
Adafruit Hallowing M4
Created by Kattni Rembor

Last updated on 2019-10-12 12:55:57 PM UTC

Overview

This is Hallowing..this is Hallowing... Hallowing! Hallowing! (https://adafru.it/C8m)

Following up on 2018's most-successful-skull-shaped development board (https://adafru.it/CmY), we UPPED our -skull-
shaped development board game, and re-spinned (re-spun?) the HalloWing M0 (https://adafru.it/CmY) into the
HalloWing M4 with MORE of everything that makes this the spoooookiest dev board.

Are you the kind of person who doesn't like taking down the skeletons and spiders until after January? Well, we've got
the development board for you. This is electronics at its most spooky! The Adafruit HalloWing M4 is a skull-shaped
ATSAM521 board with a ton of extras built in to make for an adorable wearable, badge, development kit, or the engine
for your next cosplay or prop.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 6 of 141

https://www.youtube.com/watch?v=kGiYxCUAhks&t=39s
https://www.adafruit.com/product/3900
https://www.adafruit.com/product/3900
https://www.adafruit.com/product/3898

On the front is a cute 1.54" sized 240x240 full color IPS TFT. Compared to the HalloWing M0's 1.44" 128x128, this has
4x as many pixels and is IPS for great color and brightness. Our default example code has our new fully-customizable
spooky eye demo (https://adafru.it/FPD) running but you can use it for anything you like to display in glorious color.

There's also 4 fang-teeth below the display, these are analog/capacitive touch inputs with big alligator-clip holes.

On the reverse is a smorgasbord of electronic goodies:

ATSAMD51G18 @ 120MHz with 3.3V logic/power - 512KB of FLASH + 192KB of RAM, can run Arduino or
CircuitPython super fast

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 7 of 141

https://learn.adafruit.com/customeyesation-diy-monster-m4sk-graphics

8 MB of SPI Flash for storing images, sounds, animations, whatever!
3-axis accelerometer (motion sensor)
Light sensor, reverse-mount so that it points out the front
Mono Class-D speaker driver for 4-8 ohm speakers, up to 1 Watt, connected to a 12-bit DAC on the SAMD51
Four side-light NeoPixel LEDs for cool underlighting effects
LiPoly battery port with built in recharging capability
USB port for battery charging, programming and debugging
Two female header strips with Feather-compatible pinout so you can plug any FeatherWings in
JST ports for Neopixels, sensor input, and I2C (you can fit I2C Grove connectors in here)
3.3V regulator with 500mA peak current output
Reset button
On-Off switch

OK so technically it's more like a really tricked-out Feather M4 Express than a Wing but we simply could not resist
the HalloWing pun.

You can use the Hallowing similarly Feather M4 Express, it's got the same chip although the pins have been
rearranged. We've got both Arduino and CircuitPython build support for it so you can pick your favorite development
language! The extra 8 MB of SPI Flash is great for sound effects projects where you want to play up to 3 minutes of
WAV files.

On each side of the Hallowing are JST-PH plugs for connecting external devices. The 3-pin JSTs connect to analog
pins on the SAMD21, so you can use them for analog inputs. We label one for NeoPixel and one for Sensors since we
think most people will have one of each. The 4-pin JST connector connects to the I2C port and you can fit Grove
connectors in it for additional hardware support.

Does not come with a Lipoly battery! We recommend our 350mAh (https://adafru.it/kBj) or 500mAh
batteries (https://adafru.it/drL) but any 3.7/4.2V Adafruit Lipoly will do the trick.

Comes fully assembled and ready to be your spooky skull friend. We install the UF2 bootloader on it so updating code
and converting it to CircuitPython is easy

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 8 of 141

https://www.adafruit.com/product/2750
https://www.adafruit.com/product/1578

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 9 of 141

Pinouts

We put a ton of stuff on this HalloWing M4, above you can see a 'guided tour' of whats available!

Power Pins and Ports

There's two ways to power your Hallowing. The best

way is to plug in a 3.7/4.2V Lipoly battery into the JST 2-

PH port. You can then recharge the battery over the

Micro USB jack. You can also just run the board directly

from Micro USB, it will automatically 'switch over' to USB

power when that's plugged in

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 10 of 141

https://learn.adafruit.com/assets/81030

You can turn off power completely with the on/off switch at the bottom of the board.

If you need access to the power pins, the 'Feather Headers' have 3.3V regulated out, GND on the left. On the right
there's the BAT pin (connects directly to lipoly) and two pins below that is the USB pin. You can measure the voltage
on the battery by reading analog pin A6 - this is divided by two with resistors so don't forget to x2 once you do the
reading. The voltage, after doubling, will range from about 3.5 (empty) to 4.2V (charged)

Microcontroller and Flash

The main processor is the ATSAMD51G18 running at

120MHz with 3.3V logic/power. It has 512KB of flash and

192KB of RAM. It can run Arduino or CircuitPython.

We also include 8 MB of SPI Flash for storing images,

sounds, animations, whatever!

Sensors

The Hallowing JST battery port is expecting a LiPo with the 'standard' Adafruit polarity wiring. Using other
battery packs with opposite wiring or voltages may destroy your Hallowing!�

Lithium Ion Polymer Battery Ideal For Feathers - 3.7V
400mAh

$6.95
IN STOCK

Add To Cart

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 11 of 141

https://www.adafruit.com/product/3898
https://www.adafruit.com/product/3898
https://learn.adafruit.com/assets/81032

There's a few built in sensors.

On the top there's a light sensor, connected to pin A7 -

it's reverse mounted so you can read light levels from

the front.

There's also a MSA301 3-axis accelerometer connected

to the I2C pins for detection motion, tilt or taps

On the bottom of the board are four pads designed for

capacitive touch. They are connected to A2, A3, A4 and

A5.

On the right is a SENSE port, this is a JST 3-PH port for connecting an external sensor. From the top to bottom the
pads are GND, V+, D2 (in Arduino this is also A8). V+ is either LiPoly or USB power, whchever is plugged in and higher.
There's a 1 Kohm+3.6V zener diode connection to protect against voltages higher than 3.3V coming in.

External NeoPixel Connector

On the left is the EXTERNAL NEOPIXEL port, this is a

JST 3-PH port for connecting external NeoPixel strips.

From top to bottom, the pads are D3, V+, GND (in

Arduino this is also A9).

I2C Connector

The pin for the light sensor is A7 even though your board may have "A1 Lite" printed next to the light sensor.�

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 12 of 141

https://learn.adafruit.com/assets/81035
https://learn.adafruit.com/assets/81038

There is a 4-pin JST I2C connector on the right, that is

STEMMA and Grove compatible. The I2C has pullups to

3.3V power and is connected to the MSA301 already.

The I2C connector defaults to 5V. There is a jumper you

can cut or solder to change it between 5V and 3V. It

also changes the STEMMA 3-pin connector power pin

voltage!

Speaker

There is a speaker connector with a mono 2 Watt class

D audio amp connected to A0 - that's the DAC output

on the SAMD51,. It is good for many simple sound

effects or musical output.

The speaker connector is a Molex

PicoBlade (https://adafru.it/C8p).

LEDs

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 13 of 141

https://learn.adafruit.com/assets/81040
https://learn.adafruit.com/assets/81041
https://www.digikey.com/product-detail/en/molex-llc/0532610271/WM7620CT-ND/699107

There are six LEDs. There is the red LED on pin D13 (top

to the right of the USB connector), and the CHG LED

that will let you know when the battery is charging (top

to the left of the USB connector)

Located on the sides and towards the bottom are four

side light NeoPixels on D8 (in Arduino) or

board.NEOPIXEL (in CircuitPython). Check out the

image at the top of this page to see what order they're

numbered!

It's normal for the yellow CHG LED to flicker when no

battery is in place, that's the charge circuitry trying to

detect whether a battery is there or not. If you are

powering only over USB, you can cover it with tape

TFT

The charge LED is automatically driven by the Lipoly charger circuit. It will try to detect a battery and is
expecting one to be attached. If there isn't one it may flicker once in a while when you use power because it's
trying to charge a (non-existant) battery. It's not harmful, and its totally normal!

�

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 14 of 141

https://learn.adafruit.com/assets/81043

On the front is a 1.54" sized 240x240 full color IPS TFT.

Compared to the HalloWing M0's 1.44" 128x128, this has

4x as many pixels and is IPS for great color and

brightness.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 15 of 141

https://learn.adafruit.com/assets/81045

Quickstart

The HalloWing M4 board should arrive ready-to-scare. Connect a battery or USB cable, move the power switch to the
“on” position, and after a few seconds you should get a blinking eye.

The next couple of pages cover…

How to install or update the eye firmware for the latest features and bug fixes.
Loading different eye designs.

These pages reference the MONSTER M4SK board repeatedly…but the principle is exactly the same, just on a smaller
board with a single eye.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 16 of 141

M4 EYES
Firmware

To update firmware on your MONSTER M4SK board with the latest eye animation software, start by downloading this
.UF2 file:

https://adafru.it/FSd

https://adafru.it/FSd

For a HALLOWING M4 board, use this .UF2 instead:

https://adafru.it/FV6

https://adafru.it/FV6

The firmware update sequence is:

1. Connect a USB cable and put the power switch in

the “on” position

2. Double-tap the reset button

3. Wait for the MASKM4BOOT drive to appear!

4. Drag the M4SKEYES.UF2 file to the

MASKM4BOOT drive and wait for it to copy over

5. The board will automatically reboot

After installing the firmware (and a brief pause while the

software initializes) you should get some animated

eyeballs.

If you don't see any eyes, make sure you dragged the

M4SKEYES.UF2 file to the M4SKBOOT bootloader drive

not the CIRCUITPY drive

If you get simple flat-colored eyes like shown here…that

just means no graphics files are installed yet. We cover

that on the next page. But at least we know the code’s

installed!

If you get textured eyes that blink…code and graphics

are all in good shape! The next page shows how to

install different looks…and later we get into total

customization.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 17 of 141

https://cdn-learn.adafruit.com/assets/assets/000/081/303/original/M4SKEYES.UF2?1569214645
https://cdn-learn.adafruit.com/assets/assets/000/081/520/original/HALLOM4EYE.UF2?1569566365
https://learn.adafruit.com/assets/79641
https://learn.adafruit.com/assets/79642

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 18 of 141

Ready-Made Graphics

To install different “looks,” download and unzip this collection of eyeball graphics:

https://adafru.it/FAH

https://adafru.it/FAH

Inside the “eyes” folder are several sub-folders, one for each of our ready-made eye designs. “hazel” is our standard
human eye from prior projects…then we’re adding more as Halloween approaches.

Each folder contains a set of .bmp images for that eye, plus a file called “config.eye.” Copy one of these folders to the
CIRCUITPY drive — not the individual files, but the whole folder. Then copy or move the file called config.eye out of
the folder and into the drive’s root directory.

Copy these files to the CIRCUITPY drive.

Remember that config.eye goes in the root directory, along with the hazel (or other eye name) folder.

Press the board’s reset button…

There will be a delay of several seconds as the eye code initializes. Then…animation!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 19 of 141

https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/M4_Eyes/eyes

If you get a flat-colored white eyeball with blue irises and no eyelids, something’s wrong! Verify that you’ve copied over
a whole folder of graphics (not the individual files) and moved or copied that folder’s config.eye to the root directory.

Aside from the stock hazel eyes, some of the alternate designs include:

big_blue is a pair of large and friendly blue-gray eyes.

The sclera doesn’t have all the veins of the hazel eyes,

making this less creepy.

fish_eyes is the same unblinking eyes used in our Fish

Head MONSTER M4SK project (https://adafru.it/FQj).

hypno_eyes have that cartoon mesmerizing look. “You

are in my power!”

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 20 of 141

https://learn.adafruit.com/assets/81116
https://learn.adafruit.com/assets/81117
https://learn.adafruit.com/wide-set-monster-m4sk-creature-eyes
https://learn.adafruit.com/assets/81118

reflection looks like a pair of shiny spheres. No eyelids

or pupils, just spheres looking extremely reflective.

ting!

snake_green is perfect for dragons and other reptilian

characters. Rar! This shows off the slit pupil option…also

useful for cats and the like.

spikes is adapted from the guide CustomEyesation: DIY

Monster M4SK Graphics (https://adafru.it/FFU) and

demonstrates a bit how the distortion of texture

mapping works.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 21 of 141

https://learn.adafruit.com/assets/81119
https://learn.adafruit.com/assets/81120
https://learn.adafruit.com/assets/81121
https://learn.adafruit.com/customeyesation-diy-monster-m4sk-graphics/overview

toonstripe is a different “mesmerizing eyes” look…candy

colors, no eyelids.

doom-red and doom-spiral were designed for the

MONSTER M4SK Toon Hat (https://adafru.it/FQk) guide

but might have other uses or tricks to learn from.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 22 of 141

https://learn.adafruit.com/assets/81122
https://learn.adafruit.com/assets/81123
https://learn.adafruit.com/assets/81124
https://learn.adafruit.com/monster-mask-augmented-eyes-toon-hat/overview

The demon eyes have swirling fire … a bit of an “Eye of

Sauron” resemblance.

anime does its best approximation of The Quaking Moist

Anime Eyes Effect™.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 23 of 141

https://learn.adafruit.com/assets/81427
https://learn.adafruit.com/assets/81449

fizzgig resembles the fuzzy Dark Crystal character.

These react to ambient light and were designed with the

lenses in mind.

If one of the ready-made designs does what you need…fantastic, you’re all done! If you want to make changes, or
create your own custom eyes, read on…

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 24 of 141

https://learn.adafruit.com/assets/81753
https://learn.adafruit.com/assets/81754

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 25 of 141

Customization Basics

If our ready-made eye designs don’t meet your needs, you can personalize quite a bit by editing a text file and
providing some graphics.

On startup, our eyeball code loads a file called config.eye from the device’s root directory. This is a plain-text file that
any simple editor can handle…Notepad, TextEdit, vim and so forth.

The syntax of this file is a format called JSON. There’s good and bad news…

The good: JSON has a standardized syntax and we can leverage existing code to read it…we’re not starting from
scratch with a new file format.

The bad: JSON files are really meant to be read and written by machines, as a way to preserve program state…not
edited by humans. It’s phenomenally picky about getting syntax just right and does not fall back gracefully.

The saving grace: if you’re just changing colors and textures, you might not need to edit this file at all! Quite often you
can just substitute different graphics files with the same names.

Troubleshooting JSON

If even a single character is out of place in config.eye, the whole thing will fail to load and there’s no helpful indication
of where the problem lies.

If this happens, the eyes will run in a default state: blue eyes with no eyelids, and everything is “flat” colors, no
textures. This isn’t helpful in isolating the problem but at least tells you there is a problem.

One way to troubleshoot this is to start with a known valid eye configuration, then change one setting at a time and
restart the code. If the eyes revert to the default state, the last change contains the syntax error. Quite often it’s just a
missing double quote or extra comma.

Another option is to use a JSON validator such as this one at hjson.org (https://adafru.it/FzV). Copy-and-paste your
eyeball configuration into the left pane…if there’s a problem, this will be reported on the right.

Here’s an simple config.eye file to start with:

You wont be able to double-click this file, so open it from WITHIN your text editor�

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 26 of 141

https://hjson.org/try.html

{
 "pupilColor" : [0, 0, 0],
 "backColor" : [140, 40, 20],
 "irisTexture" : "graphics/iris.bmp",
 "scleraTexture" : "graphics/sclera.bmp",
 "upperEyelid" : "graphics/upper.bmp",
 "lowerEyelid" : "graphics/lower.bmp"
}

Some things to notice:

The whole thing is contained within curly braces — { and }
Each item has a name (always in quotes), a colon separator (:) and a value. Values might be numbers, strings (in
quotes) or arrays (in square brackets) depending on what’s being configured.
This is a list and each line ends with a comma…except for the last item in the list. Watch out for missing or
surplus commas!
JSON is case-sensitive. "Foo", "foo" and "FOO" are all different things.
Using extra spaces to line up columns really isn’t necessary, just something I do to assist with legibility. Some
folks just find it annoying.
Comments (starting with //) are not standard JSON syntax, but the library we use allows them and I find them
very helpful.

Each option will be explained in detail on the “Configurable Settings” page. But first let’s talk about graphics…

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 27 of 141

Preparing Graphics

So we’re singing from the same page, let’s lay out some eye terminology…

The technical term for the “white” of the eye is the

sclera.

