Y3	102M/400V		
Y2	222M/400V		
LCM1	60µH/TL15		
LCM2	2.0µH		
LDM1	12µH		
МВ	B40/T3.5*1.5*2.35HP (ACME)		

Recommended external circuit components				
C01, C02	1000µF/100V electrolytic capacitor			
C03	330µF/100V electrolytic capacitor			
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14	4.7μF/100V			
X1	0.22μF/250V			
Y1	102M/400V			
Y2	222M/400V			
LCM1	60μH/TL15			
LCM2	2.0μΗ			
LDM1	12µH			
MB	B40/T3.5*1.5*2.35HP (ACME)			

RIPPLE AND NOISE

All the DC-DC converters of this series are tested before delivery using the recommended circuit shown in Fig. 5

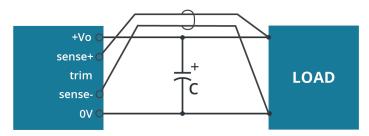
Figure 5 **Copper Sheet** Vin +Vo Sense C1 C0 C3 6.4mm Connect Oscillograph Probe **≸** Load Ctrl DC-DC Trim (20MHz bandwidth) Sense GND 0٧ ←— 25.4mm -


Table 5

51mm

	Vout (Vdc)	C0 (μF/V)	C1 (µF/V)	C2 (µF/V)	C3 (μF/V)
	5				
Г	12	100µF/100V	1μF/50V	10μF/50V	330µF/63V
	28				

REMOTE SENSE APPLICATION


Figure 6 **REMOTE SENSE CONNECTION IF NOT USED**

Note: 1. Lines must be kept as short as possible.

- 2. If the sense function is not used for remote regulation the user must connect the +Sense to + Vo and -Sense to OV at the DC-DC converter pins and will compensate for voltage drop across pins only.
- 3. The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

Figure 7 **REMOTE SENSE CONNECTION USED FOR COMPENSATION**

- Note: 1. In cables and discrete wiring applications, twisted pair or other techniques should be implemented.

 2. Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used.
 - 3. PCB-tracks or cables/wires for Remote Sense must be kept as short as possible. Twisted pair or shielded wires are suggested for remote compensation and must be kept as short as possible.

 4. We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module
 - to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.
 - S. Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.

APPLICATION NOTES

Trim up

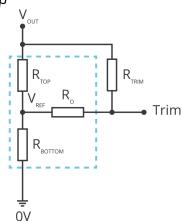
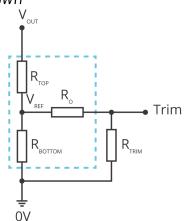



Figure 8

Trim down

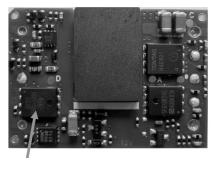
$$R_{TRIM} = \left(\frac{5.11 \cdot V_{NOM} (100 + \Delta\%)}{1.225 \Delta\%} - \frac{511}{\Delta\%} - 10.22 \right) (K\Omega)$$

Formula for Trim up

$$R_{TRIM} = \left(\frac{511}{\Delta\%}\right) - 10.22 \text{ (K}\Omega\text{)}$$

Formula for Trim down

Note: R_{TRIM} : Trim resistance


$$\Delta\%: \Delta\% = \left| \frac{V_{NOM} - V_{OUT}}{V_{NOM}} \right| \times 100$$

V_{NOM}: Nominal output voltage V_{OUT}: Target output voltage

THERMAL TEST POINT

The thermal element is installed on the top surface of the product and dissipates heat to the surrounding environment through conduction, convection and radiation. Sufficient heat dissipation conditions should be provided to ensure the reliable operation of the product. By measuring the temperature of the thermal test point in Fig. 9, it can be verified whether the heat dissipation conditions are met.

Figure 9

Note:

- 1. The temperature of the negative logic series Thermal Test Point 1 cannot exceed 130°C. Othewise, the product will trigger the protection due to excessive temperature and can not work properly.
- 2. Positive logic series without over-temperature protection function, the temperature of Thermal Test Point 1 cannot exceed 130°C. Othewise, the product will be damaged

CUI Inc | SERIES: PQC75-0 | DESCRIPTION: DC-DC CONVERTER date 07/21/2023 | page 12 of 12

REVISION HISTORY

rev.	description	date
1.0	initial release	07/21/2023

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 **800.275.4899**

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.