
R01AN2535ED0203 Rev. 02.03 Page 1 of 132

May 2019

CAN Controller

Usage: Applications and Frequently Asked Questions

APPLICATION NOTE

Introduction and Support

This application note describes how to use CAN controllers of various Rensas microcontroller products.

Several different CAN controller types are available; so this application note is collecting frequently asked questions

and hot topics for all of them. By using the index, the user may locate the answers in one or several chapters.

Nevertheless, the content of this application note does not make any claim to be complete.

Due to this, the application note may be updated without further notice in shorter time intevals.

Proposals for improvement are always highly welcome.

For proposals and support, please contact <device_support.micro-eu@lm.renesas.com>.

Target Device

V850/Xx1, 78K0/Xx1 and earlier FCAN / DCAN CAN Controller types

V850/Xx2, V850/Xx3, 78K0/Xx2, 78K0(R)/Xx3: AFCAN/DAFCAN CAN Controller types

V850/Xx4: FCN/DCN CAN Controller types

SH: RCAN... CAN Controller types

RL78/X1x: RS-CANLite CAN Controller types

RH850/P1x-C: M_(TT)CAN CAN Controller types

RH850/X1x: RS-CAN CAN Controller types

RH850/X1x, E2x and later RS-CANFD V2/V3 CAN Controller types

RH850/U2x and later RS-CANFD V4 CAN Controller types

Figure 1.1 State of the art CAN Controller RS-CANFD V4

Note: Subsequent pages may be partly blank or have interleaved chapter numbering.

This is by intention, as this application note is continuously improved.

R01AN2535ED0203

Rev. 02.03

May 2019

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 2 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

1. CAN Controller Evolution in Renesas Microcontroller Products ... 9

1.1 Abstract ... 9

1.2 Older CAN Controllers ... 9

1.3 AFCAN CAN Controllers ... 9

1.3.1 AFCAN Hardware Architecture and New Functional Features ... 9

1.3.2 AFCAN Implementation Changes to Older CAN Controllers ... 9

1.4 FCN CAN Controllers ... 10

1.4.1 FCN Hardware Architecture and New Functional Features ... 10

1.4.2 FCN Implementation Changes to AFCAN CAN Controllers .. 10

1.5 RS-CAN CAN Controllers .. 11

1.5.1 RS-CAN Hardware Architecture and New Functional Features .. 11

1.5.2 RS-CAN Implementation Changes to FCN CAN Controllers ... 11

1.5.3 Memory Layout of RS-CAN CAN Controllers .. 12

1.6 RS-CANFD CAN Controllers ... 13

1.6.1 Implementation Differences of RS-CANFD Controllers ... 13

1.6.2 Memory Layout of RS-CANFD CAN Controllers ... 15

1.6.3 Merging Transmit Buffers in RS-CANFD V2 .. 16

1.7 M_(TT)CAN Controllers .. 18

2. Bus Transceivers and CAN Controller Operation Modes ... 19

2.1 Abstract ... 19

2.2 Overview ... 19

2.3 CAN Bus without Transceivers ... 20

2.4 CAN Transceiver / Controller Interface Distortions ... 21

3. CAN Bus Errors and Recovery of CAN Controller ... 22

3.1 Abstract ... 22

3.2 Roles of CAN controllers .. 22

3.3 Error situations of a CAN Transmitter .. 22

3.3.1 No Acknowledge by another Station (Receiver) .. 22

3.3.2 Transmission is not read back ... 22

3.4 Error situations of a CAN Receiver .. 23

3.4.1 Frame Form Errors ... 23

3.4.2 Reaction on Error Frames of other Nodes .. 23

3.4.3 Acknowledgment Errors ... 24

3.5 Blocking situations for CAN controllers ... 24

3.5.1 Permanently dominant blocked CAN bus .. 24

3.5.2 Transceiver in wrong mode or defect ... 24

3.6 Bus Off state: Recovery methods and conditions ... 25

4. Emulation of Efficient Energy Management Concepts of CAN (EEM) 26

4.1 Abstract ... 26

4.2 Partial Networking .. 26

4.2.1 Principle of Operation .. 26

4.2.2 Requirements for Systems and CAN Controllers ... 26

4.2.3 Application on Selective CAN-FD Usage .. 27

4.2.3.1 Definition and Requirements .. 27

4.2.3.2 Principle of Operation in RL78/F1x (or similar with RS-CAN) .. 28

4.2.3.3 Classical CAN Node Execution Flow in RL78 (or similar with RS-CAN) 29

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 3 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