The iris is the muscle that contracts to adjust the size of

the pupil in response to light.

The upper and lower eyelids are involved in blinking.

This program’s eye graphics are stored flat and unrolled, like a map projection. The horizontal (X) axis works like the
longitude, or angle around the eye, while the vertical (Y) axis is the latitude. The images are wrapped around the pupil
in a clockwise direction.

There are two images (or texture maps) associated with the eyes…one for the iris, another for the sclera.

The iris is what we think of as the “color” of the eye and is most often what you’ll want to edit. Sometimes you just
need to edit the hue & saturation in a program like Photoshop, or you can make something totally custom if you’re
after a particular look.

The sclera is the “white” of the eye…which really isn’t that white at all. There’s veins and blotches and gross stuff!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 28 of 141

https://learn.adafruit.com/assets/79546

Image Storage

The texture maps are stored as 24-bit BMP images…nobody’s favorite, but easy for microcontrollers to handle. (This is
also sometimes called “Windows Bitmap” format, though plenty of non-Windows software can read and write these
images…and not to be confused with “X BitMap” or “Portable Bitmap Format,” different animals.)

Textures are loaded from drive into RAM, downsampled to 16-bit color (what the displays natively use) and then written
to the chip’s internal flash memory (different from the flash filesystem). Although the code places no strict limit on
image dimensions, RAM and flash are both finite resources, and this limits to how large these textures can be…both
individually and in total.

No single image can exceed available RAM, or about 160 kilobytes. The total of all images must fit within flash, or
about 360 kilobytes. These figures might change a bit in the future, so try to leave yourself some overhead.

Use the following formula to determine the space needed for an image:

width in pixels × height in pixels × 2 bytes

For example, a 500 × 150 pixel texture would consume 500 × 150 × 2 = 150,000 bytes. This fits in RAM just fine, and
takes up a bit less than half of the flash space.

You don’t have to texture-map both the iris and sclera if you don’t want to…on the Configurable Settings page we
explain how to use solid colors for either or both. Also shown there…it’s possible to assign independent textures to the
left and right eyes. When both eyes are sharing the same texture, the code will place only one instance in flash, saving
space.

To make the re-use of textures less obvious, the “seam” where a texture map wraps around is normally at the 12
o’clock position for the right eye and 6 o’clock for the left eye. The Configurable Settings page shows how to change
this.

Eye textures can be any size (RAM permitting), on either

axis…even down to a single pixel. When wrapping small

images around the whole eye, nearest-neighbor

sampling (no interpolation) is used. This can be exploited

to create stylized blocky or grid designs…no need to

waste space on a big image when just a few pixels will

do.

Too-large images may exceed available space, while too-small images may exhibit visible jaggies (unless you’re aiming
for that effect as described above). The ideal size can be calculated based on the circumference of the iris or the
whole eye…

The iris and overall eye size are configurable (shown on following page)…but for example, let’s assume you’ve got an

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 29 of 141

https://learn.adafruit.com/assets/79548

iris with a 60 pixel radius (120 pixel diameter) and the eyeball has a 125 pixel radius (250 pixel diameter)…both of these
are the defaults.

Multiply the iris and/or eye diameters by Pi (3.14) to get the ideal width in pixels for the iris and sclera images.

For example: iris with 120 pixel diameter. 120 px × 3.14 = 377 pixels wide. You can use that, or round up or down a
smidge to a round number if you like (e.g. 360 or 380 pixels).

Sclera image width for 250 pixel diameter eye: 250 × 3.14 = 785 pixels wide…but again, OK to round up or down a
little…use 800 pixels wide if you like, unless really pressed for space.

The ideal image heights are a bit different. First, although the code can load any size image, it won’t actually benefit
above 128 pixels on the vertical axis, it’s just wasted space. For the iris, use its radius (60 pixels in the case described
above) or even a little less, since the pupil is always open a bit. For the sclera…try 200 minus the iris radius, keeping in
mind the 128 pixel recommended maximum (e.g. with a 60 pixel iris, 140 is our target, then cap it at 128). But…with an
800 pixel wide sclera as described above…800 × 128 × 2 = 204 kilobytes…quite a bit over the 160K RAM limit! Whittle
down one or both axes, whatever you think can best handle less resolution, until you find a size that fits. Once in
motion, and at a reasonable viewing distance, minor “jaggies” aren’t that noticeable.

Eyelids

The eyelids have stricter requirements. There are always two files (one each for the upper and lower eyelids) both
240 × 240 pixels exactly, both 1-bit BMP images (NOT 24-bit like the texture maps!).

The white area — which should span the entire 240 pixel width — represents the extent of vertical motion, the “open-
most” and “closed-most” range. The eyes won’t hold the open-most position all the time when idle…the upper eyelid
“tracks” the moving pupil, because that’s how eyes work.

A good set of eyelid images will overlap by a few pixels, so the eye makes a good solid blink.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 30 of 141

This particular set of eyelids is slightly asymmetrical to approximate the eye’s caruncle* — that triangular bit by the tear
duct. The shape is mirrored between the two eyes. But it is super 100% okay to make symmetrical eyelids if you
prefer…a simple “football shape”…that usually looks better on a single-eye board like the HalloWing M4. For some of
the eye designs we’ll offer both.

* Which itself is a vestigial remnant of the nictitating membrane, the “third eyelid” that reptiles have. How cool is that!?

The eyelid images as shown above are for the right eye. That is…the monster’s right eye, meaning the eye on the left
when looking at the M4SK.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 31 of 141

Configurable Settings

Let’s look at the configuration for our stock “hazel” human eye. It doesn’t reference every configurable setting, but
shows the general format of these files…

{
 "eyeRadius" : 125,
 "eyelidIndex" : "0x00", // From table: learn.adafruit.com/assets/61921
 "pupilColor" : [0, 0, 0],
 "backColor" : [140, 40, 20],
 "irisTexture" : "hazel/iris.bmp",
 "scleraTexture" : "hazel/sclera.bmp",
 "upperEyelid" : "hazel/upper.bmp",
 "lowerEyelid" : "hazel/lower.bmp",
 "left" : {
 },
 "right" : {
 }
}

This is a plain text file that any simple editor should be able to handle…Notepad or TextEdit or whatever comes
bundled on your computer.

It’s worth reiterating these points from the “Customization Basics” page:

The whole thing is contained within curly braces — { and }
Each item has a name (always in quotes), a colon separator (:) and a value. Values might be numbers, strings (in
quotes) or arrays (in square brackets) depending on what’s being configured.
This is a list and each line ends with a comma…except for the last item in the list. Watch out for missing or
surplus commas!
JSON is case-sensitive. "Foo", "foo" and "FOO" are all different things.
Using extra spaces to line up columns really isn’t necessary, just something I do to assist with legibility. Some
folks just find it annoying.
Comments (starting with //) are not standard JSON syntax, but the library we use allows them and I find them
very helpful.

The “Customization Basics” page also has some JSON troubleshooting tips. If you encounter trouble, review that
page!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 32 of 141

Sizes and
Shapes

Two settings define the basic geometry of the eye…

eyeRadius establishes the size of the overall eyeball, in pixels. This is a radius — center to edge — so the overall eye

size is twice this across. For example eyeRadius:125 configures the eye to be 250 pixels wide. This is the default if

left unspecified.

The screens are only 240 pixels wide. Reason the eye is made a little bigger is because the code uses tricks to fake a
rotating sphere…and that faking is more apparent as the pupil approaches an edge. So we push the edge out a few
extra pixels, then cover it up with eyelids.

If designing an eye with no eyelids, you might want eyeRadius:120 instead, which provides a nice perfect circle on

the screen.

Remember that JSON is case-sensitive. This must be spelled eyeRadius . Different capitalization will cause it to be
ignored!

irisRadius establishes the size of the iris…again a radius, in pixels.

irisRadius:60 will make the iris 120 pixels across, or half the width of the screen. If you plan to use lenses over the

displays, consider scaling down this number a bit to compensate.

Some creatures…cats and so forth…have very large irises and almost no visible sclera. In that case you can set
irisRadius much larger, up to (but not exceeding) eyeRadius .

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 33 of 141

A third setting, slitPupilRadius , lets you make cat or dragon type eyes with a vertical slit pupil (only a vertical slit is
available, no goat pupils, sorry). If set to 0 (the default), a normal round pupil is used. Larger numbers (up to irisRadius)

make a taller/thinner pupil. This number sets the height. You’ll probably want an in-between value…maybe
irisRadius:80 (160 pixels round) and slitPupilRadius:60 (120 pixels tall) to start.

Note that using slitPupilRadius makes the program a bit slower to initialize…you’ll just see blank screens for several
seconds while it works. This is normal and just an unfortunate math thing.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 34 of 141

Colors and Textures

The texture map images for iris and sclera are specified with irisTexture and scleraTexture :

 "irisTexture" : "hazel/iris.bmp",
 "scleraTexture" : "hazel/sclera.bmp",

If you prefer a solid color to an image, omit those lines and instead use irisColor and/or scleraColor , with color

specified as three values [red, green,blue] in brackets:

 "scleraColor" : [255, 255, 255],

Colors can either be three integers in the range 0 to 255 (like most folks are used to) or three floating-point values
from 0.0 to 1.0 (same idea, just different scale).

Solid colors save a TON of space compared to texture maps, if your design can get away with it.

A few more items have configurable colors:

 "pupilColor" : [0, 0, 0],
 "backColor" : [140, 40, 20],

pupilColor is self-explanatory…like if you want glowing red or white pupils or something.

backColor covers the outermost/backmost part of the eye where the sclera texture map (or color) doesn’t reach. With

a little planning, this and your sclera texture map can be designed to blend together…otherwise you’ll see a
conspicuous crescent of backColor when the eye is looking off to a side.

The eyelid (and background) color is also configurable, but it’s not a normal RGB color. Instead, use eyelidIndex and

an 8-bit value:

 "eyelidIndex" : "0x00",

Notice the hexadecimal value must be quoted. The value corresponds to one of the colors in this palette:

eyelidIndex doesn’t use a normal RGB value because the code is using an optimization trick here, which limits the

available colors in this one area. The default eyelidIndex if unspecified is “0x00” — black.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 35 of 141

Eyelids

The eyelid graphics format is explained on the “Preparing Graphics” page. These are 1-bit BMPs, 240 pixels square.
Use the upperEyelid and lowerEyelid settings to specify the filenames of these images.

Eyelids are one of those global (not configurable per-eye) things. The design of the eyelid graphics might be
symmetrical or asymmetrical…some eye designs might provide two sets of eyelid images, one for a single-eye device
(like HalloWing M4) and another for the Monster M4SK, where the left and right eyelid shapes are mirrored.

If you want no eyelids at all, just leave out any upperEyelid or lowerEyelid filenames. You’ll then have a circular

unblinking eye…looks good for skulls!

With eyelids enabled, normally the upper lid “tracks” the movement of the pupil (when the eye looks down, the eyelid
follows with it). This is something that eyes do in real life…but some folks think it looks sleepy, or just want a particular
caffeinated look. Use the tracking keyword with a value of false to disable the eyelid tracking and maintain wide-

open eyes.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 36 of 141

Light Sensor

The pupils normally do some dilation movement on their own…but you can have them respond to light if you like! Use
the lightSensor keyword along with a pin number where the light sensor is connected. If it’s on a Seesaw interface

chip (e.g. on MONSTER M4SK), add 100 to the pin number. For example, on MONSTER M4SK the built-in light sensor
is:

"lightSensor" : 102

And for HalloWing M4, use:

"lightSensor" : 21

(Add a trailing comma if this appears mid-file.)

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 37 of 141

Building Eyes from Source Code

The next couple of pages explain how to set up the Arduino software to work with the SAMD microcontroller boards
like the HalloWing M4 or MONSTER M4SK. If you’ve previously worked with Adafruit SAMD boards with Arduino, that
part’s already set up and you can skip ahead to the “Libraries and Settings” page.

In summary: use the latest Arduino IDE, install the latest Adafruit SAMD boards package, install Windows drivers if
necessary, and install all the library dependencies for this project…

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 38 of 141

Arduino IDE Setup

The first thing you will need to do is to download the latest release of the Arduino IDE. You will need to be using
version 1.8 or higher for this guide

https://adafru.it/f1P

https://adafru.it/f1P

After you have downloaded and installed the latest version of Arduino IDE, you will need to start the IDE and navigate
to the Preferences menu. You can access it from the File menu in Windows or Linux, or the Arduino menu on OS X.

A dialog will pop up just like the one shown below.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 39 of 141

http://www.arduino.cc/en/Main/Software

We will be adding a URL to the new Additional Boards Manager URLs option. The list of URLs is comma separated,
and you will only have to add each URL once. New Adafruit boards and updates to existing boards will automatically be
picked up by the Board Manager each time it is opened. The URLs point to index files that the Board Manager uses to
build the list of available & installed boards.

To find the most up to date list of URLs you can add, you can visit the list of third party board URLs on the Arduino IDE
wiki (https://adafru.it/f7U). We will only need to add one URL to the IDE in this example, but you can add multiple URLS
by separating them with commas. Copy and paste the link below into the Additional Boards Manager URLs option in
the Arduino IDE preferences.

https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 40 of 141

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls

Here's a short description of each of the Adafruit supplied packages that will be available in the Board Manager when
you add the URL:

Adafruit AVR Boards - Includes support for Flora, Gemma, Feather 32u4, Trinket, & Trinket Pro.
Adafruit SAMD Boards - Includes support for Feather M0 and M4, Metro M0 and M4, ItsyBitsy M0 and M4,
Circuit Playground Express, Gemma M0 and Trinket M0
Arduino Leonardo & Micro MIDI-USB - This adds MIDI over USB support for the Flora, Feather 32u4, Micro and
Leonardo using the arcore project (https://adafru.it/eSI).

If you have multiple boards you want to support, say ESP8266 and Adafruit, have both URLs in the text box separated
by a comma (,)

Once done click OK to save the new preference settings. Next we will look at installing boards with the Board
Manager.

Now continue to the next step to actually install the board support package!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 41 of 141

https://github.com/rkistner/arcore

Using with Arduino IDE

The Feather/Metro/Gemma/Trinket M0 and M4 use an ATSAMD21 or ATSAMD51 chip, and you can pretty easily get it
working with the Arduino IDE. Most libraries (including the popular ones like NeoPixels and display) will work with the
M0 and M4, especially devices & sensors that use I2C or SPI.

Now that you have added the appropriate URLs to the Arduino IDE preferences in the previous page, you can open
the Boards Manager by navigating to the Tools->Board menu.

Once the Board Manager opens, click on the category drop down menu on the top left hand side of the window and
select All. You will then be able to select and install the boards supplied by the URLs added to the preferences.

Install SAMD Support

First up, install the latest Arduino SAMD Boards (version 1.6.11 or later)

You can type Arduino SAMD in the top search bar, then when you see the entry, click Install

Remember you need SETUP the Arduino IDE to support our board packages - see the previous page on how
to add adafruit's URL to the preferences�

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 42 of 141

Install Adafruit SAMD

Next you can install the Adafruit SAMD package to add the board file definitions

Make sure you have Type All selected to the left of the Filter your search... box

You can type Adafruit SAMD in the top search bar, then when you see the entry, click Install

Even though in theory you don't need to - I recommend rebooting the IDE

Quit and reopen the Arduino IDE to ensure that all of the boards are properly installed. You should now be able to
select and upload to the new boards listed in the Tools->Board menu.

Select the matching board, the current options are:

Feather M0 (for use with any Feather M0 other than the Express)
Feather M0 Express
Metro M0 Express
Circuit Playground Express
Gemma M0
Trinket M0
ItsyBitsy M0
Hallowing M0
Crickit M0 (this is for direct programming of the Crickit, which is probably not what you want! For advanced
hacking only)
Metro M4 Express
ItsyBitsy M4 Express
Feather M4 Express
Trellis M4 Express
Grand Central M4 Express

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 43 of 141

Install Drivers (Windows 7 & 8 Only)

When you plug in the board, you'll need to possibly install a driver

Click below to download our Driver Installer

https://adafru.it/EC0

https://adafru.it/EC0

Download and run the installer

Run the installer! Since we bundle the SiLabs and FTDI drivers as well, you'll need to click through the license

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 44 of 141

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/download/2.3.4/adafruit_drivers_2.3.4.0.exe

Select which drivers you want to install, the defaults will set you up with just about every Adafruit board!

Click Install to do the installin'

Blink

Now you can upload your first blink sketch!

