
Mouser Electronics White Paper 

Implementing Quadrature 
Encoders with Configurable Logic 
Optimizing BOM and Power While 
Maintaining Flexibility 

By Brandon Lewis for Mouser Electronics 

Source: Ricardo/stock.adobe.com 



Mouser Electronics White Paper 

Quadrature encoders are often used in applications that need 
bidirectional rotation tracking. They are commonly integrated 
into user interface elements—like dials and knobs to track 
user input—and into motion control systems to provide the 
position feedback necessary for precise movement control. 

These encoders serve several key industries: 

• Industrial automation and robotics use quadrature encoders
for precise positioning of motor-driven systems.

• Manufacturers of e-bikes and other mobility products
rely on them for motor control and user input.

• Consumer electronics implement them in
dials, scroll wheels, and other controls.

While they are popular, challenges arise when implementing 
quadrature encoders. Decoding the signals from the encoder requires 
either dedicated hardware or significant processing resources 
from the microcontroller. Both design paths involve difficult 
trade-offs in cost, design complexity, and power consumption. 

This paper explains how the configurable logic block 
(CLB) in the Microchip Technology PIC16F13145 family 
of microcontrollers provides a solution for effectively 
implementing a quadrature encoder. In doing so, this paper 
shows how to decode quadrature signals efficiently, reducing 
power usage, component count, and design effort. 

How Quadrature 
Encoded Signals Work 
Quadrature encoders generate two digital signals that provide 
information about the position and direction of rotation. The physical 
construction of quadrature encoders can take several forms, each 
suited to different applications and environmental conditions: 

• Mechanical encoders employ contact pairs that open and close as
a shaft rotates, making them robust but subject to contact bounce.

• Optical encoders use LED and photosensor pairs, with a slotted
disk interrupting the light path to generate pulses. These
encoders offer high precision and reliability in clean environments.

• Magnetic encoders use Hall effect sensors to detect the
position of a magnetized wheel, providing good reliability
in harsh conditions without mechanical wear.

Regardless of the physical implementation, all quadrature 
encoders produce two output channels, commonly labeled A 
and B. These channels are intentionally offset by 90 degrees 
(one-quarter of a cycle, hence “quadrature”). This phase 
relationship is key to determining the direction of rotation. 

Direction is determined by examining the phase relationship 
between channels A and B. When rotation is clockwise 
(CW), signal A will lead signal B; that is, there will be either 
a rising or falling edge on channel A followed by the same 
transition on channel B. Conversely, when rotation is 
counterclockwise (CCW), signal B will lead signal A (Figure 1). 

In other words, the quadrature signals form a repeating four-
state sequence (Table 1). During clockwise rotation, the states 
progress in order, 0→1→2→3→0. During counterclockwise 
rotation, they progress in reverse order, 0→3→2→1→0. 

State Channel A Channel B 
0 0 0 

1 1 0 

2 1 1 

3 0 1 

Position can be tracked by maintaining a counter that increments 
or decrements based on the detected direction. These counters 
can also be used to determine velocity by recording the time 
between position changes or by counting the number of changes 
within a fixed time window. This capability is particularly valuable 
in motor control applications that require speed regulation. 

Figure 1:   The direction of rotation in a quadrature encoder 
is determined by the relationship between the A and B 
channel signals. (Source: Microchip Technology) 

Table 1 :   Quadrature encoders progress through four states 

https://www.mouser.com/new/microchip/microchip-pic16f13145-microcontrollers/


Mouser Electronics White Paper 

While quadrature encoders’ high-resolution feedback makes 
them critical in applications requiring accurate position and 
speed measurements, decoding these signals efficiently can 
be challenging, especially in resource-constrained systems. 

Quadrature Encoded 
Design Challenges 
The first challenge with quadrature encoders is signal 
integrity. All encoders can produce noisy signals: Mechanical 
contacts can bounce, optical sensors can get dusty, and 
magnetic sensors may pick up interference. Thus, signal 
conditioning (often called “debouncing,” regardless of the noise 
source) is needed before decoding to ensure reliability. 

