SLN-SVUI-IOT User Guide

Rev. 1 — 16 June 2023

User guide

Document Information

Information	Content
Keywords	SLN-SVUI-IOT-UG, smart voice, IoT, smart voice user interface (SVUI), smart home
Abstract	This document describes the smart voice user interface (SVUI) solution, and its associated out- of-box features. The SLN-SVUI-IOT turnkey solution provides OEMs with a fully integrated, self- contained software and hardware solution.

1 Introduction

The MCU smart voice development kit (part number: SLN-SVUI-IOT) is a comprehensive, secure, and cost-optimized turnkey solution from NXP. The kit widely adopts its development environment that enables customers to quickly get to market with a production ready end-to-end software application.

2 Acronyms

Table 1 lists the acronyms used in this document.

Table 1. Acronym

Acronym	Definition
AFE	Audio front end
ASR	Automatic speech recognition
юТ	Internet of things
JTAG	Joint test action group
MCU	Microcontroller unit
MEMS	Micro-electro-mechanical system
MSD	Mass storage device
OEM	Original equipment manufacturer
ΟΤΑ	Over the air
OTW	Over the wire
РСМ	Pulse-code modulation
PDM	Pulse-density modulation
PTT	Push-to-talk
ROM	Read-only memory
RTOS	Real-time operating system
SDK	Software development kit
UART	Universal asynchronous receiver-transmitter
VIT	Voice intelligent technology
DSMT	D-spotter modeling tool

3 System requirements and prerequisites

The MCU smart voice user interface (SVUI) projects require a computer running MCUXpresso IDE. It also requires a terminal program to communicate with the device via USB. <u>Table 2</u> describes computer configurations required for MCU SVUI projects.

Table 2. Tested computer configurations

Computer type	OS version	Serial terminal application
PC	Windows 10	Tera Term, PuTTY
Мас	macOS	Serial, CoolTerm, goSerial

Table 2. Tested computer configurations...continued

Computer type	OS version	Serial terminal application
PC	Linux	PuTTY

Table 3 lists development tools using MCU local voice control SDK.

Table 3. Software tools and versions

Software tool	Version	Description
SEGGER	JLink_v7.84a or higher	Tool to program the flash
MCUXpresso IDE	Version 11.7.1 or higher	Eclipse-based IDE for development environment

4 Usage conditions

The following information is provided as per Article 10.8 of the Radio Equipment Directive 2014/53/EU:

- Frequency bands in which the equipment operates
- The maximum RF power transmitted

Table 4. Bluetooth/Wi-Fi frequency and power

Part number	RF technology	Frequency range	Max transmitted power
SLN-SVUI-IOT	Bluetooth	2402 MHz - 2483 MHz	4 dBm
	Wi-Fi	 2.4 GHz ISM bands 2.412 GHz - 2.472 GHz 5.15 GHz - 5.25 GHz (FCC UNII-low band) for US/ Canada and Europe 5.25 GHz - 5.35 GHz (FCC UNII-middle band) for US/ Canada and Europe 5.47 GHz - 5.725 GHz for Europe 5.725 GHz - 5.825 GHz (FCC UNII-high band) for US/Canada 	18.5 dBm

EUROPEAN DECLARATION OF CONFORMITY (Simplified DoC per Article 10.9 of the Radio Equipment Directive 2014/53/EU)

This apparatus, namely SLN-SVUI-IOT, conforms to the Radio Equipment Directive 2014/53/EU. The full EU Declaration of Conformity for this apparatus can be found at this location: <u>http://www.nxp.com/mcu-svui</u>.

Note:

The product is expected to lie flat on a table, microphone output pointing up.

The data mode of the USB bus is not covered by the CE certification, as this mode is used exceptionally to reprogram the device.

5 SLN-SVUI-IOT overview

SLN-SVUI-IOT embeds all the components needed to produce a secure and edge-computing voice-control product that does not require Wi-Fi or Cloud connectivity. The architecture is built upon a single-core i.MX RT1062 for the main application, powered by an Arm Cortex-M7 core.