Plug in the M0 or M4 board, and wait for it to be recognized by the OS (just takes a few seconds). It will create a
serial/COM port, you can now select it from the drop-down, it'll even be 'indicated' as
Trinket/Gemma/Metro/Feather/ItsyBitsy/Trellis!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 45 of 141

Now load up the Blink example

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

And click upload! That's it, you will be able to see the LED blink rate change as you adapt the delay() calls.

If you're using Trellis M4 Express, you can go to the next page cause there's no pin 13 LED - so you won't see it blink.
Still this is a good thing to test compile and upload!

Successful Upload

If you have a successful upload, you'll get a bunch of red text that tells you that the device was found and it was
programmed, verified & reset

After uploading, you may see a message saying "Disk Not Ejected Properly" about the ...BOOT drive. You can ignore
that message: it's an artifact of how the bootloader and uploading work.

If you are having issues, make sure you selected the matching Board in the menu that matches the hardware
you have in your hand.�

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 46 of 141

Compilation Issues

If you get an alert that looks like

Cannot run program "{runtime.tools.arm-none-eabi-gcc.path}\bin\arm-non-eabi-g++"

Make sure you have installed the Arduino SAMD boards package, you need both Arduino & Adafruit SAMD board
packages

Manually bootloading

If you ever get in a 'weird' spot with the bootloader, or you have uploaded code that crashes and doesn't auto-reboot
into the bootloader, click the RST button twice (like a double-click)to get back into the bootloader.

The red LED will pulse, so you know that its in bootloader mode.

Once it is in bootloader mode, you can select the newly created COM/Serial port and re-try uploading.

You may need to go back and reselect the 'normal' USB serial port next time you want to use the normal upload.

Ubuntu & Linux Issue Fix

 Follow the steps for installing Adafruit's udev rules on this page. (https://adafru.it/iOE)

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 47 of 141

file:///adafruit-arduino-ide-setup/linux-setup#udev-rules

Adapting Sketches to M0 &
M4

The ATSAMD21 and 51 are very nice little chips, but fairly new as Arduino-compatible cores go. Most sketches &
libraries will work but here’s a collection of things we noticed.

The notes below cover a range of Adafruit M0 and M4 boards, but not every rule will apply to every board (e.g. Trinket
and Gemma M0 do not have ARef, so you can skip the Analog References note!).

Analog References

If you'd like to use the ARef pin for a non-3.3V analog reference, the code to use is analogReference(AR_EXTERNAL)
(it's AR_EXTERNAL not EXTERNAL)

Pin Outputs & Pullups

The old-style way of turning on a pin as an input with a pullup is to use

pinMode(pin, INPUT)
digitalWrite(pin, HIGH)

This is because the pullup-selection register on 8-bit AVR chips is the same as the output-selection register.

For M0 & M4 boards, you can't do this anymore! Instead, use:

pinMode(pin, INPUT_PULLUP)

Code written this way still has the benefit of being backwards compatible with AVR. You don’t need separate versions
for the different board types.

Serial vs SerialUSB

99.9% of your existing Arduino sketches use Serial.print to debug and give output. For the Official Arduino SAMD/M0
core, this goes to the Serial5 port, which isn't exposed on the Feather. The USB port for the Official Arduino M0 core is
called SerialUSB instead.

In the Adafruit M0/M4 Core, we fixed it so that Serial goes to USB so it will automatically work just fine.

However, on the off chance you are using the official Arduino SAMD core and not the Adafruit version (which really,
we recommend you use our version because it’s been tuned to our boards), and you want your Serial prints and
reads to use the USB port, use SerialUSB instead of Serial in your sketch.

If you have existing sketches and code and you want them to work with the M0 without a huge find-replace, put

#if defined(ARDUINO_SAMD_ZERO) && defined(SERIAL_PORT_USBVIRTUAL)
 // Required for Serial on Zero based boards
 #define Serial SERIAL_PORT_USBVIRTUAL
#endif

right above the first function definition in your code. For example:

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 48 of 141

AnalogWrite / PWM on Feather/Metro M0

After looking through the SAMD21 datasheet, we've found that some of the options listed in the multiplexer table don't
exist on the specific chip used in the Feather M0.

For all SAMD21 chips, there are two peripherals that can generate PWM signals: The Timer/Counter (TC) and
Timer/Counter for Control Applications (TCC). Each SAMD21 has multiple copies of each, called 'instances'.

Each TC instance has one count register, one control register, and two output channels. Either channel can be enabled
and disabled, and either channel can be inverted. The pins connected to a TC instance can output identical versions of
the same PWM waveform, or complementary waveforms.

Each TCC instance has a single count register, but multiple compare registers and output channels. There are options
for different kinds of waveform, interleaved switching, programmable dead time, and so on.

The biggest members of the SAMD21 family have five TC instances with two 'waveform output' (WO) channels, and
three TCC instances with eight WO channels:

TC[0-4],WO[0-1]
TCC[0-2],WO[0-7]

And those are the ones shown in the datasheet's multiplexer tables.

The SAMD21G used in the Feather M0 only has three TC instances with two output channels, and three TCC instances
with eight output channels:

TC[3-5],WO[0-1]
TCC[0-2],WO[0-7]

Tracing the signals to the pins broken out on the Feather M0, the following pins can't do PWM at all:

Analog pin A5

The following pins can be configured for PWM without any signal conflicts as long as the SPI, I2C, and UART pins keep
their protocol functions:

Digital pins 5, 6, 9, 10, 11, 12, and 13
Analog pins A3 and A4

If only the SPI pins keep their protocol functions, you can also do PWM on the following pins:

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 49 of 141

TX and SDA (Digital pins 1 and 20)

analogWrite() PWM range

On AVR, if you set a pin's PWM with analogWrite(pin, 255) it will turn the pin fully HIGH. On the ARM cortex, it will set

it to be 255/256 so there will be very slim but still-existing pulses-to-0V. If you need the pin to be fully on, add test
code that checks if you are trying to analogWrite(pin, 255) and, instead, does a digitalWrite(pin, HIGH)

analogWrite() DAC on A0

If you are trying to use analogWrite() to control the DAC output on A0, make sure you do not have a line that sets the

pin to output. Remove: pinMode(A0, OUTPUT) .

Missing header files

There might be code that uses libraries that are not supported by the M0 core. For example if you have a line with

#include <util/delay.h>

you'll get an error that says

fatal error: util/delay.h: No such file or directory
 #include <util/delay.h>
 ^
compilation terminated.
Error compiling.

In which case you can simply locate where the line is (the error will give you the file name and line number) and 'wrap
it' with #ifdef's so it looks like:

#if !defined(ARDUINO_ARCH_SAM) && !defined(ARDUINO_ARCH_SAMD) && !defined(ESP8266) &&
!defined(ARDUINO_ARCH_STM32F2)
 #include <util/delay.h>
#endif

The above will also make sure that header file isn't included for other architectures

If the #include is in the arduino sketch itself, you can try just removing the line.

Bootloader Launching

For most other AVRs, clicking reset while plugged into USB will launch the bootloader manually, the bootloader will
time out after a few seconds. For the M0/M4, you'll need to double click the button. You will see a pulsing red LED to
let you know you're in bootloader mode. Once in that mode, it wont time out! Click reset again if you want to go back
to launching code.

Aligned Memory Access

This is a little less likely to happen to you but it happened to me! If you're used to 8-bit platforms, you can do this nice
thing where you can typecast variables around. e.g.

uint8_t mybuffer[4];

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 50 of 141

float f = (float)mybuffer;

You can't be guaranteed that this will work on a 32-bit platform because mybuffer might not be aligned to a 2 or 4-byte
boundary. The ARM Cortex-M0 can only directly access data on 16-bit boundaries (every 2 or 4 bytes). Trying to access
an odd-boundary byte (on a 1 or 3 byte location) will cause a Hard Fault and stop the MCU. Thankfully, there's an easy
work around ... just use memcpy!

uint8_t mybuffer[4];
float f;
memcpy(&f, mybuffer, 4)

Floating Point Conversion

Like the AVR Arduinos, the M0 library does not have full support for converting floating point numbers to ASCII strings.
Functions like sprintf will not convert floating point. Fortunately, the standard AVR-LIBC library includes the dtostrf
function which can handle the conversion for you.

Unfortunately, the M0 run-time library does not have dtostrf. You may see some references to using #include
<avr/dtostrf.h> to get dtostrf in your code. And while it will compile, it does not work.

Instead, check out this thread to find a working dtostrf function you can include in your code:

http://forum.arduino.cc/index.php?topic=368720.0 (https://adafru.it/lFS)

How Much RAM Available?

The ATSAMD21G18 has 32K of RAM, but you still might need to track it for some reason. You can do so with this handy
function:

extern "C" char *sbrk(int i);

int FreeRam () {
 char stack_dummy = 0;
 return &stack_dummy - sbrk(0);
}

Thx to http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879 (https://adafru.it/m6D) for the tip!

Storing data in FLASH

If you're used to AVR, you've probably used PROGMEM to let the compiler know you'd like to put a variable or string in
flash memory to save on RAM. On the ARM, its a little easier, simply add const before the variable name:

const char str[] = "My very long string";

That string is now in FLASH. You can manipulate the string just like RAM data, the compiler will automatically read from
FLASH so you dont need special progmem-knowledgeable functions.

You can verify where data is stored by printing out the address:
Serial.print("Address of str $"); Serial.println((int)&str, HEX);

If the address is $2000000 or larger, its in SRAM. If the address is between $0000 and $3FFFF Then it is in FLASH

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 51 of 141

http://forum.arduino.cc/index.php?topic=368720.0
http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879

Pretty-Printing out registers

There's a lot of registers on the SAMD21, and you often are going through ASF or another framework to get to them.
So having a way to see exactly what's going on is handy. This library from drewfish will help a ton!

https://github.com/drewfish/arduino-ZeroRegs (https://adafru.it/Bet)

M4 Performance Options

As of version 1.4.0 of the Adafruit SAMD Boards package in the Arduino Boards Manager, some options are available
to wring extra performance out of M4-based devices. These are in the Tools menu.

All of these performance tweaks involve a degree of uncertainty. There’s no guarantee of improved performance in
any given project, and some may even be detrimental, failing to work in part or in whole. If you encounter trouble,
select the default performance settings and re-upload.

Here’s what you get and some issues you might encounter…

CPU Speed (overclocking)

This option lets you adjust the microcontroller core clock…the speed at which it processes instructions…beyond the
official datasheet specifications.

Manufacturers often rate speeds conservatively because such devices are marketed for harsh industrial
environments…if a system crashes, someone could lose a limb or worse. But most creative tasks are less critical and
operate in more comfortable settings, and we can push things a bit if we want more speed.

There is a small but nonzero chance of code locking up or failing to run entirely. If this happens, try dialing back the
speed by one notch and re-upload, see if it’s more stable.

Much more likely, some code or libraries may not play well with the nonstandard CPU speed. For example, currently
the NeoPixel library assumes a 120 MHz CPU speed and won’t issue the correct data at other settings (this will be
worked on). Other libraries may exhibit similar problems, usually anything that strictly depends on CPU timing…you
might encounter problems with audio- or servo-related code depending how it’s written. If you encounter such code or
libraries, set the CPU speed to the default 120 MHz and re-upload.

Optimize

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 52 of 141

https://github.com/drewfish/arduino-ZeroRegs

There’s usually more than one way to solve a problem, some more resource-intensive than others. Since Arduino got
its start on resource-limited AVR microcontrollers, the C++ compiler has always aimed for the smallest compiled
program size. The “Optimize” menu gives some choices for the compiler to take different and often faster approaches,
at the expense of slightly larger program size…with the huge flash memory capacity of M4 devices, that’s rarely a
problem now.

The “Small” setting will compile your code like it always has in the past, aiming for the smallest compiled program size.

The “Fast” setting invokes various speed optimizations. The resulting program should produce the same results, is
slightly larger, and usually (but not always) noticably faster. It’s worth a shot!

“Here be dragons” invokes some more intensive optimizations…code will be larger still, faster still, but there’s a
possibility these optimizations could cause unexpected behaviors. Some code may not work the same as before.
Hence the name. Maybe you’ll discover treasure here, or maybe you’ll sail right off the edge of the world.

Most code and libraries will continue to function regardless of the optimizer settings. If you do encounter problems,
dial it back one notch and re-upload.

Cache

This option allows a small collection of instructions and data to be accessed more quickly than from flash memory,
boosting performance. It’s enabled by default and should work fine with all code and libraries. But if you encounter
some esoteric situation, the cache can be disabled, then recompile and upload.

Max SPI and Max QSPI

These should probably be left at their defaults. They’re present mostly for our own experiments and can cause
serious headaches.

Max SPI determines the clock source for the M4’s SPI peripherals. Under normal circumstances this allows transfers up
to 24 MHz, and should usually be left at that setting. But…if you’re using write-only SPI devices (such as TFT or OLED
displays), this option lets you drive them faster (we’ve successfully used 60 MHz with some TFT screens). The caveat
is, if using any read/write devices (such as an SD card), this will not work at all…SPI reads absolutely max out at the
default 24 MHz setting, and anything else will fail. Write = OK. Read = FAIL. This is true even if your code is using a
lower bitrate setting…just having the different clock source prevents SPI reads.

Max QSPI does similarly for the extra flash storage on M4 “Express” boards. Very few Arduino sketches access this
storage at all, let alone in a bandwidth-constrained context, so this will benefit next to nobody. Additionally, due to the
way clock dividers are selected, this will only provide some benefit when certain “CPU Speed” settings are active. Our
PyPortal Animated GIF Display (https://adafru.it/EkO) runs marginally better with it, if using the QSPI flash.

Enabling the Buck Converter on some M4 Boards

If you want to reduce power draw, some of our boards have an inductor so you can use the 1.8V buck converter
instead of the built in linear regulator. If the board does have an inductor (see the schematic) you can add the line
SUPC->VREG.bit.SEL = 1; to your code to switch to it. Note it will make ADC/DAC reads a bit noisier so we don't use it

by default. You'll save ~4mA (https://adafru.it/F0H).

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 53 of 141

https://learn.adafruit.com/pyportal-animated-gif-display
https://github.com/adafruit/ArduinoCore-samd/issues/128

Source, Libraries and Settings

At this point you should be able to upload code (such as the “Blink” sketch) to the board, the basics are confirmed
working. If not, work though the prior two pages.

Source Code

Source code for this project is found in the Adafruit_Learning_System_Guides (https://adafru.it/Clx) repository on
Github, specifically in the M4_Eyes (https://adafru.it/FAD) subdirectory. Here’s a direct download link:

https://adafru.it/FAD

https://adafru.it/FAD

Libraries

The following libraries are used by the eye code. These can be installed through the Arduino Library Manager
(Sketch→Include Library→Manage Libraries…)

Adafruit_GFX
Adafruit_ST7789
Adafruit_ZeroDMA
Adafruit_ImageReader
Adafruit_SPIFlash
Adafruit_TinyUSB
SdFat - Adafruit fork (not the standard SdFat fork)
ArduinoJson (not Arduino_JSON)

Project Settings

Tools→CPU Speed→180 MHz (overclock) (200 MHz is a bit too much for some boards and may lock up, but you
can give it a try. We use 180 MHz for our prepackaged .UF2 files since it’s likely to work on more boards in the
wild.)
Tools→Optimize→Fastest (-Ofast) (don’t use the “dragon” setting for this, it can cause problems)
Tools→USB Stack→TinyUSB (the code will not compile without this selected!)

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 54 of 141

https://github.com/adafruit/Adafruit_Learning_System_Guides
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/M4_Eyes
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/M4_Eyes

Using SPI Flash

One of the best features of the M0 express board is a small SPI flash memory chip built into the board. This memory
can be used for almost any purpose like storing data files, Python code, and more. Think of it like a little SD card that is
always connected to the board, and in fact with Arduino you can access the memory using a library that is very similar
to the Arduino SD card library (https://adafru.it/ucu). You can even read and write files that CircuitPython stores on the
flash chip!

To use the flash memory with Arduino you'll need to install the Adafruit SPI Flash Memory library (https://adafru.it/wbt)
in the Arduino IDE. Click the button below to download the source for this library, open the zip file, and then copy it
into an Adafruit_SPIFlash folder (remove the -master GitHub adds to the downloaded zip and folder) in the Arduino
library folder on your computer (https://adafru.it/dNR):

https://adafru.it/wbu

https://adafru.it/wbu

Once the library is installed open the Arduino IDE and look for the following examples in the library:

fatfs_circuitpython
fatfs_datalogging
fatfs_format
fatfs_full_usage
fatfs_print_file
flash_erase

These examples allow you to format the flash memory with a FAT filesystem (the same kind of filesystem used on SD
cards) and read and write files to it just like a SD card.