4.2.3.4 Renesas CAN Controller Compatibility and Evaluation Result ... 30

4.3 Pretended Networking ... 31

4.3.1 Principle of Operation .. 31

4.3.2 Requirements for Systems and CAN Controllers ... 31

4.4 EEM Concept Comparison ... 32

4.5 Application Examples for Partial and Pretended Networking .. 32

5. Sample Software Description .. 33

5.1 Abstract ... 33

5.2 Supported CAN Controller Hardware ... 33

5.3 Lower Level CAN Driver Functionality ... 34

5.3.1 Overview .. 34

5.3.2 Environmental Initialization ... 34

5.3.3 Used Types .. 34

5.3.4 Port I/O Initialization .. 35

5.3.4.1 <xxx>_PortEnable() .. 35

5.3.4.2 <xxx>_PortDisable() ... 36

5.3.5 CAN Controller Initialization and Configuration ... 37

5.3.5.1 <xxx>_SetGlobalConfiguration() .. 37

5.3.5.2 <xxx>_SetGlobalFIFOConfiguration() ... 40

5.3.5.3 <xxx>_Set[...]Configuration() ... 41

5.3.5.4 <xxx>_SetCOMFIFOConfiguration() ... 52

5.3.5.5 <xxx>_CreateInterrupt() .. 54

5.3.5.6 <xxx>_SetInterrupt() ... 58

5.3.6 Reception / Filter Configuration ... 63

5.3.6.1 <xxx>_SetStdFilterEntry() .. 63

5.3.6.2 <xxx>_SetExtFilterEntry() .. 64

5.3.6.3 <xxx>_SetAFLEntry() ... 65

5.3.6.4 <xxx>_SetMachineMask() .. 69

5.3.6.5 <xxx>_SetReceiveMessage() .. 70

5.3.7 Operation and Status ... 71

5.3.7.1 <xxx>_Reset() ... 71

5.3.7.2 <xxx>_Start() ... 72

5.3.7.3 <xxx>_Stop() ... 74

5.3.7.4 <xxx>_GetStatus() ... 76

5.3.7.5 <xxx>_GetFIFOStatus() .. 79

5.3.7.6 <xxx>_GetError() .. 81

5.3.7.7 <xxx>_GetTimeStampCounter() ... 83

5.3.8 Transmission and Reception ... 84

5.3.8.1 <xxx>_SetSendMessage() ... 84

5.3.8.2 <xxx>_SetReceiveMessage() .. 85

5.3.8.3 <xxx>_SendMessage() .. 86

5.3.8.4 <xxx>_ReceiveMessage() ... 91

5.3.8.5 <xxx>_CheckReceiveMessage() ... 97

5.3.8.6 <xxx>_CheckSendMessage() .. 98

5.3.8.7 <xxx>_ClearReadyMessage() ... 99

5.3.8.8 <xxx>_TxAbort() .. 100

5.3.8.9 <xxx>_CheckAbortStatus() ... 101

5.3.9 Diagnosis and Self Test .. 102

5.3.9.1 <xxx>_IntCANBusActivate() ... 102

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 4 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.9.2 <xxx>_RAMTest() .. 102

