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Introduction
Anyone familiar with the necessity of maintaining a mechanical machine 
knows how important the sounds and vibrations it makes are. Proper 
machine health monitoring through sound and vibrations can cut main-
tenance costs in half and double the lifetime. Implementing live acoustic 
data and analysis is another important approach for condition-based 
monitoring (CbM) systems.

We can learn what the normal sound of a machine is. When the sound 
changes, we identify it as abnormal. Then we may learn what the problem 
is so that we can associate that sound with a specific issue. Identifying 
anomalies takes a few minutes of training, but connecting sounds, vibra-
tions, and their causes to perform diagnostics can take a lifetime. There 
are experienced technicians and engineers with this knowledge, but they 
are a scarce resource. Instinctively recognizing a problem from sound 
alone can be difficult, even with recordings, descriptive frameworks, or 
in-person training with experts.

Because of this, our team at Analog Devices has spent the last 20 years 
on understanding how humans make sense of sounds and vibrations. Our 
objective was to build a system able to learn sounds and vibrations from 
a machine and decipher their meaning to detect abnormal behavior and 
to perform diagnostics. This article details the architecture of OtoSense, 
a machine health monitoring system that enables what we call computer 
hearing, which allows a computer to make sense of the leading indicators  
of a machine’s behavior: sound and vibration.

This system applies to any machine and works in real time with no network 
connection needed. It has been adapted for industrial applications and it 
enables a scalable, efficient machine health monitoring system.

This article delves into the principles that guided OtoSense’s development, 
and the role of human hearing in designing OtoSense. The article then 
discusses the way sound or vibration features were designed, how mean-
ing is derived from them, and the continuous learning process that makes 
OtoSense evolve and improve over time to perform increasingly complex 
diagnostics with increasing accuracy.

Guiding Principles
To be robust, agnostic, and efficient, the OtoSense design philosophy fol-
lowed some guiding principles:

 X Get inspiration from human’s neurology. Humans can learn and make 
sense of any sound they can hear in a very energy efficient manner.

 X Be able to learn stationary sounds as well as transient sounds. 
This requires adapted features and continuous monitoring.

 X Perform the recognition at the edge, close to the sensor. There 
should not be any need of a network connection to a remote server  
to make a decision.

 X Interaction with experts and the necessity to learn from them 
must happen with minimal impact on their daily workload, and  
be as enjoyable as possible.

The Human Hearing System and Translation to 
OtoSense
Hearing is the sense of survival. It’s the holistic sense of distant, unseen 
events, and it matures before birth.

The process by which we humans make sense of sounds can be 
described in four familiar steps: analog acquisition of the sound, digital  
conversion, feature extraction, and interpretation. In each step, we will 
compare the human ear with the OtoSense system.

 X Analog acquisition and digitization. A membrane and levers in the 
middle ear capture sounds and adjust impedance to transmit vibra-
tions to a liquid-filled canal where another membrane is selectively 
displaced depending on spectral components present in the signal. 
This in turn bends flexible cells that emit a digital output that reflects 
the amount and harshness of the bending. These individual signals 
then travel on parallel nerves arranged by frequency to the primary 
auditory cortex.

• In OtoSense, this job is performed by sensors, amplifiers, and codecs. 
The digitization process uses a fixed sample rate adjustable between 
250 Hz and 196 kHz, with the waveform being coded on 16 bits and 
stored on buffers that range from 128 samples to 4096 samples.

 X Feature extraction happens in this primary cortex: Frequency-domain 
features such as dominant frequencies, harmonicity, and spectral 
shape, as well as time-domain features such as impulsions, varia-
tions of intensity, and main frequency components over a time  
window spanned around 3 seconds.

• OtoSense uses a time window that we call chunk, which moves  
with a fixed step size. The size and step of this chunk can range 
from 23 ms to 3 s, depending on the events that need to be 
recognized and the sample rate, with features being extracted  
at the edge. We’ll provide more information on the features 
extracted by OtoSense in the next section.
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 X Interpretation happens in the associative cortex, which merges 
all perceptions and memories and attaches meaning to sounds, such 
as with language, which plays a central role in shaping our percep-
tions. The interpretation process organizes our description of events 
far beyond the simple capacity of naming them. Having a name for 
an item, a sound, or an occurrence allows us to grant it greater, more 
multilayered meaning. For experts, names and meaning allow them to 
better make sense of their environment.