Read & Write CircuitPython Files

The fatfs_circuitpython example shows how to read and write files on the flash chip so that they're accessible from
CircuitPython. This means you can run a CircuitPython program on your board and have it store data, then run an
Arduino sketch that uses this library to interact with the same data.

Note that before you use the fatfs_circuitpython example you must have loaded CircuitPython on your board. Load
the latest version of CircuitPython as explained in this guide (https://adafru.it/BeN) first to ensure a CircuitPython
filesystem is initialized and written to the flash chip. Once you've loaded CircuitPython then you can run the
fatfs_circuitpython example sketch.

To run the sketch load it in the Arduino IDE and upload it to the Feather/Metro/ItsyBitsy M0 board. Then open the
serial monitor at 115200 baud. You should see the serial monitor display messages as it attempts to read files and write
to a file on the flash chip. Specifically the example will look for a boot.py and main.py file (like what CircuitPython runs
when it starts) and print out their contents. Then it will add a line to the end of a data.txt file on the board (creating it if
it doesn't exist already). After running the sketch you can reload CircuitPython on the board and open the data.txt file
to read it from CircuitPython!

To understand how to read & write files that are compatible with CircuitPython let's examine the sketch code. First
notice an instance of the Adafruit_M0_Express_CircuitPython class is created and passed an instance of the flash
chip class in the last line below:

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 55 of 141

https://www.arduino.cc/en/reference/SD
https://github.com/adafruit/Adafruit_SPIFlash
file:///adafruit-all-about-arduino-libraries-install-use/arduino-libraries
https://github.com/adafruit/Adafruit_SPIFlash/archive/master.zip
https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/kattni-circuitpython

#define FLASH_SS SS1 // Flash chip SS pin.
#define FLASH_SPI_PORT SPI1 // What SPI port is Flash on?

Adafruit_SPIFlash flash(FLASH_SS, &FLASH_SPI_PORT); // Use hardware SPI

// Alternatively you can define and use non-SPI pins!
//Adafruit_SPIFlash flash(SCK1, MISO1, MOSI1, FLASH_SS);

// Finally create an Adafruit_M0_Express_CircuitPython object which gives
// an SD card-like interface to interacting with files stored in CircuitPython's
// flash filesystem.
Adafruit_M0_Express_CircuitPython pythonfs(flash);

By using this Adafruit_M0_Express_CircuitPython class you'll get a filesystem object that is compatible with reading
and writing files on a CircuitPython-formatted flash chip. This is very important for interoperability between
CircuitPython and Arduino as CircuitPython has specialized partitioning and flash memory layout that isn't compatible
with simpler uses of the library (shown in the other examples).

Once an instance of the Adafruit_M0_Express_CircuitPython class is created (called pythonfs in this sketch) you can
go on to interact with it just like if it were the SD card library in Arduino (https://adafru.it/wbw). You can open files for
reading & writing, create directories, delete files and directories and more. Here's how the sketch checks if a boot.py
file exists and prints it out a character at a time:

 // Check if a boot.py exists and print it out.
 if (pythonfs.exists("boot.py")) {
 File bootPy = pythonfs.open("boot.py", FILE_READ);
 Serial.println("Printing boot.py...");
 while (bootPy.available()) {
 char c = bootPy.read();
 Serial.print(c);
 }
 Serial.println();
 }
 else {
 Serial.println("No boot.py found...");
 }

Notice the exists function is called to check if the boot.py file is found, and then the open function is used to open it in
read mode. Once a file is opened you'll get a reference to a File class object which you can read and write from as if it
were a Serial device (again just like the SD card library, all of the same File class functions are
available (https://adafru.it/wbw)). In this case the available function will return the number of bytes left to read in the
file, and the read function will read a character at a time to print it to the serial monitor.

Writing a file is just as easy, here's how the sketch writes to data.txt:

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 56 of 141

https://www.arduino.cc/en/Reference/SD
https://www.arduino.cc/en/Reference/SD

 // Create or append to a data.txt file and add a new line
 // to the end of it. CircuitPython code can later open and
 // see this file too!
 File data = pythonfs.open("data.txt", FILE_WRITE);
 if (data) {
 // Write a new line to the file:
 data.println("Hello CircuitPython from Arduino!");
 data.close();
 // See the other fatfs examples like fatfs_full_usage and fatfs_datalogging
 // for more examples of interacting with files.
 Serial.println("Wrote a new line to the end of data.txt!");
 }
 else {
 Serial.println("Error, failed to open data file for writing!");
 }

Again the open function is used but this time it's told to open the file for writing. In this mode the file will be opened for
appending (i.e. data added to the end of it) if it exists, or it will be created if it doesn't exist. Once the file is open print
functions like print and println can be used to write data to the file (just like writing to the serial monitor). Be sure to
close the file when finished writing!

That's all there is to basic file reading and writing. Check out the fatfs_full_usage example for examples of even more
functions like creating directories, deleting files & directories, checking the size of files, and more! Remember though
to interact with CircuitPython files you need to use the Adafruit_Feather_M0_CircuitPython class as shown in the
fatfs_circuitpython example above!

Format Flash Memory

The fatfs_format example will format the SPI flash with a new blank filesystem. Be warned this sketch will delete all
data on the flash memory, including any Python code or other data you might have stored! The format sketch is
useful if you'd like to wipe everything away and start fresh, or to help get back in a good state if the memory should
get corrupted for some reason.

Be aware too the fatfs_format and examples below are not compatible with a CircuitPython-formatted flash chip! If
you need to share data between Arduino & CircuitPython check out the fatfs_circuitpython example above.

To run the format sketch load it in the Arduino IDE and upload it to the M0 board. Then open the serial monitor at
115200 baud. You should see the serial monitor display a message asking you to confirm formatting the flash. If you
don't see this message then close the serial monitor, press the board's reset button, and open the serial monitor again.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 57 of 141

Type OK and press enter in the serial monitor input to confirm that you'd like to format the flash memory. You need to
enter OK in all capital letters!

Once confirmed the sketch will format the flash memory. The format process takes about a minute so be patient as the
data is erased and formatted. You should see a message printed once the format process is complete. At this point
the flash chip will be ready to use with a brand new empty filesystem.

Datalogging Example

One handy use of the SPI flash is to store data, like datalogging sensor readings. The fatfs_datalogging example
shows basic file writing/datalogging. Open the example in the Arduino IDE and upload it to your Feather M0 board.
 Then open the serial monitor at 115200 baud. You should see a message printed every minute as the sketch writes a
new line of data to a file on the flash filesystem.

To understand how to write to a file look in the loop function of the sketch:

 // Open the datalogging file for writing. The FILE_WRITE mode will open
 // the file for appending, i.e. it will add new data to the end of the file.
 File dataFile = fatfs.open(FILE_NAME, FILE_WRITE);
 // Check that the file opened successfully and write a line to it.
 if (dataFile) {
 // Take a new data reading from a sensor, etc. For this example just
 // make up a random number.
 int reading = random(0,100);
 // Write a line to the file. You can use all the same print functions
 // as if you're writing to the serial monitor. For example to write
 // two CSV (commas separated) values:
 dataFile.print("Sensor #1");
 dataFile.print(",");
 dataFile.print(reading, DEC);
 dataFile.println();
 // Finally close the file when done writing. This is smart to do to make
 // sure all the data is written to the file.
 dataFile.close();
 Serial.println("Wrote new measurement to data file!");
 }

Just like using the Arduino SD card library you create a File object by calling an open function and pointing it at the
name of the file and how you'd like to open it (FILE_WRITE mode, i.e. writing new data to the end of the file). Notice

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 58 of 141

however instead of calling open on a global SD card object you're calling it on a fatfs object created earlier in the
sketch (look at the top after the #define configuration values).

Once the file is opened it's simply a matter of calling print and println functions on the file object to write data inside of
it. This is just like writing data to the serial monitor and you can print out text, numeric, and other types of data. Be
sure to close the file when you're done writing to ensure the data is stored correctly!

Reading and Printing Files

The fatfs_print_file example will open a file (by default the data.csv file created by running the fatfs_datalogging
example above) and print all of its contents to the serial monitor. Open the fatfs_print_file example and load it on your
Feather M0 board, then open the serial monitor at 115200 baud. You should see the sketch print out the contents of
data.csv (if you don't have a file called data.csv on the flash look at running the datalogging example above first).

To understand how to read data from a file look in the setup function of the sketch:

 // Open the file for reading and check that it was successfully opened.
 // The FILE_READ mode will open the file for reading.
 File dataFile = fatfs.open(FILE_NAME, FILE_READ);
 if (dataFile) {
 // File was opened, now print out data character by character until at the
 // end of the file.
 Serial.println("Opened file, printing contents below:");
 while (dataFile.available()) {
 // Use the read function to read the next character.
 // You can alternatively use other functions like readUntil, readString, etc.
 // See the fatfs_full_usage example for more details.
 char c = dataFile.read();
 Serial.print(c);
 }
 }

Just like when writing data with the datalogging example you create a File object by calling the open function on a
fatfs object. This time however you pass a file mode of FILE_READ which tells the filesystem you want to read data.

After you open a file for reading you can easily check if data is available by calling the available function on the file,
and then read a single character with the read function. This makes it easy to loop through all of the data in a file by
checking if it's available and reading a character at a time. However there are more advanced read functions you can
use too--see the fatfs_full_usage example or even the Arduino SD library documentation (https://adafru.it/ucu) (the SPI
flash library implements the same functions).

Full Usage Example

For a more complete demonstration of reading and writing files look at the fatfs_full_usage example. This examples
uses every function in the library and demonstrates things like checking for the existence of a file, creating directories,
deleting files, deleting directories, and more.

Remember the SPI flash library is built to have the same functions and interface as the Arduino SD
library (https://adafru.it/ucu) so if you have code or examples that store data on a SD card they should be easy to adapt
to use the SPI flash library, just create a fatfs object like in the examples above and use its open function instead of the
global SD object's open function. Once you have a reference to a file all of the functions and usage should be the
same between the SPI flash and SD libraries!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 59 of 141

https://www.arduino.cc/en/reference/SD
https://www.arduino.cc/en/reference/SD

Accessing SPI Flash

Arduino doesn't have the ability to show up as a 'mass storage' disk drive. So instead we must use CircuitPython to do
that part for us. Here's the full technique:

Start the bootloader on the Express board. Drag over the latest circuitpython uf2 file
After a moment, you should see a CIRCUITPY drive appear on your hard drive with boot_out.txt on it
Now go to Arduino and upload the fatfs_circuitpython example sketch from the Adafruit SPI library. Open the
serial console. It will successfully mount the filesystem and write a new line to data.txt

Back on your computer, re-start the Express board bootloader, and re-drag circuitpython.uf2 onto the BOOT
drive to reinstall circuitpython
Check the CIRCUITPY drive, you should now see data.txt which you can open to read!

Once you have your Arduino sketch working well, for datalogging, you can simplify this procedure by dragging
CURRENT.UF2 off of the BOOT drive to make a backup of the current program before loading circuitpython on. Then
once you've accessed the file you want, re-drag CURRENT.UF2 back onto the BOOT drive to re-install the Arduino
sketch!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 60 of 141

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 61 of 141

�

Feather HELP!

My ItsyBitsy/Feather stopped working when I unplugged the USB!

A lot of our example sketches have a

while (!Serial);

line in setup(), to keep the board waiting until the USB is opened. This makes it a lot easier to debug a program
because you get to see all the USB data output. If you want to run your Feather without USB connectivity, delete or
comment out that line

Even though this FAQ is labeled for Feather, the questions apply to ItsyBitsy's as well!�

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 62 of 141

� My Feather never shows up as a COM or Serial port in the Arduino IDE

A vast number of Itsy/Feather 'failures' are due to charge-only USB cables

We get upwards of 5 complaints a day that turn out to be due to charge-only cables!

Use only a cable that you know is for data syncing

If you have any charge-only cables, cut them in half throw them out. We are serious! They tend to be low quality in
general, and will only confuse you and others later, just get a good data+charge USB cable

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 63 of 141

� Ack! I "did something" and now when I plug in the Itsy/Feather, it doesn't show up as a device
anymore so I cant upload to it or fix it...

No problem! You can 'repair' a bad code upload easily. Note that this can happen if you set a watchdog timer or
sleep mode that stops USB, or any sketch that 'crashes' your board

1. Turn on verbose upload in the Arduino IDE preferences
2. Plug in Itsy or Feather 32u4/M0, it won't show up as a COM/serial port that's ok
3. Open up the Blink example (Examples->Basics->Blink)
4. Select the correct board in the Tools menu, e.g. Feather 32u4, Feather M0, Itsy 32u4 or M0 (physically check

your board to make sure you have the right one selected!)
5. Compile it (make sure that works)
6. Click Upload to attempt to upload the code
7. The IDE will print out a bunch of COM Ports as it tries to upload. During this time, double-click the reset button,

you'll see the red pulsing LED that tells you its now in bootloading mode
8. The board will show up as the Bootloader COM/Serial port
9. The IDE should see the bootloader COM/Serial port and upload properly

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 64 of 141

� I can't get the Itsy/Feather USB device to show up - I get "USB Device Malfunctioning" errors!

This seems to happen when people select the wrong board from the Arduino Boards menu.

If you have a Feather 32u4 (look on the board to read what it is you have) Make sure you select Feather 32u4 for
ATMega32u4 based boards! Do not use anything else, do not use the 32u4 breakout board line.

If you have a Feather M0 (look on the board to read what it is you have) Make sure you select Feather M0 - do not

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 65 of 141

�

use 32u4 or Arduino Zero

If you have a ItsyBitsy M0 (look on the board to read what it is you have) Make sure you select ItsyBitsy M0 - do not
use 32u4 or Arduino Zero

I'm having problems with COM ports and my Itsy/Feather 32u4/M0

Theres two COM ports you can have with the 32u4/M0, one is the user port and one is the bootloader port. They
are not the same COM port number!

When you upload a new user program it will come up with a user com port, particularly if you use Serial in your user

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 66 of 141

�

program.

If you crash your user program, or have a program that halts or otherwise fails, the user COM port can disappear.

When the user COM port disappears, Arduino will not be able to automatically start the bootloader and upload
new software.

So you will need to help it by performing the click-during upload procedure to re-start the bootloader, and upload
something that is known working like "Blink"

I don't understand why the COM port disappears, this does not happen on my Arduino UNO!

UNO-type Arduinos have a seperate serial port chip (aka "FTDI chip" or "Prolific PL2303" etc etc) which handles all
serial port capability seperately than the main chip. This way if the main chip fails, you can always use the COM port.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 67 of 141

�

M0 and 32u4-based Arduinos do not have a seperate chip, instead the main processor performs this task for you. It
allows for a lower cost, higher power setup...but requires a little more effort since you will need to 'kick' into the
bootloader manually once in a while

I'm trying to upload to my 32u4, getting "avrdude: butterfly_recv(): programmer is not responding"
errors

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 68 of 141

This is likely because the bootloader is not kicking in and you are accidentally trying to upload to the wrong COM
port

The best solution is what is detailed above: manually upload Blink or a similar working sketch by hand by manually
launching the bootloader

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 69 of 141

�I'm trying to upload to my Feather M0, and I get this error "Connecting to programmer: .avrdude:
butterfly_recv(): programmer is not responding"

You probably don't have Feather M0 selected in the boards drop-down. Make sure you selected Feather M0.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 70 of 141

� I'm trying to upload to my Feather and i get this error "avrdude: ser_recv(): programmer is not
responding"

You probably don't have Feather M0 / Feather 32u4 selected in the boards drop-down. Make sure you selected
Feather M0 (or Feather 32u4).

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 71 of 141

� I attached some wings to my Feather and now I can't read the battery voltage!

Make sure your Wing doesn't use pin #9 which is the analog sense for the lipo battery!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 72 of 141

� The yellow LED Is flickering on my Feather, but no battery is plugged in, why is that?

The charge LED is automatically driven by the Lipoly charger circuit. It will try to detect a battery and is expecting
one to be attached. If there isn't one it may flicker once in a while when you use power because it's trying to charge
a (non-existant) battery.

It's not harmful, and its totally normal!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 73 of 141

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 74 of 141

What is CircuitPython?