5.4 Mapping of the Lower CAN Driver .. 103

5.4.1 Device Level ... 103

5.4.2 CAN Controller IP Level .. 103

5.4.2.1 Base Addresses ... 103

5.4.2.2 Device and Usage Adaptation ... 103

5.4.2.3 Memory Vectors .. 104

5.5 Applications Based on the Lower CAN Driver .. 105

5.5.1 Serial Monitor Program .. 105

5.5.1.1 Using the Debugger Console .. 105

5.5.1.2 Using a Serial Interface .. 106

5.5.2 Graphics Monitor Program ... 106

5.5.2.1 Public Licenses of Graphics Routines .. 107

5.5.3 Communication Application Examples .. 108

5.5.3.1 General Approach ... 108

5.5.3.2 Basic Communication with AFCAN .. 109

5.5.3.3 Basic Communication with RS-CANLite .. 110

5.5.3.4 Basic Communication with RS-CAN(-FD) .. 111

5.5.3.5 Self Test with RS-CAN(FD) ... 112

5.5.3.6 Internal Self Test with RS-CAN(FD, -Lite) .. 113

5.5.3.7 Basic Communication with M_(TT)CAN .. 114

5.5.3.8 Software-Gateway with M_(TT)CAN .. 115

6. Frequently Asked Questions ... 117

6.1 CAN Conformance and Licensing .. 117

6.1.1 CAN Conformance Policy of Renesas ... 117

6.1.2 CAN Conformance Test Specification ... 117

6.1.3 Certification on ISO 17025 ... 117

6.1.4 Proving of the CAN(-FD) License of Renesas CAN Controllers .. 117

6.1.5 Extended Identifiers and SAE J1939 .. 117

6.1.6 Remote Frames ... 117

6.2 Transceiver Issues ... 117

6.2.1 Necessity of a CAN Transceiver .. 117

6.2.2 Only SOF bit can be seen on the CAN bus .. 117

6.2.3 Usage of the SPLIT Terminal ... 117

6.3 Bit Timing and Clock Jitter ... 118

6.3.1 Calculating total Bit Timing Deviation with Jitter ... 118

6.3.2 Usage of a PLL as a Clock Source for CAN .. 118

6.3.3 Sporadically shortened or lengthened Bits by one or several TQ .. 118

6.3.4 Drive Strength of Microcontroller I/O Port for CAN ... 118

6.3.5 Bit Sampling Methods .. 118

6.3.6 Resynchronization after a recessive to dominant edge in the SOF bit ... 118

6.3.7 Resynchronization outside of the SJW Range .. 118

6.3.8 Information Processing Time (IPT) .. 118

6.3.9 Port Initialization to avoid Spikes on the CAN bus .. 118

6.3.10 Bit Timing on CAN-FD Setting Recommendations ... 119

6.4 Operation Modes and Initialization ... 120

6.4.1 Delay when entering Initialization / Halt Mode ... 120

6.4.2 Interrupting Bus Off Processing by Software (AFCAN) ... 120

6.4.3 Integration State .. 120

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 5 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