The need for both debouncing and decoding requires a careful 
balance of hardware and software resources. Engineers 
typically choose between hardware-based or software-based 
implementation approaches, each with its own trade-offs. 

Traditional Hardware Solutions 
The traditional approach uses discrete components to condition and 
decode the quadrature signals. These components typically include: 

• Resistor-capacitor (RC) networks for 
debouncing mechanical contacts, 

• Schmitt-trigger ICs to ensure clean signal edges, and 

• Dedicated decoder ICs to convert the quadrature 
signals into count and direction outputs. 

This hardware-centric approach offers excellent power efficiency since 
it requires minimal central processing unit (CPU) intervention. However, 
it impacts the bill of materials (BOM) and demands additional printed 
circuit board (PCB) area. 

In addition, hardware solutions can be inflexible. Updating the design 
to accommodate different sensors or detection algorithms usually 
requires circuit modifications. 

Alternative Software Solutions 
The alternative approach is to handle quadrature decoding in software, 
reading the encoder signals directly into GPIO pins. This method 
simplifies the hardware but introduces other challenges. 

First, the CPU must constantly monitor the input pins to detect 
transitions. This prevents the microcontroller from entering sleep mode, 

which results in higher power consumption—a critical consideration for 
battery-powered devices. 

The other challenge is timing. The software approach may struggle with 
timing constraints on resource-limited microcontrollers. The CPU must 
be fast enough to: 

• Sample the inputs frequently enough to catch all transitions, 

• Process the samples through debouncing algorithms, 

• Decode the quadrature sequence, and 

• Handle any other system tasks. 

These timing requirements establish both a maximum detectable 
rotation speed and minimum pulse width constraints. If the encoder 
rotates too quickly or produces pulses that are too narrow, the software 
may miss transitions or misinterpret the sequence. 

Implementing an Efficient 
Quadrature Encoder 
The PIC16F13145 family of microcontrollers (MCUs) from Microchip 
Technology provides an efficient alternative for quadrature signal 
decoding. These 8-bit processors incorporate a configurable logic 
block that brings custom hardware capabilities to the 
microcontroller domain. 

The CLB consists of 32 basic logic elements (BLEs), each featuring 
a four-input lookup table, combinatorial logic, and a flip-flop (Figure 
2). An interconnect fabric allows signals to be routed flexibly between 
BLEs, creating a wide variety of logic functions. 

This flexible architecture allows the CLB to implement custom logic 
functions while operating independently of the CPU. Once configured, 
the CLB can process quadrature signals without requiring constant 
CPU intervention, enabling the processor to remain in sleep mode and 
conserve power. 

Additional power savings and improved system responsiveness can be 
achieved during active power states as well. This is because the CPU 
can handle tasks in parallel while the CLB manages the quadrature 
encoder functionality, meaning less time is spent in active power mode 
compared to a software approach, where the CPU would need to rely 
on interrupts and other software latencies to manage the quadrature 
encoder and other tasks. The responsiveness benefit is due to the 
CPU’s ability to handle separate tasks simultaneously, while the CLB, 
with its very low propagation delay, reduces delays in determining 
direction or speed. 

https://www.mouser.com/manufacturer/microchip/
https://www.mouser.com/manufacturer/microchip/


Mouser Electronics White Paper 

Figure 2:   The PIC16F13145 MCU’s CLB contains 32 BLEs, each of which can be used to perform 
the function of various logic gates. (Source: Microchip Technology) 



Mouser Electronics White Paper 

Beyond the CLB, the PIC16F13145 family of MCUs includes several 
peripherals particularly valuable for quadrature encoder applications: 

• Multiple 8-bit and 16-bit timers that can 
be used for position counting 

• A configurable interrupt system for real-
time responses to position changes 

• Communication interfaces like serial peripheral interface 
(SPI) for sharing encoder data with host systems 

Available in 8- to 20-pin packages with a bevy of power-saving features, 
the PIC16F13145 family of MCUs is well-suited to applications with tight 
cost, power, and space constraints. 