CircuitPython is a programming language designed to simplify experimenting and learning to program on low-cost
microcontroller boards. It makes getting started easier than ever with no upfront desktop downloads needed. Once
you get your board set up, open any text editor, and get started editing code. It's that simple.

CircuitPython is based on Python

Python is the fastest growing programming language. It's taught in schools and universities. It's a high-level
programming language which means it's designed to be easier to read, write and maintain. It supports modules and
packages which means it's easy to reuse your code for other projects. It has a built in interpreter which means there
are no extra steps, like compiling, to get your code to work. And of course, Python is Open Source Software which
means it's free for anyone to use, modify or improve upon.

CircuitPython adds hardware support to all of these amazing features. If you already have Python knowledge, you can
easily apply that to using CircuitPython. If you have no previous experience, it's really simple to get started!

Why would I use CircuitPython?

CircuitPython is designed to run on microcontroller boards. A microcontroller board is a board with a microcontroller
chip that's essentially an itty-bitty all-in-one computer. The board you're holding is a microcontroller board!
CircuitPython is easy to use because all you need is that little board, a USB cable, and a computer with a USB
connection. But that's only the beginning.

Other reasons to use CircuitPython include:

You want to get up and running quickly. Create a file, edit your code, save the file, and it runs immediately.
There is no compiling, no downloading and no uploading needed.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 75 of 141

You're new to programming. CircuitPython is designed with education in mind. It's easy to start learning how to
program and you get immediate feedback from the board.
Easily update your code. Since your code lives on the disk drive, you can edit it whenever you like, you can also
keep multiple files around for easy experimentation.
The serial console and REPL. These allow for live feedback from your code and interactive programming.
File storage. The internal storage for CircuitPython makes it great for data-logging, playing audio clips, and
otherwise interacting with files.
Strong hardware support. There are many libraries and drivers for sensors, breakout boards and other external
components.
It's Python! Python is the fastest-growing programming language. It's taught in schools and universities.
CircuitPython is almost-completely compatible with Python. It simply adds hardware support.

This is just the beginning. CircuitPython continues to evolve, and is constantly being updated. We welcome and
encourage feedback from the community, and we incorporate this into how we are developing CircuitPython. That's
the core of the open source concept. This makes CircuitPython better for you and everyone who uses it!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 76 of 141

CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ) designed to simplify
experimentation and education on low-cost microcontrollers. It makes it easier than ever to get prototyping by
requiring no upfront desktop software downloads. Simply copy and edit files on the CIRCUITPY flash drive to iterate.

The following instructions will show you how to install CircuitPython. If you've already installed CircuitPython but are
looking to update it or reinstall it, the same steps work for that as well!

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

https://adafru.it/FQg

https://adafru.it/FQg

Download and save it to your desktop (or wherever is

handy).

Plug your Hallowing M4 into your computer using a

known-good USB cable.

A lot of people end up using charge-only USB cables

and it is very frustrating! So make sure you have a USB

cable you know is good for data sync.

Double-click the Reset button next to the USB

connector (magenta arrow) on your board, and you will

see the four NeoPixel RGB LEDs (green arrows) turn

green. If they turn red, check the USB cable, try another

USB port, etc. Note: The little red LED next to the USB

connector will be dim red, and the little yellow LED on

the opposite side will flash yellow. That's ok!

If double-clicking doesn't work the first time, try again.

Sometimes it can take a few tries to get the rhythm right!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 77 of 141

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/hallowing_m4_express/
https://learn.adafruit.com/assets/81085
https://learn.adafruit.com/assets/81086

You will see a new disk drive appear called

HALLOM4BOOT.

Drag the adafruit_circuitpython_hallowing_m4_etc.uf2

file to HALLOM4BOOT.

The LED will flash. Then, the HALLOM4BOOT drive will

disappear and a new disk drive called CIRCUITPY will

appear.

If you haven't added any code to your board, the only

file that will be present is boot_out.txt. This is absolutely

normal! It's time for you to add your code.py and get

started!

That's it, you're done! :)

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 78 of 141

https://learn.adafruit.com/assets/81093
https://learn.adafruit.com/assets/81095
https://learn.adafruit.com/assets/81098

Installing Mu
Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's written in Python and works on
Windows, MacOS, Linux and Raspberry Pi. The serial console is built right in so you get immediate feedback from your
board's serial output!

Download and Install Mu

Download Mu

from https://codewith.mu (https://adafru.it/Be6). Click

the Download or Start Here links there for downloads

and installation instructions. The website has a wealth of

other information, including extensive tutorials and and

how-to's.

Using Mu

The first time you start Mu, you will be prompted to

select your 'mode' - you can always change your mind

later. For now please select Adafruit!

The current mode is displayed in the lower right corner

of the window, next to the "gear" icon. If the mode says

"Microbit" or something else, click on that and then

choose "Adafruit" in the dialog box that appears.

Mu is our recommended editor - please use it (unless you are an experienced coder with a favorite editor
already!)�

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 79 of 141

https://learn.adafruit.com/assets/74974
https://codewith.mu/
https://learn.adafruit.com/assets/49641

Mu attempts to auto-detect your board, so please plug

in your CircuitPython device and make sure it shows up

as a CIRCUITPY drive before starting Mu

Now you're ready to code! Lets keep going....

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 80 of 141

https://learn.adafruit.com/assets/49642

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and running. In this section, we're going to
cover how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. We strongly recommend using Mu! It's
designed for CircuitPython, and it's really simple and easy to use, with a built in serial console!

If you don't or can't use Mu, there are basic text editors built into every operating system such as Notepad on Windows,
TextEdit on Mac, and gedit on Linux. However, many of these editors don't write back changes immediately to files that
you edit. That can cause problems when using CircuitPython. See the Editing Code (https://adafru.it/id3) section below.
If you want to skip that section for now, make sure you do "Eject" or "Safe Remove" on Windows or "sync" on Linux
after writing a file if you aren't using Mu. (This is not a problem on MacOS.)

Creating Code

Open your editor, and create a new file. If you are using

Mu, click the New button in the top left

Copy and paste the following code into your editor:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 81 of 141

https://learn.adafruit.com/assets/49645

It will look like this - note that under the while True:
line, the next four lines have spaces to indent them, but

they're indented exactly the same amount. All other

lines have no spaces before the text.

Save this file as code.py on your CIRCUITPY drive.

On each board you'll find a tiny red LED. It should now be blinking. Once per second

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 82 of 141

https://learn.adafruit.com/assets/49646
https://learn.adafruit.com/assets/49649
https://learn.adafruit.com/assets/49650

Congratulations, you've just run your first CircuitPython program!

Editing Code

To edit code, open the code.py file on your CIRCUITPY

drive into your editor.

Make the desired changes to your code. Save the file.

That's it!

Your code changes are run as soon as the file is done saving.

There's just one warning we have to give you before we continue...

The CircuitPython code on your board detects when the files are changed or written and will automatically re-start your
code. This makes coding very fast because you save, and it re-runs.

However, you must wait until the file is done being saved before unplugging or resetting your board! On Windows
using some editors this can sometimes take up to 90 seconds, on Linux it can take 30 seconds to complete because
the text editor does not save the file completely. Mac OS does not seem to have this delay, which is nice!

This is really important to be aware of. If you unplug or reset the board before your computer finishes writing the file to
your board, you can corrupt the drive. If this happens, you may lose the code you've written, so it's important to backup
your code to your computer regularly.

There are a few ways to avoid this:

1. Use an editor that writes out the file completely when you save it.

Recommended editors:

mu (https://adafru.it/Be6) is an editor that safely writes all changes (it's also our recommended editor!)
emacs (https://adafru.it/xNA) is also an editor that will fulIy write files on save (https://adafru.it/Be7)
Sublime Text (https://adafru.it/xNB) safely writes all changes
Visual Studio Code (https://adafru.it/Be9) appears to safely write all changes
gedit on Linux appears to safely write all changes

Recommended only with particular settings or with add-ons:

Don't Click Reset or Unplug!�

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 83 of 141

https://learn.adafruit.com/assets/49651
https://codewith.mu/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.sublimetext.com/
https://code.visualstudio.com/

�

vim (https://adafru.it/ek9) / vi safely writes all changes. But set up vim to not write swapfiles (https://adafru.it/ELO)
(.swp files: temporary records of your edits) to CIRCUITPY. Run vim with vim -n , set the no swapfile option, or

set the directory option to write swapfiles elsewhere. Otherwise the swapfile writes trigger restarts of your

program.
The PyCharm IDE (https://adafru.it/xNC) is safe if "Safe Write" is turned on in Settings->System Settings-
>Synchronization (true by default).
If you are using Atom (https://adafru.it/fMG), install the fsync-on-save package (https://adafru.it/E9m) so that it will
always write out all changes to files on CIRCUITPY .

SlickEdit (https://adafru.it/DdP) works only if you add a macro to flush the disk (https://adafru.it/ven).

We don't recommend these editors:

notepad (the default Windows editor) and Notepad++ can be slow to write, so we recommend the editors above!
If you are using notepad, be sure to eject the drive (see below)
IDLE does not force out changes immediately
nano (on Linux) does not force out changes
geany (on Linux) does not force out changes
Anything else - we haven't tested other editors so please use a recommended one!

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually eject, but it will force the operating
system to save your file to disk. On Linux, use the sync command in a terminal to force the write to disk.

Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this happens, follow the steps found on
the Troubleshooting page of every board guide to get your board up and running again.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 84 of 141

http://www.vim.org/
https://vi.stackexchange.com/a/179
https://www.jetbrains.com/pycharm/
https://atom.io/
https://atom.io/packages/fsync-on-save
https://www.slickedit.com/
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file into your editor. We'll make a
simple change. Change the first 0.5 to 0.1 . The code should look like this:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your board? Something changed! Do
you know why? Let's find out!

Exploring Your First CircuitPython Program

First, we'll take a look at the code we're editing.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 85 of 141

Here is the original code again:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

Imports & Libraries

Each CircuitPython program you run needs to have a lot of information to work. The reason CircuitPython is so simple
to use is that most of that information is stored in other files and works in the background. These files are called
libraries. Some of them are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder called lib.

import board
import digitalio
import time

The import statements tells the board that you're going to use a particular library in your code. In this example, we

imported three libraries: board , digitalio , and time . All three of these libraries are built into CircuitPython, so no

separate files are needed. That's one of the things that makes this an excellent first example. You don't need any thing
extra to make it work! board gives you access to the hardware on your board, digitalio lets you access that hardware
as inputs/outputs and time let's you pass time by 'sleeping'

Setting Up The LED

The next two lines setup the code to use the LED.

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

Your board knows the red LED as D13 . So, we initialise that pin, and we set it to output. We set led to equal the rest

of that information so we don't have to type it all out again later in our code.

Loop-de-loops

The third section starts with a while statement. while True: essentially means, "forever do the following:". while
True: creates a loop. Code will loop "while" the condition is "true" (vs. false), and as True is never False, the code will

loop forever. All code that is indented under while True: is "inside" the loop.

Inside our loop, we have four items:

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 86 of 141

�

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

First, we have led.value = True . This line tells the LED to turn on. On the next line, we have time.sleep(0.5) . This line

is telling CircuitPython to pause running code for 0.5 seconds. Since this is between turning the led on and off, the led
will be on for 0.5 seconds.

The next two lines are similar. led.value = False tells the LED to turn off, and time.sleep(0.5) tells CircuitPython to

pause for another 0.5 seconds. This occurs between turning the led off and back on so the LED will be off for 0.5
seconds too.

Then the loop will begin again, and continue to do so as long as the code is running!

So, when you changed the first 0.5 to 0.1 , you decreased the amount of time that the code leaves the LED on. So it

blinks on really quickly before turning off!

Great job! You've edited code in a CircuitPython program!

What if I don't have the loop?

If you don't have the loop, the code will run to the end and exit. This can lead to some unexpected behavior in
simple programs like this since the "exit" also resets the state of the hardware. This is a different behavior than
running commands via REPL. So if you are writing a simple program that doesn't seem to work, you may need to add
a loop to the end so the program doesn't exit.

The simplest loop would be:

while True:

 pass

And remember - you can press <CTRL><C> to exit the loop.

See also the Behavior section in the docs.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 87 of 141

https://circuitpython.readthedocs.io/en/latest/README.html#behavior

More Changes

We don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it looks like this:

while True:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly because you've increased the amount

of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them to see what happens! These
were simple changes, but major changes are done using the same process. Make your desired change, save it, and
get the results. That's really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.txt, code.py, main.txt and main.py.
CircuitPython looks for those files, in that order, and then runs the first one it finds. While we suggest using code.py as
your code file, it is important to know that the other options exist. If your program doesn't seem to be updating as you
work, make sure you haven't created another code file that's being read instead of the one you're working on.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 88 of 141

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called a "print statement". This is a line
you include in your code that causes your code to output text. A print statement in CircuitPython looks like this:

print("Hello, world!")

This line would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial console comes in!

The serial console receives output from your CircuitPython board sent over USB and displays it so you can see it. This
is necessary when you've included a print statement in your code and you'd like to see what you printed. It is also
helpful for troubleshooting errors, because your board will send errors and the serial console will print those too.

The serial console requires a terminal program. A terminal is a program that gives you a text-based interface to perform
various tasks.

sudo apt purge modemmanager

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board making using the REPL really really
easy.

Please note that Mu does yet not work with nRF52 or ESP8266-based CircuitPython boards, skip down to the next
section for details on using a terminal program.

First, make sure your CircuitPython board is plugged in.

If you are using Windows 7, make sure you installed the

drivers (https://adafru.it/Amd).

If you're on Linux, and are seeing multi-second delays connecting to the serial console, or are seeing "AT"
and other gibberish when you connect, then the modemmanager service might be interfering. Just remove it;
it doesn't have much use unless you're still using dial-up modems. To remove, type this command at a shell:

�

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 89 of 141

https://learn.adafruit.com/assets/49652
file:///welcome-to-circuitpython/installing-circuitpython#windows-7-drivers

Once in Mu, look for the Serial button in the menu and click it.

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the Serial button, you need to add
yourself to a user group to have permission to connect to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group. On other Linux distributions, the
group you need may be different. See Advanced Serial Console on Mac and Linux (https://adafru.it/AAI) for details on
how to add yourself to the right group.

Using Something Else?

If you're not using Mu to edit, are using ESP8266 or nRF52 CircuitPython, or if for some reason you are not a fan of the
built in serial console, you can run the serial console as a separate program.

Windows requires you to download a terminal program, check out this page for more details (https://adafru.it/AAH)

Mac and Linux both have one built in, though other options are available for download, check this page for more
details (https://adafru.it/AAI)

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 90 of 141

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///welcome-to-circuitpython/advanced-serial-console-on-windows
file:///welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, we're going to edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print anything you like! Just include

your phrase between the quotation marks inside the parentheses. For example:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 print("Hello, CircuitPython!")
 led.value = True
 time.sleep(1)
 led.value = False
 time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed text to something else.

Keep your serial console window where you can see it. Save your file. You'll see what the serial console displays when

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 91 of 141

the board reboots. Then you'll see your new change!

The Traceback (most recent call last): is telling you the last thing your board was doing before you saved your file.

This is normal behavior and will happen every time the board resets. This is really handy for troubleshooting. Let's
introduce an error so we can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says led.value = Tru

Save your file. You will notice that your red LED will stop blinking, and you may have a colored status LED blinking at
you. This is because the code is no longer correct and can no longer run properly. We need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose. You may have 200 lines of code,
and have no idea where your error could be hiding. This is where the serial console can help. Let's take a look!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 92 of 141

The Traceback (most recent call last): is telling you that the last thing it was able to run was line 10 in your code. The

next line is your error: NameError: name 'Tru' is not defined . This error might not mean a lot to you, but combined

with knowing the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the problem is already. But if you didn't,
you'd want to look at line 10 and see if you could figure it out. If you're still unsure, try googling the error to get some
help. In this case, you know what to look for. You spelled True wrong. Fix the typo and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking again.

The serial console will display any output generated by your code. Some sensors, such as a humidity sensor or a
thermistor, receive data and you can use print statements to display that information. You can also use print statements
for troubleshooting. If your code isn't working, and you want to know where it's failing, you can put print statements in
various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and programming!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 93 of 141

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL. The REPL allows you to enter
individual lines of code and have them run immediately. It's really handy if you're running into trouble with a particular
program and can't figure out why. It's interactive so it's great for testing new ideas.