6.4.4 Allowed Options in Operation Modes (RS-CAN, RS-CANFD) .. 120

6.5 Power Save Modes .. 121

6.5.1 Re-Initialization when in Power Save Mode (AFCAN, FCN) ... 121

6.5.2 Unconditional Wake-Up by any CAN Bus Event .. 121

6.5.3 Selective Wake-Up by a dedicated Identifier ... 121

6.5.4 Receive and Transmit Interrupts in SLEEP Mode .. 121

6.5.5 Dominant blocked CAN bus while in SLEEP Mode .. 121

6.5.6 Preconditions for DAFCAN and DCN to enter a Power Save Mode ... 121

6.6 Transmission ... 122

6.6.1 Transmit Abortion in general .. 122

6.6.2 Transmit Abortion in (D)AFCAN, FCN, DCN .. 122

6.6.3 Transmission Confirmation with FIFO in RS-CAN, RS-CANFD ... 122

6.7 Reception ... 123

6.7.1 Mixed Reception of Extended and Standard Frames in one Message Box 123

6.7.2 Masking (DCAN, FCAN, (D)AFCAN, FCN, DCN, RCAN) .. 123

6.7.3 Filtering (RS-CAN, RS-CANFD) .. 123

6.7.3.1 No Priority of Reception among Channels ... 123

6.7.3.2 Masking the IDE Flag (Extended Frames) and ID Comparison .. 123

6.7.3.3 Order of Reception Rules, Rule Count (RNC) ... 123

6.8 Message Storage .. 124

6.8.1 Buffers (Mailboxes): FCAN, (D)AFCAN, FCN, DCN .. 124

6.8.1.1 Effect of the RDY Flag ... 124

6.8.1.2 Multi-Buffer Receive Blocks (MBRB) and Overwriting (OWS) ... 124

6.9 History Lists: (D)AFCAN, FCN, DCN ... 125

6.9.1 Handling after Overflow ... 125

6.9.2 Overwriting (OWS) Enable and Receive History List ... 125

6.9.3 Lost Receptions by wrong handling of RHL Registers .. 125

6.10 Peripheral Bus Access ... 126

6.10.1 32-Bit Accesses ... 126

6.10.2 Minimum Peripheral Bus Clock Speed .. 126

6.11 Interrupts ... 127

6.11.1 Lost Interrupts in (D)AFCAN, FCN, DCN when disabling by CxIE or CnMCTRLm.IE 127

6.11.2 Conditions in (D)AFCAN, FCN and DCN regarding CINTSx and CIEx 127

6.11.3 Missing Receive Interrupts ((D)AFCAN, FCN, DCN) .. 127

6.11.4 Suppression of Receive Interrupts for Remote Frames ((D)AFCAN) ... 127

6.11.5 Interrupt Handling in RL78 RS-CANLite Implementations .. 128

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 6 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

Terminology Index

[A]

Acknowledge .. 22

AFL .. 123

[B]

Bit Sampling ... 118

Bit Timing ... 118

BRS (bit rate switch) ... 119

Bus Error ... 22

Bus Off ...25, 120

[C]

CAN Conformance ... 117

CAN License ... 117

CAN Transceiver ...26, 117

CAN-FD .. 27

CiA ... 119

[D]

DN ... 125

Drive Strength ... 118

[E]

EEM ... 26

[F]

Filtering ... 123

Form Error ... 23

[G]

GMLAN ... 118

[I]

ID ...123, 127

Information Processing Time ... 118

Initialization .. 120

Initialization / Halt Mode ... 120

Integration State .. 120

IPT ... 118

ISO 11898-1 ...25, 27, 118, 120, 122

ISO 11898-6 ... 26

ISO 16845 .. 117

ISO 17025 .. 117

[J]

Jitter ... 118

[M]

Masking ... 123

MBRB ... 124

Mixed Reception .. 123

MOW .. 124

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 7 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

[N]

NH ... 125

[O]

Operation Modes ..19, 120

Overflow .. 125

OWS .. 124

[P]

Peripheral Bus Clock Speed ... 126

PLL .. 118

Port .. 118

Port Initialization .. 118

[R]

RDY ..124, 127

Receive Interrupts .. 127

Reception .. 123

Recovery ... 22

Re-Initialization .. 121

Remote Frames ..117, 127

RNC ... 123

RX-ONLY mode ... 30

[S]

SAE J1939 ... 117

Sampling Point .. 119

SJW ... 118

SLEEP Mode .. 121

SOF ..118, 121

SOF bit .. 117

SPLIT Terminal .. 117

STOP mode .. 121

[T]

THL .. 122

Transmit Abortion ... 122

TRQ ... 122

[W]

Wake-Up ... 121

WUF ... 26

WUP ... 26

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 8 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

Issue Solving Proposal Index

A
Acknowledgment Errors .. 24
Allowed Options in Operation Modes .. 120

B
Blocked Message Boxes .. 127
Blocking situations ... 24
BRS (bit rate switch) failure (CAN-FD) ... 119

C
CAN Bus without Transceivers .. 20
Cannot enter SLEEP mode in DCN / DAFCAN .. 121
Cannot leave SLEEP Mode .. 121
Confirmation of successful transmission .. 122

D
Delay when entering Initialization / Halt Mode ... 120

F
Filtering with AFL Rules ... 123

L
Lost Interrupts ... 127
Lost Receptions .. 125

M
Message Reception Interrupts are missing ... 121, 125, 127
Missing Interrupts in RL78 .. 128
Missing Receive Interrupts ... 127
Multi-Buffer Receive Block fails ... 124

O
Only SOF bit can be seen on the CAN bus ... 117
Operation mode does not leave Integration State at high bus load .. 120

P
Permanently dominant blocked CAN bus ... 24
Priority of Reception ... 123

R
Reaction on Error Frames of other Nodes .. 23
Recovery methods and conditions .. 25

S
Spikes on the CAN bus ... 118
Sporadic Errors due to Drive Strength setting of Port ... 118
Sporadic losses of received frames .. 126
Sporadically shortened or lengthened Bits by one or several TQ .. 118
Suppression of Receive Interrupts for Remote Frames .. 127

T
Transceiver in wrong mode or defect .. 24
Transmission is not read back ... 22

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 9 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

1. CAN Controller Evolution in Renesas Microcontroller Products

1.1 Abstract

This chapter covers:

• Which migration paths regarding software can be performed with what amount of effort

• Which functionality must be considered new when migrating

• Software implementation and integration hints

The chapter assumes that the evolution steps of Renesas CAN controllers is understood as follows:

(older CAN controllers) --> AFCAN --> FCN --> RS-CAN --> RS-CANFD

M_(TT)CAN controllers are not Renesas IP, therefore there are no recommended migration paths between those

and Renesas CAN controllers.