• This is why OtoSense interaction with people starts from visual,  
unsupervised sound mapping based on human neurology. OtoSense 
shows a graphical representation of all the sounds or vibration 
heard, organized by similarity, but without trying to create rigid 
categories. This lets experts organize and name the groupings seen  
on screen without trying to artificially create bounded categories. 
They can build a semantic map aligned with their knowledge, per-
ceptions, and expectations regarding the final output of OtoSense. 
The same soundscape would be divided, organized, and labelled 
differently by auto mechanics, aerospace engineers, or cold forging 
press specialists—or even by people in the same field but at dif-
ferent companies. OtoSense uses the same bottom-up approach  
to meaning creation that shapes our use of language.

From Sound and Vibration to Features
A feature is assigned an individual number to describe a given attribute/
quality of a sound or vibration over a period of time (the time window, or 
chunk, as we mentioned earlier). The OtoSense platform’s principles for 
choosing a feature are as follows:

 X Features should describe the environment as completely as pos-
sible and with as many details as possible, both in the frequency 
domain and time domain. They have to describe stationary hums as 
well as clicks, rattles, squeaks, and any kind of transient instability.

 X Features should constitute a set as orthogonally as possible. If 
one feature is defined as “the average amplitude on the chunk,” there 
should not be another feature strongly correlated with it, as a feature 
such as “total spectral energy on the chunk” would be. Of course, 
orthogonality is never reached, but no feature should be expressed 
as a combination of the others—some singular information must be 
contained in each feature.

 X Features should minimize computation. Our brain just knows addition, 
comparison, and resetting to 0. Most OtoSense features have been 
designed to be incremental so that each new sample modifies the 
feature with a simple operation, with no need for recomputing it on a 
full buffer or, worse, chunk. Minimizing computation also implies not 
caring about standard physical units. For example, there is no point in 
trying to represent intensities with a value in dBA. If there is a need to 
output a dBA value, it can be done at the time of output if necessary.

A portion of the OtoSense platform’s two to 1024 features describe the 
time domain. They are extracted either right from the waveform or from 
the evolution of any other feature over the chunk. Some of these features 
include the average and maximal amplitude, complexity derived from 
the linear length of the waveform, amplitude variation, the existence and 
characterization of impulsions, stability as the resemblance between the 
first and last buffer, skinny autocorrelation avoiding convolution, or varia-
tions of the main spectral peaks.

The features used on the frequency domain are extracted from an FFT. 
The FFT is computed on each buffer and yields 128 to 2048 individual fre-
quency contributions. The process then creates a vector with the desired 
number of dimensions—much smaller than the FFT size, of course, but 
that still extensively describe the environment. OtoSense initially starts 
with an agnostic method for creating equal-sized buckets on the log spec-
trum. Then, depending on the environment and the events to be identified, 
these buckets adapt to focus on areas of the spectrum where information 
density is high, either from an unsupervised perspective that maximizes 
entropy or from a semi-supervised perspective that uses labelled events 
as a guide. This mimics the architecture of our inner ear cells, which is 
denser where the speech information is maximal.

Architecture: Power to the Edge and Data on 
Premises
Outlier detection and event recognition with OtoSense happen at the edge, 
without the participation of any remote asset. This architecture ensures 
that the system won’t be impacted by a network failure and it avoids 
having to send all raw data chunks out for analysis. An edge device run-
ning OtoSense is a self-contained system describing the behavior of the 
machine it’s listening to in real time.
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Figure 1. The OtoSense system.
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The OtoSense server, running the AI and HMI, is typically hosted on prem-
ises. A cloud architecture makes sense for aggregating multiple meaningful 
data streams as the output of OtoSense devices. It makes less sense to 
use cloud hosting for an AI dedicated to processing large amounts of data 
and interacting with hundreds of devices on a single site.

From Features to Anomaly Detection
Normality/abnormality evaluation does not require much interaction with 
experts to be started. Experts only need to help establish a baseline for 
a machine’s normal sounds and vibrations. This baseline is then trans-
lated into an outlier model on the Otosense server before being pushed 
to the device.

We then use two different strategies to evaluate the normality of an 
incoming sound or vibration:

 X The first strategy is what we call usualness, where any new incoming 
sound that lands in the feature space is checked for its surrounding, 
how far it is from baseline points and clusters, and how big those 
clusters are. The bigger the distance and the smaller the clusters, the 
more unusual the new sound is and the higher its outlier score is. 
When this outlier score is above a threshold as defined by experts, 
the corresponding chunk is labelled unusual and sent to the server to 
become available for experts.