SLN-SVUI-IOT hardware highlights:

- Up to 600 MHz (528 MHz default) Cortex-M7 MCU core
- 1 MB of on-chip RAM (512 kB TCM)
- Multiple microphone topologies:
 - Two PDM mics on main board (not active by default)
 - Two PDM mics on extension board (not active by default)
- Three I2S mics on extension board (active by default)
- 3 W mono filter-less class-D amplifier
- Wi-Fi/Bluetooth combo chip (intended to be used for OTA updates, if needed by customers)
- Integrated speaker
- GPIO expansion headers

SLN-SVUI-IOT software highlights:

- Two-stage bootstrap and bootloader allowing flexibility in customer's implementation
- Secure boot flow with high assurance booting (HAB)
- Over-the-wire (OTW) update via UART
- Automated manufacturing/reprogramming tools
- · Speech recognition engine by deep learning
- Audio front end (AFE) for far-field automatic speech recognition (ASR)

The SLN-SVUI-IOT kit is supported by a comprehensive and free-of-charge enablement suite from NXP and its partners including:

- MCUXpresso development tools
- Hardware design files
- · Local voice application software source code
- Software audio tuning tools
- Documentation
- Training material

6 Getting started with MCU smart voice control

This section contains the steps for the initial board setup, describes the out-of-the-box demo applications, and how to switch between them.

6.1 Package and collateral content

Figure 1 shows the SLN-SVUI-IOT kit. Ensure to check for damage or marks; if found, contact your NXP representative.

SLN-SVUI-IOT User Guide

Figure 1. MCU smart voice control kit package

The SLN-SVUI-IOT kit comes with a printed quick start guide, a USB-C cable, and a Bluetooth/Wi-Fi antenna. *Note: Wi-Fi and Bluetooth support in firmware is missing initially and is going to be added later.*

SLN-SVUI-IOT-UG

SLN-SVUI-IOT User Guide

6.2 Initial update

To make the initial update, follow the steps below:

- 1. To ensure you have the latest NXP software, you must download the preconfigured "Ivaldi" zip package from http://www.nxp.com/mcu-svui.
- 2. After downloading the package, extract its contents in the C:/ directory. *Attention: Extracting archives contents in another location other than C:/ requires changes in the flashing script.*
- 3. To make the initial update, put the board in **serial download mode** by moving jumper J61 to connect pins 2 and 3.

Attention: Do not move the jumper when the board is powered on.

4. Plug the USB Type-C connector into the SLN-SVUI-IOT kit and the USB Type-A connector into your computer.

SLN-SVUI-IOT User Guide

5. Navigate to C:/Ivaldi/ and start the FLASH_SVUI_BOARD.bat script by double-clicking it. Figure 3 shows the output.

C:\Ivaldi>cd "C:\Ivaldi\"	
C:\Ivaldi>call env\Scripts\activate Importing board_config.py from/sln_platforms_config/sln_svui_iot_config/ folder	
Establishing connection SUCCESS: Communication established with device. Loading Flashloader	
SUCCESS: Flashloader loaded successfully. Jumping to flashloader entry point	
SUCCESS: Device jumped to execute flashloader. Waiting for device to be ready for blhost	
get-property SUCCESS: Device is ready for blhost!	
Reading device unique 10 get-property SUCCES: Davice serial number is HUK3VdchDhT-	
SUCCESS: Device thing name is HUR3YGAPHI Writing memory config option block	
fill-memory SUCCESS: Config option block loaded into RAM.	
Configuring FlexSPI configure-memory SUGCES: FloxEnt configurated	
Erasing flash flash-erase-all	
SUCCESS: Flash erased. Programming bootstrap	
write-memory SUCCESS: Bootstrap written to flash. Decomposing bastlander	
programming boolloader write-memory SUCCESS: Boolloader written to flash.	
Programming file-system at address 0x61600000 write-memory	
SUCCESS: Programmed flash with file-system for this "thing". Programming Application Bank A	
write-memory SUCCESS: Application Bank A written to flash. Programming Application Bank B	
write-memory SUCCESS: Application Bank B written to flash.	
read-memory SUCCESS: Application entry point at 0x60002451	
read-memory SUCCESS: Application entry point at 0x20208000	
execute SUCCESS: Application running.	