In addition, we assume that a migration with two evolution steps at a time is not possible without reconstructing the

software drivers from scratch.

1.2 Older CAN Controllers

DCAN, FCAN and RCAN(...) are older CAN controllers. When migrating to a microcontroller state-of-the-art, a

migration strategy cannot be recommended, apart from starting a new CAN controller software from scratch.

The reason for this is, that there are too many differences between older CAN controllers and newer ones, which

are affecting the following:

• Hardware architecture and (new) functional features

• Implementation

• Layout of registers (SFR)

• Interrupt sources

• Clock setting requirements

• Algorithmic requirements for initialization, operation and error handling

• Functional delays of state engines

In the following, we will show the migration aspects regarding these criteria for newer CAN controller types.

1.3 AFCAN CAN Controllers

With AFCAN, many new features have been introduced, so that all categories of migration would require to be

adapted. For this reason, a migration path from older CAN controllers to AFCAN does not exist and CAN driver

software must be rewritten almost completely.

1.3.1 AFCAN Hardware Architecture and New Functional Features

The hardware architecture is changed from multiple channel unit with shared memory into a single-channel

module. Thus, programmable automated processing of messages among channels by hardware is no longer

possible. At the same time however, the diagnosis channel functionality is introduced (“DAFCAN”). This

concept supports (filtered) hardware message routing from several channels into one.

As an advantage, the new architecture is more compact and has lower power consumption.

1.3.2 AFCAN Implementation Changes to Older CAN Controllers

Table 1.1 AFCAN Implementation Changes to Older CAN Controllers

Category Item Description

Register Layout Channel

Message Box

Debug Information

One channel per CAN Controller.

Layout of Message Box contents optimized.

Reduced to TEC, REC and Bus Off

Interrupt Sources all Edge triggered, pending flag needs not to be cleared any more

Clocking Protocol requirement 8 MHz for 1 Mbit/s required

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 10 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

1.4 FCN CAN Controllers

The introduction of FCN CAN controllers was mostly done in order to get a performance boost. While basically the

architecture of AFCAN was kept, the whole register map and the internal peripheral bus access was heavily

improved. At the same time, more message boxes and longer history lists were introduced, so that a much larger

associated internal RAM was implemented.

1.4.1 FCN Hardware Architecture and New Functional Features

Besides the performance mentioned above, some new features were introduced:

• Centralized “New Data Flag” register, which groups all “New Data” flags from all message buffers:

This allows easy lookup of new receptions without scanning the whole RX history list.

• Remote frames can now also be received in RX buffers with masking option, not only in FullCAN TX buffers:

Flexibility when receiving remote frames is heavily improved by that. Remote frames get the same possibility

of use like data frames.

• History list recording of TX and RX messages can be disabled per message buffer:

The feature avoids overflow of history lists, if many message boxes are not handled by the history list

scanning process (for example, they are polled).

1.4.2 FCN Implementation Changes to AFCAN CAN Controllers

Algorithms / Functions Message Searching

Data Content Filtering

Time Trigger System

Operation Modes

New: Block Transfers

New: RX/TX History

New: Diagnosis Modes

New: MUC Flag

Replaced by RX/TX History functionality

Removed, filtering restricted on ID of messages only

Using additional timer resource, SOF and EOF triggers

State machine for operation mode transition introduced

Power Save Modes introduced (Sleep, Stop)

ABT Mode (up to 8 messages sending with single trigger)

Correlate received and sent messages with boxes in sequence

RX-Only, Single Shot, Self Test Loop

Indicates busy phases of message buffers, to be considered by

software when reading messages during reception

Delays Prioritized CPU access

Operation Modes

Bus Off Recovery

Latency of CPU access (wait states) reduced

Changes of Operation Modes must be confirmed by reading

back the operation mode status

Can now alternatively be handled by software

Table 1.2 FCN Implementation Changes to AFCAN CAN Controllers

Category Item Description

Register Layout All New register layout due to optimized peripheral bus access.