To use the REPL, you first need to be connected to the serial console. Once that connection has been established,
you'll want to press Ctrl + C.

If there is code running, it will stop and you'll see Press any key to enter the REPL. Use CTRL-D to reload. Follow those

instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your board was doing before you pressed Ctrl + C

and interrupted it. The KeyboardInterrupt is you pressing Ctrl + C. This information can be handy when

troubleshooting, but for now, don't worry about it. Just note that it is expected behavior.

If there is no code running, you will enter the REPL immediately after pressing Ctrl + C. There is no information about
what your board was doing before you interrupted it because there is no code running.

Either way, once you press a key you'll see a >>> prompt welcoming you to the REPL!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 94 of 141

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released. Next, it gives you the type of
board you're using and the type of microcontroller the board uses. Each part of this may be different for your board
depending on the versions you're working with.

This is followed by the CircuitPython prompt.

From this prompt you can run all sorts of commands and code. The first thing we'll do is run help() . This will tell us

where to start exploring the REPL. To run code in the REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

First part of the message is another reference to the version of CircuitPython you're using. Second, a URL for the
CircuitPython related project guides. Then... wait. What's this? To list built-in modules, please do `help("modules")`.
Remember the libraries you learned about while going through creating code? That's exactly what this is talking about!
This is a perfect place to start. Let's take a look!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 95 of 141

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core libraries built into CircuitPython. We discussed how board contains all of the pins on the
board that you can use in your code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might look like nothing happened, but

that's not the case! If you recall, the import statement simply tells the code to expect to do something with that

module. In this case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 96 of 141

This is a list of all of the pins on your board that are available for you to use in your code. Each board's list will differ
slightly depending on the number of pins available. Do you see D13 ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the REPL isn't saved anywhere. If
you're testing something new that you'd like to keep, make sure you have it saved somewhere on your computer as
well!

Every programmer in every programming language starts with a piece of code that says, "Hello, World." We're going to
say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire programs into the REPL to test them.
As we said though, remember that nothing typed into the REPL is saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to see if a few new lines of code will
work. It's fantastic for troubleshooting code by entering it one line at a time and finding out where it fails. It lets you see
what libraries are available and explore those libraries.

Try typing more into the REPL to see what happens!

Returning to the serial console

When you're ready to leave the REPL and return to the serial console, simply press Ctrl + D. This will reload your board
and reenter the serial console. You will restart the program you had running before entering the REPL. In the console
window, you'll see any output from the program you had running. And if your program was affecting anything visual on
the board, you'll see that start up again as well.

You can return to the REPL at any time!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 97 of 141

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 98 of 141

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The reason CircuitPython is so simple
to use is that most of that information is stored in other files and works in the background. These files are called
libraries. Some of them are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder called lib.
Part of what makes CircuitPython so awesome is its ability to store code separately from the firmware itself. Storing
code separately from the firmware makes it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If not, simply create the folder
yourself. When you first install CircuitPython, an empty lib directory will be created for you.

CircuitPython libraries work in the same was as regular Python modules so the Python docs (https://adafru.it/rar) are a
great reference for how it all should work. In Python terms, we can place our library files in the lib directory because its
part of the Python path by default.

One downside of this approach of separate libraries is that they are not built in. To use them, one needs to copy them
to the CIRCUITPY drive before they can be used. Fortunately, we provide a bundle full of our libraries.

Our bundle and releases also feature optimized versions of the libraries with the .mpy file extension. These files take
less space on the drive and have a smaller memory footprint as they are loaded.

Installing the CircuitPython Library Bundle

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases.
Visit https://circuitpython.org/downloads to download the latest version of CircuitPython for your board. You
must download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update
CircuitPython and then visit https://circuitpython.org/libraries to download the latest Library Bundle.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 99 of 141

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://docs.python.org/3/tutorial/modules.html

We're constantly updating and improving our libraries, so we don't (at this time) ship our CircuitPython boards with the
full library bundle. Instead, you can find example code in the guides for your board that depends on external libraries.
Some of these libraries may be available from us at Adafruit, some may be written by community members!

Either way, as you start to explore CircuitPython, you'll want to know how to get libraries on board.

You can grab the latest Adafruit CircuitPython Bundle release by clicking the button below.

Note: Match up the bundle version with the version of CircuitPython you are running - 3.x library for running any
version of CircuitPython 3, 4.x for running any version of CircuitPython 4, etc. If you mix libraries with major
CircuitPython versions, you will most likely get errors due to changes in library interfaces possible during major version
changes.

https://adafru.it/ENC

https://adafru.it/ENC

If you need another version, you can also visit the bundle release page (https://adafru.it/Ayy) which will let you select
exactly what version you're looking for, as well as information about changes.

Either way, download the version that matches your CircuitPython firmware version. If you don't know the version,
look at the initial prompt in the CircuitPython REPL, which reports the version. For example, if you're running v4.0.1,
download the 4.x library bundle. There's also a py bundle which contains the uncompressed python files, you probably
don't want that unless you are doing advanced work on libraries.

After downloading the zip, extract its contents. This is usually done by double clicking on the zip. On Mac OSX, it
places the file in the same directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two folders. One folder is the lib bundle, and the
other folder is the examples bundle.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 100 of 141

https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest/

Now open the lib folder. When you open the folder, you'll see a large number of mpy files and folders

Example Files

All example files from each library are now included in the bundles, as well as an examples-only bundle. These are
included for two main reasons:

Allow for quick testing of devices.
Provide an example base of code, that is easily built upon for individualized purposes.

Copying Libraries to Your Board

First you'll want to create a lib folder on your CIRCUITPY drive. Open the drive, right click, choose the option to create
a new folder, and call it lib. Then, open the lib folder you extracted from the downloaded zip. Inside you'll find a
number of folders and .mpy files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

This also applies to example files. They are only supplied as raw .py files, so they may need to be converted to .mpy
using the mpy-cross utility if you encounter MemoryErrors . This is discussed in the CircuitPython Essentials

Guide (https://adafru.it/CTw). Usage is the same as described above in the Express Boards section. Note: If you do not
place examples in a separate folder, you would remove the examples from the import statement.

Example: ImportError Due to Missing Library

If you choose to load libraries as you need them, you may write up code that tries to use a library you haven't yet
loaded. We're going to demonstrate what happens when you try to utilise a library that you don't have loaded on your
board, and cover the steps required to resolve the issue.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 101 of 141

https://learn.adafruit.com/circuitpython-essentials/circuitpython-expectations#how-can-i-create-my-own-mpy-files-18-6

This demonstration will only return an error if you do not have the required library loaded into the lib folder on your
CIRCUITPY drive.

Let's use a modified version of the blinky example.

import board
import time
import simpleio

led = simpleio.DigitalOut(board.D13)

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see what's going on.

We have an ImportError . It says there is no module named 'simpleio' . That's the one we just included in our code!

Click the link above to download the correct bundle. Extract the lib folder from the downloaded bundle file. Scroll
down to find simpleio.mpy. This is the library file we're looking for! Follow the steps above to load an individual library
file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose the library that matches the one
you're missing.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 102 of 141

Library Install on Non-Express Boards

If you have a Trinket M0 or Gemma M0, you'll want to follow the same steps in the example above to install libraries as
you need them. You don't always need to wait for an ImportError as you probably know what library you added to

your code. Simply open the lib folder you downloaded, find the library you need, and drag it to the lib folder on your
CIRCUITPY drive.

You may end up running out of space on your Trinket M0 or Gemma M0 even if you only load libraries as you need
them. There are a number of steps you can use to try to resolve this issue. You'll find them in the Troubleshooting page
in the Learn guides for your board.

Updating CircuitPython Libraries/Examples

Libraries and examples are updated from time to time, and it's important to update the files you have on your
CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag the library file to your lib folder, it
will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates include things like bug fixes and
new features. It's important to check in every so often to see if the libraries you're using have been updated.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 103 of 141

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are a few things you may encounter
and how to resolve them.

Always Run the Latest Version of CircuitPython and Libraries

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases. You need to
update to the latest CircuitPython. (https://adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update
CircuitPython and then download the latest bundle (https://adafru.it/ENC).

As we release new versions of CircuitPython, we will stop providing the previous bundles as automatically created
downloads on the Adafruit CircuitPython Library Bundle repo. If you must continue to use an earlier version, you can
still download the appropriate version of mpy-cross from the particular release of CircuitPython on the CircuitPython

repo and create your own compatible .mpy library files. However, it is best to update to the latest for both
CircuitPython and the library bundle.

I have to continue using CircuitPython 3.x or 2.x, where can I find compatible
libraries?

We are no longer building or supporting the CircuitPython 2.x and 3.x library bundles. We highly encourage you to
update CircuitPython to the latest version (https://adafru.it/Em8) and use the current version of the
libraries (https://adafru.it/ENC). However, if for some reason you cannot update, you can find the last available 2.x
build here (https://adafru.it/FJA) and the last available 3.x build here (https://adafru.it/FJB).

CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not
Present

You may have a different board.

Only Adafruit Express boards and the Trinket M0 and Gemma M0 boards ship with the UF2 bootloader
 (https://adafru.it/zbX)installed. Feather M0 Basic, Feather M0 Adalogger, and similar boards use a regular Arduino-
compatible bootloader, which does not show a boardnameBOOT drive.

MakeCode

If you are running a MakeCode (https://adafru.it/zbY) program on Circuit Playground Express, press the reset button
just once to get the CPLAYBOOT drive to show up. Pressing it twice will not work.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake? You don't need to install this package on Windows
10 for most Adafruit boards. The old version (v1.5) can interfere with recognizing your device. Go to Settings -> Apps

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases.
Visit https://circuitpython.org/downloads to download the latest version of CircuitPython for your board. You
must download the CircuitPython Library Bundle that matches your version of CircuitPython. Please update
CircuitPython and then visit https://circuitpython.org/libraries to download the latest Library Bundle.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 104 of 141

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
file:///adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///makecode/sharing-and-saving?view=all#step-1-bootloader-mode

and uninstall all the "Adafruit" driver programs.

Windows 7

The latest version of the Adafruit Windows Drivers (version 2.0.0.0 or later) will fix the missing boardnameBOOT drive

problem on Windows 7. To resolve this, first uninstall the old versions of the drivers:

Unplug any boards. In Uninstall or Change a Program (Control Panel->Programs->Uninstall a program), uninstall
everything named "Windows Driver Package - Adafruit Industries LLC ...".

Now install the new 2.3.0.0 (or higher) Adafruit Windows Drivers Package:

https://adafru.it/AB0

https://adafru.it/AB0

When running the installer, you'll be shown a list of drivers to choose from. You can check and uncheck the
boxes to choose which drivers to install.

You should now be done! Test by unplugging and replugging the board. You should see the CIRCUITPY drive, and

when you double-click the reset button (single click on Circuit Playground Express running MakeCode), you should see
the appropriate boardnameBOOT drive.

Let us know in the Adafruit support forums (https://adafru.it/jIf) or on the Adafruit Discord () if this does not work for you!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 105 of 141

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers_*.exe
https://forums.adafruit.com
https://adafru.it/discord

Windows Explorer Locks Up When Accessing boardnameBOOT Drive

On Windows, several third-party programs we know of can cause issues. The symptom is that you try to access the
boardnameBOOT drive, and Windows or Windows Explorer seems to lock up. These programs are known to cause

trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64. They acquired hardware to test,
and released a beta version that fixes the problem. This may have been incorporated into the latest release.
Please let us know in the forums if you test thi.s
Hard Disk Sentinel
Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely. Disabling some aspects of
Kaspersky does not always solve the problem. This problem has been reported to Kaspersky.

CIRCUITPY Drive Does Not Appear

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. We haven't yet figured out a settings change

that prevents this. Complete uninstallation of Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY . A user has reported this problem on Windows 7. The user turned off

both Smart Firewall and Auto Protect, and CIRCUITPY then appeared.

Serial Console in Mu Not Displaying Anything

There are times when the serial console will accurately not display anything, such as, when no code is currently
running, or when code with no serial output is already running before you open the console. However, if you find
yourself in a situation where you feel it should be displaying something like an error, consider the following.

Depending on the size of your screen or Mu window, when you open the serial console, the serial console panel may
be very small. This can be a problem. A basic CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Traceback (most recent call last):
 File "code.py", line 7
SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank lines or blank lines followed by
Press any key to enter the REPL. Use CTRL-D to reload.. If this is the case, you need to either mouse over the top of

the panel to utilise the option to resize the serial panel, or use the scrollbar on the right side to scroll up and find your
message.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 106 of 141

This applies to any kind of serial output whether it be error messages or print statements. So before you start trying to
debug your problem on the hardware side, be sure to check that you haven't simply missed the serial messages due to
serial output panel height.

CircuitPython RGB Status Light

The Feather M0 Express, Feather M4 Express, Metro M0 Express, Metro M4 Express, ItsyBitsy M0 Express, ItsyBitsy M4
Express, Gemma M0, and Trinket M0 all have a single NeoPixel or DotStar RGB LED on the board that indicates the
status of CircuitPython.

Circuit Playground Express does NOT have a status LED. The LEDs will pulse green when in the bootloader. They do
NOT indicate any status while running CircuitPython.

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt , main.py , or main.txt) is running

pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for a reset to indicate that it should
start in safe mode
pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted
steady WHITE: REPL is running
steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate the line number of the error. The
color of the first flash indicates the type of error:

GREEN: IndentationError
CYAN: SyntaxError
WHITE: NameError
ORANGE: OSError
PURPLE: ValueError
YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHITE flashes are thousands' place,
BLUE are hundreds' place, YELLOW are tens' place, and CYAN are one's place. So for example, an error on line 32
would flash YELLOW three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

ValueError: Incompatible .mpy file.

This error occurs when importing a module that is stored as a mpy binary file that was generated by a different

version of CircuitPython than the one its being loaded into. In particular, the mpy binary format changed between

CircuitPython versions 2.x and 3.x, as well as between 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 3.x from 2.x you’ll need to download a newer version of the library
that triggered the error on import . They are all available in the Adafruit bundle (https://adafru.it/y8E).

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 107 of 141

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

Make sure to download a version with 2.0.0 or higher in the filename if you're using CircuitPython version 2.2.4, and
the version with 3.0.0 or higher in the filename if you're using CircuitPython version 3.0.

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find that your CIRCUITPY stops

showing up in your file explorer, or shows up as NO_NAME . These are indicators that your filesystem has issues.

First check - have you used Arduino to program your board? If so, CircuitPython is no longer able to provide the USB
services. Reset the board so you get a boardnameBOOT drive rather than a CIRCUITPY drive, copy the latest version

of CircuitPython (.uf2) back to the board, then Reset. This may restore CIRCUITPY functionality.

If still broken - When the CIRCUITPY disk is not safely ejected before being reset by the button or being disconnected

from USB, it may corrupt the flash drive. It can happen on Windows, Mac or Linux.

In this situation, the board must be completely erased and CircuitPython must be reloaded onto the board.

Easiest Way: Use storage.erase_filesystem()
Starting with version 2.3.0, CircuitPython includes a built-in function to erase and reformat the filesystem. If you have an
older version of CircuitPython on your board, you can update to the newest version (https://adafru.it/Amd) to do this.

1. Connect to the CircuitPython REPL (https://adafru.it/Bec) using Mu or a terminal program.
2. Type:

>>> import storage
>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Old Way: For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:

If you can't get to the REPL, or you're running a version of CircuitPython before 2.3.0, and you don't want to upgrade,
you can do this.

 1. Download the correct erase file:

https://adafru.it/AdI

https://adafru.it/AdI

https://adafru.it/AdJ

https://adafru.it/AdJ

https://adafru.it/EVK

You WILL lose everything on the board when you complete the following steps. If possible, make a copy of
your code before continuing.�

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 108 of 141

file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2

https://adafru.it/EVK

https://adafru.it/AdK

https://adafru.it/AdK

https://adafru.it/EoM

https://adafru.it/EoM

https://adafru.it/DjD

https://adafru.it/DjD

https://adafru.it/DBA

https://adafru.it/DBA

https://adafru.it/Eca

https://adafru.it/Eca

 2. Double-click the reset button on the board to bring up the boardnameBOOT drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The onboard NeoPixel will turn yellow or blue, indicating the erase has started.
 5. After approximately 15 seconds, the mainboard NeoPixel will light up green. On the NeoTrellis M4 this is the
first NeoPixel on the grid
 6. Double-click the reset button on the board to bring up the boardnameBOOT drive.