Figure 3. Initial update output

6. When the update is done, disconnect the board, move the jumper to the initial position (connecting pins 1 and 2), and reboot the board.

6.3 Power on

Plug the USB Type-C connector into the SLN-SVUI-IOT kit and the USB Type-A connector into your computer. <u>Figure 4</u> shows how to connect the kit using a USB cable.

SLN-SVUI-IOT User Guide

Figure 4. Connecting the SLN-SVUI-IOT Kit to the computer using a USB cable

When you power on the kit for the first time, the LED blinks green light. Then, prompts you to ask for a demo selection. The available demos are:

- Elevator
- Smart home
- Washing machine

After making the selection (by saying one of the demo names), a confirmation tone plays, saying, "Okay, elevator/smart home/washing machine demo". If you do not say any demo name until the timeout period expires (by default, 8 seconds), the default demo, smart home, is selected automatically.

The board boots automatically into demo application #1. For details, see Section 6.4.

6.4 Out-of-the-box demo applications

Two types of SLN-SVUI-IOT out-of-the-box demo applications are included:

- Demo application #1: smart home (IoT)/elevator/washing machine voice control VIT-based:
 Language: selectable (English by default, can be switched to Chinese, French, or German)
- Demo application #2: smart home (IoT)/elevator/washing machine voice control DSMT-based:
- Language: multilingual (supports English, Chinese, French, and German in parallel)

6.4.1 Demo application #1: smart home (IoT)/elevator/washing machine voice control - VITbased

After powering on and making your demo selection, as described in <u>Section 6.3</u>, the SLN-SVUI-IOT kit is up and running and waiting for voice commands. Start by saying the wake word "Hey, NXP". The board responds by

SLN-SVUI-IOT User Guide

playing a confirmation sound and turns the LED blue while waiting for a voice command. Depending on what demo you chose at the boot time, the commands for English are:

- For smart home (IoT):
 - Turn on the lights
 - Turn off the lights
 - Temperature higher
 - Temperature lower
 - Open the window
 - Close the window
 - Make it brighter
 - Make it darker
- For elevator:
 - First floor
 - Second floor
 - Third floor
 - Fourth floor
 - Fifth floor
 - Main lobby
 - Ground floor
 - Basement floor
 - Open door
 - Close door
- For washing machine:
 - Delicate
 - Normal
 - Heavy duty
 - Whites
 - Start
 - Cancel

If the kit detects your voice command, it changes the LED color, and plays a confirmation prompt. If the kit does not detect any of the commands within a period, the device turns the LED purple and plays a chime to indicate that the waiting time has ended. By default, the response waiting time is 8 seconds, but you can change the value with the shell command "timeout N", where N is the time value in milliseconds.

You can always change between smart home (IoT), elevator, and washing machine demo by saying the wake word "Hey, NXP!", followed by the "change demo" voice command. Again, a prompt asks for a demo selection. Also, you can switch between demos by pressing the SW2 (see <u>Figure 9</u>) button on the board.

Smart home (IoT)/elevator/washing machine voice control - VIT-based supports four languages: English, Chinese, French, and German. English is selected by default, but you can change it by saying the wake word "Hey, NXP!", followed by the "change language" command. Then, a voice prompt asks for a language selection. <u>Table 5</u> shows the whole set of instructions for Chinese, French, and German.

Another way to change the language and the active demo is by using a shell command. For details, see <u>Section 6.4.2</u>.

Table 5.	Voice	commands
----------	-------	----------

Chinese	French	German
Wake word: 你好, 恩智浦	Wake word: Salut, NXP	Wake word: Hallo, NXP
Smart home (IoT) commands:	Smart home (IoT) commands:	Smart home (IoT) commands:
SLN-SVUI-IOT-UG	All information provided in this document is subject to legal disclaimers.	© 2023 NXP B.V. All rights reserved.