Up to 128 message boxes per channel.

Interrupt Sources Transmission Abortion

ECC Check of RAM

Additional interrupt source, shared with Wake-Up interrupt

Additional interrupt source, depends on implementation

Clocking Protocol requirement 40 MHz for 1 Mbit/s required, due to additional sampling stage

Algorithms / Functions Block Transfers

RX/TX History

Hardware Filter Masks

New: New Data Register

New: History Disabling

New: Remote Frames

Up to 32 messages per block, depending on implementation

Up to 96 record entries (RX), 32 record entries (TX), depending

on implementation

Doubled amount to 8 masks per channel

Grouping of all DN flags of all message buffers

Recording in history lists can be disabled per message buffer

Reception in RX buffers possible

Delays Faster Peripheral Bus

RAM Initialization,

Soft Reset

Latency of CPU access (wait states) reduced

Self-Initialization of local CAN RAM: software must wait for that

after each hard- or soft-reset

Table 1.1 AFCAN Implementation Changes to Older CAN Controllers

Category Item Description

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 11 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

1.5 RS-CAN CAN Controllers

With the introduction of the RS-CAN CAN controller, the general approach for handling CAN was revised. The

most important topic here is the migration from a message box approach to a message stream approach.

At the same time, the common resource (RAM, buffer) sharing concept among several channels was reinvoked.

Faster technology with higher clock rates and higher gate density (higher complexity of design) had allowed these

steps previously, while increasing data traffic on the CAN bus at higher data rates required a new concept, too.

1.5.1 RS-CAN Hardware Architecture and New Functional Features

In the following, the most important architectural differences to the AFCAN and FCN CAN controllers are

highlighted. Due to these differences, there is no simple migration path that could be recommended in general.

Even more, in order to get best advantages of the new architecture and features, a new start from scratch for

software drivers is making sense.

New features / functionality:

• Multi-channel architecture with shared RAM storage, flexible usable of RAM resources

• Fixed amount of hardware filters replaced by filter lists for each channel

• Reception process allows several (up to 8) targets, hereby copying a message for each target

• Reception targets are FIFO structures and classical message boxes

• Classical receive message boxes do not support interrupts

• Transmission can be performed from either/both FIFO structures, prioritized queues and classical transmit

boxes

• Automated routing of complete messages between receive and transmit paths among all associated channels,

not just a single diagnosis channel, but using all channels

• Time stamping now fully integrated, triggered on either SOF or EOF

• Logical handles (labels) for receive and transmit messages

• Data length (DLC) supervision on reception

• Internal self test bus linking several channels

Removed features / functionality:

• Receive History List

• Receive interrupts of classical message boxes

• Overwriting protection of classical message boxes

• Transmit block transfer replaced by transmit FIFO structures

• Multi-receive block (MRB) functionality replaced by receive FIFO structures

• Wake up interrupt: functionality moved from CAN controller to port/microcontroller top level

1.5.2 RS-CAN Implementation Changes to FCN CAN Controllers

Due to the new architecture, neither register tables nor algorithms for reception and transmission can be

compared between RS-CAN and the previous CAN controller types.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 12 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

1.5.3 Memory Layout of RS-CAN CAN Controllers

In order to define a correct configuration, it is inevitable to understand the layout of the associated CAN

controller memory in detail. In the following diagram, the memory layout of the 6-channel, 3-channel RS-CAN

and dual channel and single channel RS-CANLite CAN controllers is shown.

Figure 1.1 Memory Layout of RS-CAN: 6-channel, 3-channel; RS-CANLite: 2-channel, 1-channel

The channel specific memory parts do not require dedicated consideration, because these resources are not

shared and simply stay unused, if not allocated.

However, the shared memory parts require explicit partitioning, which are the acceptance filtering lists (AFL)

and the common reception resources (flexible memory area). The following rules must be obeyed:

• AFL memory parts cannot be allocated to reception resources and vice versa.