 7. Drag the appropriate latest release of CircuitPython (https://adafru.it/Amd) .uf2 file to

the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board, check out the installation
page (https://adafru.it/Amd). You'll also need to install your libraries and code!

Old Way: For Non-Express Boards with a UF2 bootloader (Gemma M0, Trinket M0):

If you can't get to the REPL, or you're running a version of CircuitPython before 2.3.0, and you don't want to upgrade,
you can do this.

 1. Download the erase file:

https://adafru.it/AdL

https://adafru.it/AdL

 2. Double-click the reset button on the board to bring up the boardnameBOOT drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The boot LED will start flashing again, and the boardnameBOOT drive will reappear.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 109 of 141

https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2?1512152239

 5. Drag the appropriate latest release CircuitPython (https://adafru.it/Amd) .uf2 file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer again.

If you haven't already downloaded the latest release of CircuitPython for your board, check out the installation
page (https://adafru.it/Amd) You'll also need to install your libraries and code!

Old Way: For non-Express Boards without a UF2 bootloader (Feather M0 Basic Proto,
Feather Adalogger, Arduino Zero):

If you are running a version of CircuitPython before 2.3.0, and you don't want to upgrade, or you can't get to the REPL,
you can do this.

Just follow these directions to reload CircuitPython using bossac (https://adafru.it/Bed), which will erase and re-create

CIRCUITPY .

Running Out of File Space on Non-Express Boards

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its likely you'll run out of space but
don't panic! There are a couple ways to free up space.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you don't need it or have already
installed it. Its ~12KiB or so.

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there are libraries in the lib folder that

you aren't using anymore or test code that isn't in use. Don't delete the lib folder completely, though, just remove

what you don't need.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the recommendation is to indent code
with four spaces for every indent. In general, we recommend that too. However, one trick to storing more human-
readable code is to use a single tab character for indentation. This approach uses 1/4 of the space for indentation and
can be significant when we're counting bytes.

Mac OSX loves to add extra files.

Luckily you can disable some of the extra hidden files that Mac OSX adds by running a few commands to disable
search indexing and create zero byte placeholders. Follow the steps below to maximize the amount of space available
on OSX:

Prevent & Remove Mac OSX Hidden Files

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 110 of 141

file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/non-uf2-installation

First find the volume name for your board. With the board plugged in run this command in a terminal to list all the
volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full path to the volume is

the /Volumes/CIRCUITPY path.

Now follow the steps from this question (https://adafru.it/u1c) to run these terminal commands that stop hidden files
from being created on the board:

mdutil -i off /Volumes/CIRCUITPY
cd /Volumes/CIRCUITPY
rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}
mkdir .fseventsd
touch .fseventsd/no_log .metadata_never_index .Trashes
cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your board's volume if it's different. At this

point all the hidden files should be cleared from the board and some hidden files will be prevented from being created.

However there are still some cases where hidden files will be created by Mac OSX. In particular if you copy a file that
was downloaded from the internet it will have special metadata that Mac OSX stores as a hidden file. Luckily you can
run a copy command from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on Mac OSX Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on Mac OSX you need to be careful to
copy files to the board with a special command that prevents future hidden files from being created. Unfortunately
you cannot use drag and drop copy in Finder because it will still create these hidden extended attribute files in some
cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For example to copy a foo.mpy file to the

board use a command like:

 cp -X foo.mpy /Volumes/CIRCUITPY

(Replace foo.mpy with the name of the file you want to copy.) Or to copy a folder and all of its child files/folders use a

command like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before copying.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 111 of 141

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

if lib does not exist, you'll create a file named lib !
cp -X foo.mpy /Volumes/CIRCUITPY/lib
This is safer, and will complain if a lib folder does not exist.
cp -X foo.mpy /Volumes/CIRCUITPY/lib/

Other Mac OSX Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden files here's how to do so. First
list the amount of space used on the CIRCUITPY drive with the df command:

Lets remove the ._ files first.

Whoa! We have 13Ki more than before! This space can now be used for libraries and code!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 112 of 141

Uninstalling CircuitPython

A lot of our boards can be used with multiple programming languages. For example, the Circuit Playground Express
can be used with MakeCode, Code.org CS Discoveries, CircuitPython and Arduino.

Maybe you tried CircuitPython and want to go back to MakeCode or Arduino? Not a problem

You can always remove/re-install CircuitPython whenever you want! Heck, you can change your mind every day!

Backup Your Code

Before uninstalling CircuitPython, don't forget to make a backup of the code you have on the little disk drive. That
means your main.py or code.py any other files, the lib folder etc. You may lose these files when you remove
CircuitPython, so backups are key! Just drag the files to a folder on your laptop or desktop computer like you would
with any USB drive.

Moving to MakeCode

If you want to go back to using MakeCode, its really easy. Visit makecode.adafruit.com (https://adafru.it/wpC) and find
the program you want to upload. Click Download to download the .uf2 file that is generated by MakeCode.

Now double-click your CircuitPython board until you see the onboard LED(s) turn green and the ...BOOT directory
shows up.

Then find the downloaded MakeCode .uf2 file and drag it to the ...BOOT drive.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 113 of 141

https://makecode.adafruit.com

Your MakeCode is now running and CircuitPython has been removed. Going forward you only have to single click the
reset button

Moving to Arduino

If you want to change your firmware to Arduino, it's also pretty easy.

Start by plugging in your board, and double-clicking reset until you get the green onboard LED(s) - just like with
MakeCode

Within Arduino IDE, select the matching board, say Circuit Playground Express

Select the correct matching Port:

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 114 of 141

Create a new simple Blink sketch example:

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

Make sure the LED(s) are still green, then click Upload to upload Blink. Once it has uploaded successfully, the serial
Port will change so re-select the new Port!

Once Blink is uploaded you should no longer need to double-click to enter bootloader mode, Arduino will automatically
reset when you upload

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 115 of 141

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and great for learning. It runs on
microcontrollers and works out of the box. You can plug it in and get started with any text editor. The best part?
CircuitPython comes with an amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for anyone to use, edit, copy and
improve upon. This also means CircuitPython becomes better because of you being a part of it. It doesn't matter
whether this is your first microcontroller board or you're a computer engineer, you have something important to offer
the Adafruit CircuitPython community. We're going to highlight some of the many ways you can be a part of it!

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community comes together to volunteer and
provide live support of all kinds. From general discussion to detailed problem solving, and everything in between,
Discord is a digital maker space with makers from around the world.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 116 of 141

There are many different channels so you can choose the one best suited to your needs. Each channel is shown on
Discord as "#channelname". There's the #projecthelp channel for assistance with your current project or help coming
up with ideas for your next one. There's the #showandtell channel for showing off your newest creation. Don't be afraid
to ask a question in any channel! If you're unsure, #general is a great place to start. If another channel is more likely to
provide you with a better answer, someone will guide you.

The CircuitPython channel is where to go with your CircuitPython questions. #circuitpython is there for new users and
developers alike so feel free to ask a question or post a comment! Everyone of any experience level is welcome to join
in on the conversation. We'd love to hear what you have to say!

The easiest way to contribute to the community is to assist others on Discord. Supporting others doesn't always mean
answering questions. Join in celebrating successes! Celebrate your mistakes! Sometimes just hearing that someone
else has gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your granddaughter to.

Visit https://adafru.it/discord ()to sign up for Discord. We're looking forward to meeting you!

Adafruit Forums

The Adafruit Forums (https://adafru.it/jIf) are the perfect place for support. Adafruit has wonderful paid support folks to
answer any questions you may have. Whether your hardware is giving you issues or your code doesn't seem to be
working, the forums are always there for you to ask. You need an Adafruit account to post to the forums. You can use
the same account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums are a more reliable source of
information. If you want to be certain you're getting an Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything Adafruit. The Adafruit CircuitPython and
MicroPython (https://adafru.it/xXA) category under "Supported Products & Projects" is the best place to post your
CircuitPython questions.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 117 of 141

https://adafru.it/discord
https://forums.adafruit.com
https://forums.adafruit.com/viewforum.php?f=60

Be sure to include the steps you took to get to where you are. If it involves wiring, post a picture! If your code is giving
you trouble, include your code in your post! These are great ways to make sure that there's enough information to
help you with your issue.

You might think you're just getting started, but you definitely know something that someone else doesn't. The great
thing about the forums is that you can help others too! Everyone is welcome and encouraged to provide constructive
feedback to any of the posted questions. This is an excellent way to contribute to the community and share your
knowledge!

Adafruit Github

Whether you're just beginning or are life-long programmer who would like to contribute, there are ways for everyone
to be a part of building CircuitPython. GitHub is the best source of ways to contribute to
CircuitPython (https://adafru.it/tB7) itself. If you need an account, visit https://github.com/ (https://adafru.it/d6C)and sign
up.

If you're new to GitHub or programming in general, there are great opportunities for you. Head over to
adafruit/circuitpython (https://adafru.it/tB7) on GitHub, click on "Issues (https://adafru.it/Bee)", and you'll find a list that
includes issues labeled "good first issue (https://adafru.it/Bef)". These are things we've identified as something that
someone with any level of experience can help with. These issues include options like updating documentation,
providing feedback, and fixing simple bugs.

Already experienced and looking for a challenge? Checkout the rest of the issues list and you'll find plenty of ways to
contribute. You'll find everything from new driver requests to core module updates. There's plenty of opportunities for
everyone at any level!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 118 of 141

https://github.com/adafruit/circuitpython
https://github.com/
https://github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython/issues?page=1&q=is%253Aissue+is%253Aopen
https://github.com/adafruit/circuitpython/issues?q=is%253Aissue+is%253Aopen+label%253A%2522good+first+issue%2522

When working with CircuitPython, you may find problems. If you find a bug, that's great! We love bugs! Posting a
detailed issue to GitHub is an invaluable way to contribute to improving CircuitPython. Be sure to include the steps to
replicate the issue as well as any other information you think is relevant. The more detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of CircuitPython or a library onto
your CircuitPython hardware, and use it. Let us know about any problems you find by posting a new issue to GitHub.
Software testing on both current and beta releases is a very important part of contributing CircuitPython. We can't
possibly find all the problems ourselves! We need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and much more. If you have
questions, remember that Discord and the Forums are both there for help!

ReadTheDocs

ReadTheDocs (https://adafru.it/Beg) is a an excellent resource for a more in depth look at CircuitPython. This is where
you'll find things like API documentation and details about core modules. There is also a Design Guide that includes
contribution guidelines for CircuitPython.

RTD gives you access to a low level look at CircuitPython. There are details about each of the core
modules (https://adafru.it/Beh). Each module lists the available libraries. Each module library page lists the available
parameters and an explanation for each. In many cases, you'll find quick code examples to help you understand how
the modules and parameters work, however it won't have detailed explanations like the Learn Guides. If you want help
understanding what's going on behind the scenes in any CircuitPython code you're writing, ReadTheDocs is there to
help!

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 119 of 141

https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/en/2.x/shared-bindings/index.html

UF2 Bootloader Details

Adafruit SAMD21 (M0) and SAMD51 (M4) boards feature an improved bootloader that makes it easier than ever to flash
different code onto the microcontroller. This bootloader makes it easy to switch between Microsoft MakeCode,
CircuitPython and Arduino.

Instead of needing drivers or a separate program for flashing (say, bossac , jlink or avrdude), one can simply drag a
file onto a removable drive.

The format of the file is a little special. Due to 'operating system woes' you cannot just drag a binary or hex file (trust
us, we tried it, it isn't cross-platform compatible). Instead, the format of the file has extra information to help the
bootloader know where the data goes. The format is called UF2 (USB Flashing Format). Microsoft MakeCode
generates UF2s for flashing and CircuitPython releases are also available as UF2. You can also create your own UF2s
from binary files using uf2tool, available here. (https://adafru.it/vPE)

The bootloader is also BOSSA compatible, so it can be used with the Arduino IDE which expects a BOSSA bootloader
on ATSAMD-based boards

For more information about UF2, you can read a bunch more at the MakeCode blog (https://adafru.it/w5A), then check
out the UF2 file format specification. (https://adafru.it/vPE)

Visit Adafruit's fork of the Microsoft UF2-samd bootloader GitHub repository (https://adafru.it/Beu) for source code
and releases of pre-built bootloaders on CircuitPython.org (https://adafru.it/Em8).

This is an information page for advanced users who are curious how we get code from your computer into
your Express board!�

The bootloader is not needed when changing your CircuitPython code. Its only needed when upgrading the
CircuitPython core or changing between CircuitPython, Arduino and Microsoft MakeCode.�

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 120 of 141

https://github.com/Microsoft/uf2
https://makecode.com/blog/one-chip-to-flash-them-all
https://github.com/Microsoft/uf2
https://github.com/adafruit/uf2-samd21
https://circuitpython.org/downloads

Entering Bootloader Mode

The first step to loading new code onto your board is triggering the bootloader. It is easily done by double tapping the
reset button. Once the bootloader is active you will see the small red LED fade in and out and a new drive will appear
on your computer with a name ending in BOOT. For example, feathers show up as FEATHERBOOT, while the new
CircuitPlayground shows up as CPLAYBOOT, Trinket M0 will show up as TRINKETBOOT, and Gemma M0 will show up
as GEMMABOOT

Furthermore, when the bootloader is active, it will change the color of one or more onboard neopixels to indicate the
connection status, red for disconnected and green for connected. If the board is plugged in but still showing that its
disconnected, try a different USB cable. Some cables only provide power with no communication.

For example, here is a Feather M0 Express running a colorful Neopixel swirl. When the reset button is double clicked
(about half second between each click) the NeoPixel will stay green to let you know the bootloader is active. When the
reset button is clicked once, the 'user program' (NeoPixel color swirl) restarts.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 121 of 141

If the bootloader couldn't start, you will get a red NeoPixel LED.

That could mean that your USB cable is no good, it isn't connected to a computer, or maybe the drivers could not
enumerate. Try a new USB cable first. Then try another port on your computer!

Once the bootloader is running, check your computer. You should see a USB Disk drive...

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 122 of 141

Once the bootloader is successfully connected you can open the drive and browse the virtual filesystem. This isn't the
same filesystem as you use with CircuitPython or Arduino. It should have three files:

 CURRENT.UF2 - The current contents of the microcontroller flash.
 INDEX.HTM - Links to Microsoft MakeCode.
 INFO_UF2.TXT - Includes bootloader version info. Please include it on bug reports.

Using the Mass Storage Bootloader

To flash something new, simply drag any UF2 onto the drive. After the file is finished copying, the bootloader will
automatically restart. This usually causes a warning about an unsafe eject of the drive. However, its not a problem. The
bootloader knows when everything is copied successfully.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 123 of 141

You may get an alert from the OS that the file is being copied without it's properties. You can just click Yes

You may also get get a complaint that the drive was ejected without warning. Don't worry about this. The drive only
ejects once the bootloader has verified and completed the process of writing the new code

Using the BOSSA Bootloader

As mentioned before, the bootloader is also compatible with BOSSA, which is the standard method of updating boards
when in the Arduino IDE. It is a command-line tool that can be used in any operating system. We won't cover the full
use of the bossac tool, suffice to say it can do quite a bit! More information is available at
ShumaTech (https://adafru.it/vQa).

Windows 7 Drivers

If you are running Windows 7 (or, goodness, something earlier?) You will need a Serial Port driver file. Windows 10
users do not need this so skip this step.

You can download our full driver package here:

https://adafru.it/AB0

https://adafru.it/AB0

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 124 of 141

http://www.shumatech.com/web/products/bossa
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers_*.exe

Download and run the installer. We recommend just selecting all the serial port drivers available (no harm to do so) and
installing them.

Verifying Serial Port in Device Manager

If you're running Windows, its a good idea to verify the device showed up. Open your Device Manager from the control
panel and look under Ports (COM & LPT) for a device called Feather M0 or Circuit Playground or whatever!

If you see something like this, it means you did not install the drivers. Go back and try again, then remove and re-plug
the USB cable for your board

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 125 of 141

Running bossac on the command line

If you are using the Arduino IDE, this step is not required. But sometimes you want to read/write custom binary files,
say for loading CircuitPython or your own code. We recommend using bossac v 1.7.0 (or greater), which has been
tested. The Arduino branch is most recommended (https://adafru.it/vQb).