Chinese	French	German
打开灯	Allumer lumière	Licht einschalten
关闭灯	Éteindre lumière	Licht ausschalten
升高温度	Augmenter température	Temperatur erhöhen
降低温度	Diminuer température	Temperatur verringern
打开窗帘	Ouvrir fenêtre	Fenster hoch
关闭窗帘	Fermer fenêtre	Fenster runter
亮一点	Augmenter luminosité	Heller
暗一点	Diminuer luminosité	Dunkler
Elevator commands:	Elevator commands:	Elevator commands:
到一楼	Premier étage	Erste etage
到二楼	Deuxième étage	Zweite etage
到三楼	Troisième étage	Dritte etage
到四楼	Quatrième étage	Vierte etage
到五楼	Cinquième étage	Fünfte etage
大堂	Entrée principale	Hauptlobby
负一楼	Rez-de-chaussée	Erdgeschoss
地下室	Sous-sol	Untergeschoss
开门	Ouvrir porte	Öffne die tür
关门	Fermer porte	Schließe die tür
Washing machine commands:	Washing machine commands:	Washing machine commands:
精致模式	Lavage délicat	Feinwäsche
正常模式	Lavage normal	Normaler
强力模式	Lavage en profondeur	Stark verschmutze
洗白模式	Lavage blanc	Weiß
开始	Commencer	Starten
取消	Annuler	Abbrechen
Change demo command: 选择应用	Change demo command:	Change demo command:
	Changer de démo	Anwendung wechseln
Change language command: 选拉语舀	Change language command:	Change language command:
	Changer de langue	Sprache wechseln

Table 5. Voice commands...continued

6.4.2 Connecting to a serial terminal

The out-of-the-box demos in the <u>Section 6.4.3</u> and <u>Section 6.4.4</u> require a connection to a serial terminal in order to display the detected wake words and commands.

To open a SHELL terminal, follow the steps below:

1. Connect a serial terminal application to the USB serial device interface that enumerates (115200-8-N-1), as shown in Figure 5.

SLN-SVUI-IOT User Guide

Category:		
Session	Options controlling	g local serial lines
Logging Terminal Keyboard	Select a serial line Serial line to connect to	COM4
Features	Configure the serial line	
Window Appearance	Speed (baud)	115200
Behaviour	Data bits	8
	Stop bits	1
Colours	Parity	None ~
Data	Flow control	None ~
SSH SSH Serial Telnet Rlogin SUPDUP		

Figure 5. Serial terminal settings

- 2. Press Enter on the keyboard. The ${\tt SHELL}{>>}$ prompt appears.
- 3. Type help to show the available commands at the shell with a description of each.
- 4. Type commands to ensure which demo is set in selected languages. Figure 6 indicates that the current demo is set to the smart home demo.

SLN-SVUI-IOT User Guide

SHELL>> commands		
Language: en		
Wake Word: Hey NXP		
Commands:		
Turn on the lights		
Turn off the lights		
Temperature higher		
Temperature lower		
Open the window		
Close the window		
Make it brighter		
Make it darker		
Change demo		
Change language		
Elevator		
Washing Machine		
Smart Home		
English		
French		
German		
Chinese		
SHELL>>		

Figure 6. Commands for demo application #1: Smart home (IoT)/elevator/washing machine voice control - VITbased

The language and the active demo can be changed using shell commands. <u>Figure 7</u> and <u>Figure 8</u> show the usage of changelang and changedemo, respectively.

Figure 7. Language selection command

Figure 8. Demo selection command

6.4.3 Switching to demo application #2

To switch to the second application demo, hold SW3 and press SW1. Figure 9 shows how the buttons are placed. The board is reset and automatically boots into the second application. Then, a voice prompt asks for a demo selection (smart home (IoT), elevator, or washing machine). After choosing it, a prompt confirms your selection and confirms that you switched to the multilingual demo (Demo application #2 - DSMT-based).