• AFL memory parts are shared among all channels. Each rule takes one entry. It is not allowed to define more

rules than the maximum allowed total amount (i.e., 384 on a 6-channel RS-CAN).

• If below the limit, the amount of AFL rules can be individually assigned to channels.

• The flexible memory area is shared for all reception resources, such as standard boxes and FIFO elements.

• A standard reception box is occupying one entry.

• A FIFO (either RX only or TX/RX [“multi-purpose”]) consumes one entry for each of its elements. Thus a

FIFO with a depth of 128 will consume 128 entries.

• The maximum number of entries must not be exceeded by adding up all boxes and FIFO elements.

When using the RAM testing functionality of RS-CAN, the RAM area to be testable is the sum of all usable

memory cells shown above plus an internally used storage amount of 96 bytes per channel; i.e., 14592 bytes for

the 6-channel version.

RAM testing is organized in pages with 256 bytes each, using 64 longword-based registers for one page.

For the 6-channel version of RS-CAN, thus there are 57 complete pages.

For the 3-channel version of RS-CAN there are 7296 bytes, thus 28 pages and one page with 128 bytes; in total

28.5 pages.

Even though the physical CAN memory might be larger, a testing access to these sections is prohibited.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 13 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

1.6 RS-CANFD CAN Controllers

Within the introduction of CAN-FD, the RS-CANFD Controllers were developed from the RS-CAN Controllers,

and are still continuously improved.

The major version of the RS-CANFD Controller can be asked from the Renesas support (e-mail address see front

page).

• RS-CANFD V2: CAN-FD ISO 11898-1:2015 compatible. RS-CANFD V2 provides a RS-CAN compatibility

mode. In compatibility mode however, CAN-FD functionality is disabled.

• RS-CANFD V3: Enhanced version of RS-CANFD, which no longer supports compatibility to RS-CAN, but has

advantages of new CAN-FD features and larger memory, simplifying its usage.

• RS-CANFD V4: Enhanced version of RS-CANFD, with again larger memory, higher data rates and additional

essential features regarding hardware gateway, buffer and transceiver sharing.

1.6.1 Implementation Differences of RS-CANFD Controllers

Table 1.3 RS-CANFD V2 Implementation Differences in RS-CAN Compatibility Mode

Category RS-CAN RS-CANFD V2

(RS-CAN Mode)

Classical CAN Protocol ISO 11898-1:2003 compatible

Register Layout

Reference

No changesInterrupt Sources

Clocking

Algorithms / Functions CAN Controller RAM Size is increased: More RAM Pages available

(RAM Test Functionality)

CAN Controller RAM ECC verification at transmission and on CPU reading

Delays CAN Controller RAM Initialization after Reset: May take longer time

Operation Mode changes: slightly different execution time due to changed

state engines

Transmission Latency (from software trigger to transmission start on CAN

bus): slightly different due to modified protocol engine

Table 1.4 RS-CANFD V3 Implementation Differences in RS-CANFD Mode of V2

Category RS-CANFD V2

(RS-CANFD mode)

RS-CANFD V3

CAN-FD Protocol CAN-FD ISO 11898-1:2015 compatible

Bit timing generation according to CAN-FD

Register Layout New register memory addressing layout due

to larger structures

Expanded Message Object/Buffer layout

Merging of Transmit Buffers

New register memory addressing layout due

to larger structures

Expanded Message Object/Buffer layout

No merging Transmit Buffers

(enlarged, thus no longer required)

Interrupt Sources No changes

Clocking
No changes

CAN-FD operation: max. 80 MHz peripheral

clock and 40 MHz communication clock

Algorithms / Functions CAN-FD Feature Set:

FDF, BRS, ESI, TDC,

Frames with 64 Bytes, Data Padding

CRC field generation / check

Timestamp also at FDF->res edge

Restricted Operation Mode

FD Tolerant Operation Mode

DMA Support functionality

New CAN-FD Features:

FD-Only Mode, Classical-Only Operation

Modes

Doubled amount of AFL rules

Doubled amount of TX buffers

Message Labels increased to 16-bit

All buffers now can cover 64 bytes of

payload data (TX and RX)

Delays Default
CAN Controller RAM Initialization after

Reset: May take longer time

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 14 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