 X The second strategy is very simple: any incoming chunk with a feature 
value above or below the maximum or minimum of all the features defin-
ing the baseline is labelled as extreme and sent to the server as well.

The combination of unusual and extreme strategies offers good coverage 
of abnormal sounds or vibrations, and these strategies perform well for 
detecting progressive wear and unexpected, brutal events.

From Features to Event Recognition
Features belong to the physical realm, while meaning belongs to human 
cognition. To associate features with meaning, interaction between OtoSense 
AI and human experts is needed. A lot of time has been spent following 
our customers’ feedback to develop a human-machine interface (HMI) that 
enable engineers to efficiently interact with OtoSense to design event rec-
ognition models. This HMI allows for exploring data, labelling it, creating 
outlier models and sound recognition models, and testing those models.

The OtoSense Sound Platter (also known as splatter) allows for the 
exploration and tagging of sounds with a complete overview of the data 
set. Splatter makes a selection of the most interesting and representative 
sounds in a complete data set and displays them as a 2D similarity map 
that mixes labelled and unlabelled sounds.

Figure 2. A 2D splatter map of sound in the OtoSense Sound Platter.

Any sound or vibration can be visualized, along with its context, in many dif-
ferent ways—for example, using Sound Widgets (also known as Swidgets).

Figure 3. OtoSense sound widgets (swidgets).

At any moment, an outlier model or an event recognition model can be 
created. Event recognition models are presented as a round confusion 
matrix that allows OtoSense users to explore confusion events.

Figure 4. An event recognition model can be created based on the required events.

Outliers can be explored and labelled through an interface that shows all 
the unusual and extreme sounds over time.

Figure 5. Sound analytics over time in the OtoSense Outlier visualization.

The Continuous Learning Process, from Anomaly 
Detection to Increasingly Complex Diagnostics
OtoSense has been designed to learn from multiple experts and allow for 
more and more complex diagnostics over time. The usual process is a 
recurring loop between OtoSense and experts:

 X An outlier model and an event recognition model are running at the 
edge. These create output for the probability of potential events hap-
pening, along with their outlier scores.

 X An unusual sound or vibration above the defined threshold triggers 
an outlier notification. Technicians and engineers using OtoSense can 
then check on the sound and its context.
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 X These experts then label this unusual event.

 X A new recognition model and outlier model that includes this new 
information is computed and pushed to edge devices.

Conclusion
The objective of the OtoSense technology from Analog Devices is to make 
sound and vibration expertise available continuously, on any machine, 
with no need for a network connection to perform outlier detection and 

event recognition. This techonology’s growing use for machine health 
monitoring in aerospace, automotive, and industrial monitoring applica-
tions has shown good performance in situations that once require human 
expertise and in situations involving embedded applications, especially on 
complex machines.
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Sebastien Chistian [sebastien.christian@analog.com] had an early passion 
for understanding how we humans build an inner, sharable model of the 
world, using our senses, and how we use this model to describe the world 
they live in. 

Sebastian earned an M.S. in quantum physics, which he followed with an 
M.S. in neuroscience and a third degree in semantics. Sebastien’s educa-
tion combined research, development, and field experiments. He worked 
as a speech and language pathologist with psychotic and deaf children  
for 10 years, refining his understanding of sensor-based meaning cre-
ation and sharing, with an emphasis on hearing. Sebastien says that this 
practice, where he worked with the same young patients for years, is 
what brought all the scattered pieces of knowledge together into a single, 
coherent picture. 

During the same period, Sebastien became an expert for the French 
Ministry of Health, where he advised on hearing loss policies, taught in 
medical school and at Paris Sorbonne University, and, in 2011, created  
the first independent private R&D laboratory dedicated to bringing AI 
driven innovations to people with sensing and cognitive disabilities. 

In 2013, Sebastien completed a full prototype of his machine hearing 
project, which earned him laureate of the NETVA tech competition in 
Cambridge, MA. The massively positive feedback from his fellows at MIT 
and from the business community led him to found OtoSense in early 
2014, and to develop what is the first AI focused on making sense of any 
sound. This machine hearing platform revealed itself to be well adapted 
 to complex environments and complex machine monitoring. 

After receiving multiple awards, which included a Best App of the Year 
award at GSMA Mobile World Congress in 2015, OtoSense focused on  
machine monitoring in the industrial and transportation verticals, with  
 vast and growing range of potential applications ahead. 

Sebastien is now leading OtoSense inside product development at 
Analog Devices.

Sebastien Christian
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