SLN-SVUI-IOT User Guide

Figure 9. Buttons placement on board

6.4.4 Demo application #2: smart home (IoT)/elevator/washing machine voice control - DSMTbased

The DSMT-based application has the same three demos as the VIT-based one. The main difference is that the DSMT application supports multiple languages in parallel. By default, the board listens for the wake word only in English. It can be easily configured to listen in any combination of the four languages supported (English, Chinese, French, and German) using the changelang command, followed by the list of languages you want to enable.

To enable all languages in parallel, type changelang en cn fr de in shell and hit Enter. The wake words are listed below:

- Hey, NXP (English)
- 你好, 恩智浦 (Chinese)
- Salut, NXP (French)
- Hallo, NXP (German)

If a wake word triggers the SLN-SVUI-IOT kit, the LED turns blue, and the board starts listening for commands in the selected language based on the wake word. Depending on your demo selection, you can use the commands listed in <u>Section 6.4.1</u>. You can always check available commands using shell by typing "commands", as shown in <u>Figure 10</u>.

Language: en Wake Word: How NYD		
Commands:		
Delicate		
Normal		
Heavy duty		
Whites		
Start		
Cancel		
Change demo		
Language: cn		
Wake Word: 你好, 恩智浦		
Commands:		
精致模式		
正常模式		
强力模式		
洗白模式		
开始 第23		
11.17月 		
龙拜应用		
Language: de		
Wake Word: Hallo NXP		
Commands:		
Feinwäsche		
Normaler		
Stark verschmutze		
Wells Storton		
Abbrechen		
Anwendung wechseln		
Attracting internoteria		
Language: fr		
Wake Word: Salut NXP		
Commands:		
Lavage délicat		
Lavage normal		
Lavage en profondeur		
Commoncor		
Annuler		
Changer de démo		
endinger de demo		

Figure 10. Display available commands

However, the DSMT-based demo application allows you to select any combination of these four different languages. To enable your preferred language, enter changelang command in the shell followed by

SLN-SVUI-IOT User Guide

the languages you want to enable. For example, if you want to enable German and French, then enter changelang de fr where 'de' and 'fr' are the language codes of German and French, respectively. You can also enable one language only. To enable one language, type changelang followed by the <language_code> you want to enable. Figure 11 shows the examples. All the language selection is saved in flash memory and retained even after the kit is rebooted.

SHELL>> changelang en cn Enabling en cn language(s). SHELL>> Updated Shell command parameter in flash memory.
SHELL>> changelang de fr Enabling de fr language(s). SHELL>> Updated Shell command parameter in flash memory.

Figure 11. Examples of selecting multiple languages

Type commands to ensure that the current demo is set in selected languages. Figure 12 shows the commands of the washing machine in the selected two languages.

7 Controlling the device

The SLN-SVUI-IOT can be controlled using voice commands or shell commands. The board provides feedback via LED for all actions, as well as audio feedback for detected voice commands.

7.1 Physical control description

Table 6 describes the LED color behavior to help you understand what state the SLN-SVUI-IOT kit is in.

Function	LED State	Color	Description
Boot up	Green blink		The device has powered on and is going through initialization.
Wake word detected	Solid Blue	1	The device has detected the wake word and is listening to a command.
Command detected	Green blink 200 ms		The device has detected a command.
Change demo flow	Solid Orange		The device is waiting for a demo selection.
Change language flow	Solid Yellow		The device is waiting for a language selection.
Timeout	Purple blink 200 ms		If no command is detected within a certain time, the device stops listening to a command.
Microphone off	Solid Orange		Microphones are turned off.
Push-to-talk (PTT) mode	Solid Cyan		The device is on PTT mode. By pressing SW1, wake word detection phase is bypassed and the device listens to a command.
Initialization failed	Solid Red		The device failed to initialize AFE or ASR.

Table 6. Summary of LED color and behavior

SLN-SVUI-IOT-UG

Function	LED State	Color	Description
Audio stream error	Solid Purple		Audio stream after AFE is not transferred to ASR.
ASR memory error	Solid Orange		During initialization or language or demo change, an error occurred in verifying memory pool size.
DSMT limit reached	Solid Purple		The board reached the 100 command detections DSMT evaluation library limit.
AFE time limit reached	Solid Red		The board reached the 25 hours AFE evaluation library limit.