Inside the Quadrature 
Decoder Architecture 
The CLB can be configured to implement both the debouncing and 
decoding functions needed for quadrature signal processing. 
Figure 3 shows a block diagram of the complete quadrature decoder  
implementation, illustrating how the CLB interfaces with other 
peripherals to create an end-to-end solution. 
The quadrature decoder implementation uses the CLB’s BLEs to 
perform two critical functions: debouncing the input signals and 
decoding the quadrature sequence. When valid rotation is detected, 

the decoder outputs a single-clock pulse on one of two dedicated 
lines—one for clockwise rotation and one for counterclockwise rotation. 

Two timer modules count these pulses: TMR0 for clockwise rotations 
and TMR1 for counterclockwise rotations. The encoder’s current 
position can then be determined by calculating the difference between 
these timer values. Figure 4 shows the specific CLB configuration for 
this implementation. 

This timer-based approach provides significant advantages for 
battery-powered applications. Rather than requiring constant CPU 
monitoring of the decoder signals, the CPU can remain in sleep mode, 
waking only periodically to determine the current position. That 
position information can then be transmitted to a host system via the 
SPI interface, if needed. 

Figure 3:  Block diagram showing the quadrature decoder implementation 
using the CLB and timer peripherals. (Source: Microchip Technology) 

Figure 4:  CLB configuration showing the implementation of the quadrature decoder circuit. (Source: Microchip Technology) 



Mouser Electronics White Paper 

This implementation is suitable for user interface applications where 
periodic position polling is sufficient. Here, polling an input once every 
10 milliseconds is usually enough to avoid perceptions of latency. 

In motion control applications, real-time accuracy matters more. To 
handle this, the CLB can be set up to trigger an interrupt whenever the 
encoder’s rotation speed surpasses the predefined limit. This allows 
the system to respond immediately, which makes it useful in precision 
motor control, where tracking position changes in real time is important 
for maintaining smooth and accurate motion. 

Regardless of the desired approach, engineers can easily create their 
designs using the graphical CLB Synthesizer tool. This tool is included 
in Microchip’s MPLAB® Code Configurator and is also available as a 
stand-alone online utility (Figure 5). The CLB Synthesizer provides a 
user-friendly interface for configuring the CLB, with example projects 
and documentation available to help developers get started. And once 
they get started, the PIC16F13145 Curiosity Nano Evaluation Kit offers 
an integrated debugger to allow for streamlined and hassle-free testing 
and development. 

Conclusion 
The PIC16F13145 family of MCUs from Microchip Technology offers a 
convenient solution to the challenges of implementing quadrature en-
coders. Moving decoder logic into configurable hardware eliminates the 
need for external components while also offering considerably better 
power efficiency than all-software implementations. 

The CLB’s flexibility supports everything from simple user interface ap-
plications to high-precision motor control systems, allowing developers 
to use the technology for various use cases. 

Lastly, by using MPLAB’s graphical design tools, engineers can more 
efficiently configure and implement this solution, which cuts down 
development time and system complexity. These advantages make this 
MCU a practical and flexible choice for a variety of quadrature encoder 
applications. 

Figure 5:  Microchip Technology’s CLB Synthesizer offers 
users an accessible interface with the right tools to start 
development. (Source: Microchip Technology) 

https://www.microchip.com/en-us/development-tool/clb-synthesizer
https://logic.microchip.com/clbsynthesizer/
https://www.mouser.com/new/microchip/microchip-pic16f13145-kit/


Accessibility Report

		Filename: 

		2357929972.pdf



		Report created by: 

		Sam Cooper

		Organization: 

		



 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0



Detailed Report

		Document



		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content



		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms



		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text



		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables



		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists



		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings



		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting




Back to Top