You can download the latest builds here. (https://adafru.it/s1B) The mingw32 version is for Windows, apple-darwin for

Mac OSX and various linux options for Linux. Once downloaded, extract the files from the zip and open the command

line to the directory with bossac .

With bossac version 1.9 or later, you must give an --offset parameter on the command line to specify where to start

writing the firmware in flash memory. This parameter was added in bossac 1.8.0 with a default of 0x2000 , but starting

in 1.9, the default offset was changed to 0x0000 , which is not what you want in most cases. If you omit the argument

for bossac 1.9 or later, you will probably see a "Verify Failed" error from bossac. Remember to change the option for -
p or --port to match the port on your Mac.

Replace the filename below with the name of your downloaded .bin : it will vary based on your board!

Using bossac Versions 1.7.0, 1.8

There is no --offset parameter available. Use a command line like this:

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R adafruit-circuitpython-boardname-version.bin

With bossac versions 1.9 or later, you must use the --offset parameter on the command line, and it must have
the correct value for your board.�

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 126 of 141

https://github.com/shumatech/BOSSA/tree/arduino
https://github.com/shumatech/BOSSA/releases

For example,

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R adafruit-circuitpython-feather_m0_express-3.0.0.bin

Using bossac Versions 1.9 or Later

For M0 boards, which have an 8kB bootloader, you must specify -offset=0x2000 , for example:

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R --offset=0x2000 adafruit-circuitpython-feather_m0_express-3.0.0.bin

For M4 boards, which have a 16kB bootloader, you must specify -offset=0x4000 , for example:

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R --offset=0x4000 adafruit-circuitpython-feather_m4_express-3.0.0.bin

This will e rase the chip, w rite the given file, v erify the write and R eset the board. On Linux or MacOS you may

need to run this command with sudo ./bossac ... , or add yourself to the dialout group first.

Updating the bootloader

The UF2 bootloader is relatively new and while we've done a ton of testing, it may contain bugs. Usually these bugs
effect reliability rather than fully preventing the bootloader from working. If the bootloader is flaky then you can try
updating the bootloader itself to potentially improve reliability.

If you're using MakeCode on a Mac, you need to make sure to upload the bootloader to avoid a serious problem with
newer versions of MacOS. See instructions and more details here (https://adafru.it/ECU).

In general, you shouldn't have to update the bootloader! If you do think you're having bootloader related issues,
please post in the forums or discord.

Updating the bootloader is as easy as flashing CircuitPython, Arduino or MakeCode. Simply enter the bootloader as
above and then drag the update bootloader uf2 file below. This uf2 contains a program which will unlock the
bootloader section, update the bootloader, and re-lock it. It will overwrite your existing code such as CircuitPython or
Arduino so make sure everything is backed up!

After the file is copied over, the bootloader will be updated and appear again. The INFO_UF2.TXT file should show the
newer version number inside.

For example:

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 127 of 141

https://learn.adafruit.com/adafruit-circuit-playground-express/updating-the-bootloader

UF2 Bootloader v2.0.0-adafruit.5 SFHWRO
Model: Metro M0
Board-ID: SAMD21G18A-Metro-v0

Lastly, reload your code from Arduino or MakeCode or flash the latest CircuitPython core (https://adafru.it/Em8).

Below are the latest updaters for various boards. The latest versions can always be found here (https://adafru.it/Bmg).
Look for the update-bootloader... files, not the bootloader... files.

https://adafru.it/ECV

https://adafru.it/ECV

https://adafru.it/ECW

https://adafru.it/ECW

https://adafru.it/ECY

https://adafru.it/ECY

https://adafru.it/ED0

https://adafru.it/ED0

https://adafru.it/ED3

https://adafru.it/ED3

https://adafru.it/ED6

https://adafru.it/ED6

https://adafru.it/ED8

https://adafru.it/ED8

https://adafru.it/Bmg

https://adafru.it/Bmg

Getting Rid of Windows Pop-ups

If you do a lot of development on Windows with the UF2 bootloader, you may get annoyed by the constant "Hey you
inserted a drive what do you want to do" pop-ups.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 128 of 141

https://circuitpython.org/downloads
https://github.com/adafruit/uf2-samdx1/releases/latest
https://github.com/adafruit/uf2-samdx1/releases/download/v3.3.0-adafruit.10/update-bootloader-crickit-v3.3.0-adafruit.10.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.3.0-adafruit.10/update-bootloader-feather_m0_express-v3.3.0-adafruit.10.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.3.0-adafruit.10/update-bootloader-metro_m0-v3.3.0-adafruit.10.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.3.0-adafruit.10/update-bootloader-gemma_m0-v3.3.0-adafruit.10.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.3.0-adafruit.10/update-bootloader-trinket_m0-v3.3.0-adafruit.10.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.3.0-adafruit.10/update-bootloader-itsybitsy_m0-v3.3.0-adafruit.10.uf2
https://github.com/adafruit/uf2-samdx1/releases/download/v3.3.0-adafruit.10/update-bootloader-grandcentral_m4-v3.3.0-adafruit.10.uf2
https://github.com/adafruit/uf2-samdx1/releases/latest

Go to the Control Panel. Click on the Hardware and

Sound header

Click on the Autoplay header

Uncheck the box at the top, labeled Use Autoplay for all

devices

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 129 of 141

https://learn.adafruit.com/assets/41276
https://learn.adafruit.com/assets/41277
https://learn.adafruit.com/assets/41278

Making your own UF2

Making your own UF2 is easy! All you need is a .bin file of a program you wish to flash and the Python conversion
script (https://adafru.it/vZb). Make sure that your program was compiled to start at 0x2000 (8k) for M0 boards or
0x4000 (16kB) for M4 boards. The bootloader takes up the first 8kB (M0) or 16kB (M4). CircuitPython's linker
script (https://adafru.it/CXh) is an example on how to do that.

Once you have a .bin file, you simply need to run the Python conversion script over it. Here is an example from the
directory with uf2conv.py. This command will produce a firmware.uf2 file in the same directory as the source
firmware.bin. The uf2 can then be flashed in the same way as above.

For programs with 0x2000 offset (default)
uf2conv.py -c -o build-circuitplayground_express/firmware.uf2 build-
circuitplayground_express/firmware.bin

For programs needing 0x4000 offset (M4 boards)
uf2conv.py -c -b 0x4000 -o build-metro_m4_express/firmware.uf2 build-metro_M4_express/firmware.bin

Installing the bootloader on a fresh/bricked board

If you somehow damaged your bootloader or maybe you have a new board, you can use a JLink to re-install it. Here's a
short writeup by turbinenreiter on how to do it for the Feather M4 (but adaptable to other boards) (https://adafru.it/ven)

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 130 of 141

https://github.com/Microsoft/uf2/blob/master/utils/uf2conv.py
https://github.com/adafruit/circuitpython/blob/master/ports/atmel-samd/boards/samd21x18-bootloader.ld
https://forums.adafruit.com/viewtopic.php?f=57&t=142170&p=707151#p707151

Troubleshooting

TFT Screen Adhesive

The TFT screen on the HalloWing can become un-adhered if it is bumped or wiggled too much (or left in a very hot
Jeep near the windshield in the hot southern California sun, for a totally hypothetical example that didn't necessarily
happen to the author). Fixing this is pretty easy -- you can use double-stick tape, E6000 glue, or Sugru to fix it back in
place. Here are some action photos of these fixes.

Double Stick Tape

Cut three thin slices of double stick tape, then place

them around the edges of the backlight.

Press the screen down and hold for a few seconds to

adhere.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 131 of 141

https://learn.adafruit.com/assets/67032

E6000 Glue

This is strong glue and is even better than tape if you plan to leave the HalloWing screen exposed on a costume
without the lens and cover.

Use a toothpick or skewer to place small dabs of the

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 132 of 141

https://learn.adafruit.com/assets/67033
https://learn.adafruit.com/assets/67034
https://learn.adafruit.com/assets/67035

glue around the perimeter of the backlight.

Press the screen down and hold for a few seconds, then

allow to cure overnight.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 133 of 141

https://learn.adafruit.com/assets/67046
https://learn.adafruit.com/assets/67048
https://learn.adafruit.com/assets/67049

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 134 of 141

https://learn.adafruit.com/assets/67050
https://learn.adafruit.com/assets/67051
https://learn.adafruit.com/assets/67052

Sugru

You can go all out and create a protective frame using Sugru (https://adafru.it/ekR) moldable silicone rubber.

Open a sachet of Sugru and tear off a small ball of it.

Roll the ball into a small cylinder and press up against

one side of teh board and screen.

Repeat for the other side.

Allow Sugru to cure overnight.

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 135 of 141

https://learn.adafruit.com/assets/67053
https://learn.adafruit.com/assets/67054
https://www.adafruit.com/product/437
https://learn.adafruit.com/assets/67055

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 136 of 141

https://learn.adafruit.com/assets/67056
https://learn.adafruit.com/assets/67057
https://learn.adafruit.com/assets/67058

Diagnostics

Want to see some stats on your HalloWing M4? Double-click the board's reset button to get to bootloader mode, then
drag the HallowWingM4_Diagnostics.UF2 onto the HALLOWBOOT drive!

https://adafru.it/G6F

https://adafru.it/G6F

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 137 of 141

https://learn.adafruit.com/assets/67059
https://cdn-learn.adafruit.com/assets/assets/000/082/174/original/HALLOWINGM_DIAGNOSTIC.UF2?1570726867

Downloads

FIles:

Datasheet for ATSAMD51G18 (https://adafru.it/FQH)
Datasheet for MSA301 accelerometer (https://adafru.it/FDu)
Datasheet for ST7789 (https://adafru.it/FQI)
EagleCAD files on GitHub (https://adafru.it/FQJ)
3D models on GitHub (https://adafru.it/FRS)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/FQK)

Here us the UF2 for the factory eye animation - press the reset button one (or twice) to get the board recognized by
your computer as a drive named HALLOM4BOOT. Copy the UF2 file below to the HALLOM4BOOT drive and the
board should reset and be running the eye animation.

https://adafru.it/FSa

https://adafru.it/FSa

Animated eyes with NeoPixels

This UF2 features the eye animation with rainbow neopixel animation. It's similar to the demo featured in the product
page hero image.

https://adafru.it/FXn

https://adafru.it/FXn

Fab Print

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 138 of 141

http://ww1.microchip.com/downloads/en/DeviceDoc/60001507E.pdf
https://github.com/adafruit/Adafruit_MSA301/blob/master/MSA301-V1.0-ENG.PDF
https://cdn-shop.adafruit.com/product-files/3787/3787_tft_QT154H2201__________20190228182902.pdf
https://github.com/adafruit/Adafruit-Hallowing-M4-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4300%20HalloWing%20M4
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20Hallowing%20M4.fzpz
https://cdn-learn.adafruit.com/assets/assets/000/081/300/original/HALLOM4EYE.UF2?1569210923
https://cdn-learn.adafruit.com/assets/assets/000/081/890/original/M4_EYE_RAINBOW.UF2?1569971101

Schematic

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 139 of 141

3D Model

© Adafruit Industries https://learn.adafruit.com/adafruit-hallowing-m4 Page 140 of 141

© Adafruit Industries Last Updated: 2019-10-12 12:55:57 PM UTC Page 141 of 141

	Guide Contents
	Overview
	Pinouts
	Power Pins and Ports
	Lithium Ion Polymer Battery Ideal For Feathers - 3.7V 400mAh

	Microcontroller and Flash
	Sensors
	External NeoPixel Connector
	I2C Connector
	Speaker
	LEDs
	TFT
	Quickstart
	M4 EYES Firmware
	Ready-Made Graphics
	Customization Basics
	Troubleshooting JSON

	Preparing Graphics
	Image Storage
	Eyelids
	Configurable Settings
	Sizes and Shapes
	Colors and Textures
	Eyelids
	Light Sensor
	Building Eyes from Source Code
	Arduino IDE Setup
	https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

	Using with Arduino IDE
	Install SAMD Support
	Install Adafruit SAMD
	Install Drivers (Windows 7 & 8 Only)
	Blink
	Successful Upload
	Compilation Issues
	Manually bootloading
	Ubuntu & Linux Issue Fix
	Adapting Sketches to M0 & M4
	Analog References
	Pin Outputs & Pullups
	Serial vs SerialUSB
	AnalogWrite / PWM on Feather/Metro M0
	analogWrite() PWM range
	analogWrite() DAC on A0
	Missing header files
	Bootloader Launching
	Aligned Memory Access
	Floating Point Conversion
	How Much RAM Available?
	Storing data in FLASH
	Pretty-Printing out registers
	M4 Performance Options
	CPU Speed (overclocking)
	Optimize
	Cache
	Max SPI and Max QSPI

	Enabling the Buck Converter on some M4 Boards
	Source, Libraries and Settings
	Source Code
	Libraries
	Project Settings
	Using SPI Flash
	Read & Write CircuitPython Files
	Format Flash Memory
	Datalogging Example
	Reading and Printing Files
	Full Usage Example
	Accessing SPI Flash
	Feather HELP!
	My ItsyBitsy/Feather stopped working when I unplugged the USB!
	My Feather never shows up as a COM or Serial port in the Arduino IDE
	Ack! I "did something" and now when I plug in the Itsy/Feather, it doesn't show up as a device anymore so I cant upload to it or fix it...
	I can't get the Itsy/Feather USB device to show up - I get "USB Device Malfunctioning" errors!
	I'm having problems with COM ports and my Itsy/Feather 32u4/M0
	I don't understand why the COM port disappears, this does not happen on my Arduino UNO!
	I'm trying to upload to my 32u4, getting "avrdude: butterfly_recv(): programmer is not responding" errors
	I'm trying to upload to my Feather M0, and I get this error "Connecting to programmer: .avrdude: butterfly_recv(): programmer is not responding"
	I'm trying to upload to my Feather and i get this error "avrdude: ser_recv(): programmer is not responding"
	I attached some wings to my Feather and now I can't read the battery voltage!
	The yellow LED Is flickering on my Feather, but no battery is plugged in, why is that?

	What is CircuitPython?
	CircuitPython is based on Python
	Why would I use CircuitPython?

	CircuitPython
	Set up CircuitPython Quick Start!

	Installing Mu Editor
	Download and Install Mu
	Using Mu
	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.

	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing
	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!

	Back to Editing Code...
	Exploring Your First CircuitPython Program
	Imports & Libraries
	Setting Up The LED
	Loop-de-loops
	What if I don't have the loop?

	More Changes
	Naming Your Program File
	Connecting to the Serial Console
	Are you using Mu?
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Returning to the serial console
	CircuitPython Libraries
	Installing the CircuitPython Library Bundle
	Example Files

	Copying Libraries to Your Board
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries/Examples

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?
	CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not Present
	You may have a different board.
	MakeCode
	Windows 10
	Windows 7

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	CIRCUITPY Drive Does Not Appear
	Serial Console in Mu Not Displaying Anything
	CircuitPython RGB Status Light
	ValueError: Incompatible .mpy file.
	CIRCUITPY Drive Issues
	Easiest Way: Use storage.erase_filesystem()
	Old Way: For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:
	Old Way: For Non-Express Boards with a UF2 bootloader (Gemma M0, Trinket M0):
	Old Way: For non-Express Boards without a UF2 bootloader (Feather M0 Basic Proto, Feather Adalogger, Arduino Zero):

	Running Out of File Space on Non-Express Boards
	Delete something!
	Use tabs
	Mac OSX loves to add extra files.
	Prevent & Remove Mac OSX Hidden Files
	Copy Files on Mac OSX Without Creating Hidden Files
	Other Mac OSX Space-Saving Tips

	Uninstalling CircuitPython
	Backup Your Code

	Moving to MakeCode
	Moving to Arduino
	Welcome to the Community!
	Adafruit Discord
	Adafruit Forums
	Adafruit Github
	ReadTheDocs

	UF2 Bootloader Details
	Entering Bootloader Mode
	Using the Mass Storage Bootloader
	Using the BOSSA Bootloader
	Windows 7 Drivers
	Verifying Serial Port in Device Manager
	Running bossac on the command line
	Using bossac Versions 1.7.0, 1.8
	Using bossac Versions 1.9 or Later

	Updating the bootloader
	Getting Rid of Windows Pop-ups
	Making your own UF2
	Installing the bootloader on a fresh/bricked board
	Troubleshooting
	TFT Screen Adhesive
	Double Stick Tape
	E6000 Glue
	Sugru
	Diagnostics

	Downloads
	FIles:
	Animated eyes with NeoPixels

	Fab Print
	Schematic
	3D Model