Table 6. Summary of LED color and behavior...continued

7.2 Shell command interface

The SLN-SVUI-IOT comes with a shell command interface that allows you to communicate and control the board using specific commands.

7.2.1 Switching out-of-the-box demo applications

Shell commands changedemo, commands, and changelang are responsible for switching between demos and selecting demo languages. For more information and examples, see <u>Section 6.4</u>.

7.2.2 Controlling volume

You can control the speaker volume by entering "volume N" where N is an integer value ranging from 0 (mute) to 100 (max). The default volume is 55. <u>Figure 13</u> shows an example of changing the speaker volume to 30.

SHELL>> volume 30 Setting speaker volume to 30. SHELL>> Updated Shell command parameter in flash memory.

Figure 13. Setting speaker volume to 30

7.2.3 Muting the microphones

You can mute or unmute your microphones by entering "mute on/off". When muted, the LED glows in solid Orange. Figure 14 shows the result of mute on/off commands.

Figure 14. Setting speaker volume to 30

The microphones can also be muted physically by sliding the switch (see Figure 9) from the side of the main board to the left. The LED next to the switch turns red, confirming that the microphones are muted.

7.2.4 Setting the timeout

You can set the command waiting time by entering "timeout N" where N is milliseconds. <u>Figure 15</u> shows an example of setting the command waiting time to 7 seconds. The default timeout is 8 seconds. Say the voice command before the waiting time ends.

Figure 15. Setting the waiting time to 7 seconds

7.2.5 Enabling the follow-up mode

With the follow-up mode enabled, you can continue saying multiple commands after triggering the kit by the wake word. <u>Figure 16</u> shows an example of the wake word and commands – Hey, NXP, First floor, Second floor, and Basement floor. Notice that the wake word is said only once, followed by three voice commands. After the last command, the ASR session ends, if no additional command follows during the waiting time.

Figure 16. Follow-up mode use case

7.2.6 Enabling the push-to-talk mode

The push-to-talk PTT mode allows you to bypass the wake word detection phase. Enter ptt on to enable the ptt mode and ptt off to disable it. The Cyan LED color indicates that the kit is in PTT mode. During PTT mode, press SW3 (see Figure 9) to skip the wake word and continue saying a voice command.

SLN-SVUI-IOT-UG

SHELL>>	
SHELL>> ptt on	
Setting ASR Push-To-Talk mode on. English only activated. SHELL>> Updated Shell command parameter in flash memory.	
SHELL>> ptt off Setting ASR Push-To-Talk mode off.	
SHELL>> Updated Shell command parameter in flash memory.	

Figure 17. Example of PTT usage

7.2.7 Checking the software version

The command version prints the firmware version and the current bank either Bank A or Bank B.

Figure 18 shows the result of the version command when the application is at Bank A.

Figure 18. Check the software version

7.2.8 USB mass storage device mode

In the flash memory of the SLN-SVUI-IOT kit, the three main things stored are: two applications (stored in specific banks, called Bank A and Bank B) and the filesystem.

- Address for application Bank A: 0x60200000
- Address for application Bank B: 0x60C00000
- Address for filesystem: 0x61600000

For more information on generating an application binary or generating a new filesystem binary, refer to the *SLN-SVUI-IOT User Manual* (document <u>SLN-SVUI-IOT-UM</u>).

USB mass storage device (MSD) allows you to reflash the main application binary or the filesystem without a J-Link probe.

By default, the MSD feature skips signature verification to facilitate a smoother development flow. Signing images can be time-consuming and not ideal for quick debugging and validation.

Attention: Bypassing image verification is a security hole and it is the responsibility of the product maker to remove the violation in production.

To put the device into MSD mode, hold down switch 2 (SW2), and power cycle the board until the pink LED lights up. The pink LED turns on and off in 3 seconds interval.

SLN-SVUI-IOT User Guide

Figure 19. MSD update mode LED

Navigate to the file explorer and confirm that the SLN-SVUI-IOT kit is mounted as a USB mass storage drive. A mounted kit is displayed on the file explorer as shown <u>Figure 20</u>.

When updating only one application bank, you can drag and drop the generated *.bin file onto the MSD drive. The download process and writes the *.bin file to flash. After the image is programmed into flash, it begins execution.

Note: The binary is placed on a bank other than the one the kit currently runs on.

Since the i.MX RT1060 flash remap feature is enabled, the binary no longer needs to be compiled for a specific bank. To update the filesystem, after generating the binary, rename it to LFS.bin and then drag and drop it onto the MSD drive.

MSD allows you to update both banks and/or the filesystem. To update both banks with only one MSD, you must generate two *.bin files, and then make sure to rename them to APP_A.bin and APP_B.bin. This way, the board determines at what address to flash each binary. If you want to update the filesystem as well, add the LFS.bin into the MSD drive.

Note: When updating more than one bank using MSD, the binaries used MUST have the following names: APP A.bin, APP B.bin, and/or LFS.bin

8 **Product specifications**

Table 7 lists various specifications of SLN-SVUI-IOT.

© 2023 NXP B.V. All rights reserved.

SLN-SVUI-IOT User Guide

Table 7. Product specifications

Description	Specification
Electrical rating	DC supply via USB type-C connector, 5.0 V +/-10 %, 2 A
Temperature rating	10 °C to 40 °C
Wireless standards	Wi-Fi2.4 GHz and 5 GHz band (IEEE 802.11 a/b/g/n), Bluetooth 5.2
Radio frequency range	2400 MHz - 2483.5 MHz, 5.15 GHz - 5.825 GHz

9 References

The following references are available to supplement this document:

- SLN-SVUI-IOT-UM User Manual (document SLN-SVUI-IOT-UM)
- Hardware files (Gerbers, schematics, BOM)

10 Revision history

Table 8 summarizes the revisions to this document.

Table 8. Revision table

Revision number	Date	Substantive changes
1	16 June 2023	Initial release

SLN-SVUI-IOT User Guide

Legal information 11

11.1 Definitions

Draft - A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

11.2 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products - Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security - Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute or sell products.

11.3 Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

SLN-SVUI-IOT User Guide

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile — are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. $\label{eq:Bluetooth} \begin{array}{l} \textbf{Bluetooth} \ - \ \mbox{the Bluetooth wordmark and logos are registered trademarks} \\ \mbox{owned by Bluetooth SIG, Inc. and any use of such marks by NXP} \\ \mbox{Semiconductors is under license.} \end{array}$

i.MX — is a trademark of NXP B.V.

SLN-SVUI-IOT User Guide

Contents

1	Introduction	2
2	Acronyms	2
3	System requirements and prerequisites	2
4	Usage conditions	3
5	SLN-SVUI-IOT overview	4
6	Getting started with MCU smart voice	
	control	4
6.1	Package and collateral content	4
6.2	Initial update	6
6.3	Power on	7
6.4	Out-of-the-box demo applications	8
6.4.1	Demo application #1: smart home (IoT)/	
	elevator/washing machine voice control -	
	VIT-based	8
6.4.2	Connecting to a serial terminal	. 10
6.4.3	Switching to demo application #2	. 12
6.4.4	Demo application #2: smart home (IoT)/	
	elevator/washing machine voice control -	
	DSMT-based	.13
7	Controlling the device	15
7.1	Physical control description	15
7.2	Shell command interface	. 17
7.2.1	Switching out-of-the-box demo applications	17
7.2.2	Controlling volume	. 17
7.2.3	Muting the microphones	17
7.2.4	Setting the timeout	18
7.2.5	Enabling the follow-up mode	18
7.2.6	Enabling the push-to-talk mode	. 18
7.2.7	Checking the software version	19
7.2.8	USB mass storage device mode	19
8	Product specifications	.20
9	References	.21
10	Revision history	21
11	Legal information	.22

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© 2023 NXP B.V.

All rights reserved.

For more information, please visit: http://www.nxp.com

Date of release: 16 June 2023 Document identifier: SLN-SVUI-IOT-UG