Table 1.5 RS-CANFD V4 Implementation Differences to V3

Category RS-CANFD V3 RS-CANFD V4

CAN-FD Protocol CAN-FD ISO 11898-1:2015 compatible CAN-FD ISO 11898-1:2015 compatible

Fulfills CiA 601.x recommendations

Register Layout - New register memory addressing layout due

to higher bit resolution and functional

enhancements

Expanded Message Object/Buffer layout

Interrupt Sources - Additional interrupts for FIFOs and Queues

Clocking Max. 80 MHz peripheral clock and 40 MHz

communication clock

CAN-FD operation: max. 80 MHz peripheral

clock, 80 MHz communication clock and

160 MHz memory access clock

Algorithms / Functions CAN-FD Feature Set:

FDF, BRS, ESI, TDC,

Frames with 64 Bytes, Data Padding

CRC field generation / check

Timestamp at FDF->res edge or SOF

Restricted Operation Mode

FD Tolerant Operation Mode

FD-Only Mode

Classical-Only Operation Mode

DMA Support functionality

CAN-FD Feature Set: See V3

Improvements:

Amount of AFL rules increased by 50%

Doubled amount of TX buffers

4 TX Queues per channel

Flexible channel interconnection

Flexible TX buffer sharing by two channels

HW-Gateway routing to TX Queues

Overwrite / Replace mode of TX Queues

Overwrite / Discard mode of FIFOs

FIFO stopping and One-Frame signaling

Transmit History in Gateway Mode

Soft-Reset function

Delays Default
CAN Controller RAM Initialization after

Reset: May take longer time

Table 1.6 RS-CANFD Changed Property Comparison

Feature RS-CANFD V2 RS-CANFD V3 RS-CANFD V4

AFL Rules

total / max. per channel
64 * Channels / 127 128 * Channels / 255 192 * Channels / 384

Receive / FIFO Buffers 23~89 Objects * Channels 47~179 Objects * Channels 256~972 Objects * Channels

Transmit Buffers 16 * Channels 32 * Channels 64 * Channels

Transmit Queues 1 * Channels 1 * Channels 4 * Channels

Max. Payload Size

for Transmit Buffers

20 Bytes,

64 Bytes by merging three

buffers

64 Bytes for all buffers 64 Bytes for all buffers

Max. Payload Size

for Standard Receive

Buffers

20 Bytes 64 Bytes 64 Bytes

Label (Pointer) Size

for Transmission
8 Bit 16 Bit 16 Bit

Label (Pointer) Size

for Reception
12 Bit 16 Bit 16 Bit

Operation Modes

RS-CAN Compatible Mode

CAN-FD Operation Mode

CAN-FD Tolerant Mode

-

-

Restricted Operation Mode

External Self-Test Mode

Internal Self-Test Mode

Receive-Only Mode

-

-

CAN-FD Operation Mode

CAN-FD Tolerant Mode

CAN-FD Only Mode

Classical CAN Only Mode

Restricted Operation Mode

External Self-Test Mode

Internal Self-Test Mode

Receive-Only Mode

-

-

CAN-FD Operation Mode

CAN-FD Tolerant Mode

CAN-FD Only Mode

Classical CAN Only Mode

Restricted Operation Mode

External Self-Test Mode

Internal Self-Test Mode

Receive-Only Mode

Flexible CAN Mode

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 15 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

1.6.2 Memory Layout of RS-CANFD CAN Controllers

Similarly to RS-CAN and RS-CANLite, in RS-CANFD the memory organization is a very important aspect

when configuring the CAN controller.

Due to the high variations in object sizes of CAN-FD, the memory organization no longer can be given in

receive or transmit object counts, but in absolute amounts of bytes of memory, which are available and which

are required to store a receive or transmit object.

For the n-channel types of RSCAN-FD V2, V3 and V4, the memory layout is given as shown below:

Figure 1.2 Memory Layout of RS-CANFD V2, RS-CANFD V3, RS-CANFD V4: n-channel versions

When using the RS-CAN compatibility mode of RS-CANFD V2, the memory layout changes to the RS-CAN

layout. See 1.5.3 Memory Layout of RS-CAN CAN Controllers for details.

The channel specific memory parts do not require dedicated consideration, because these resources are not

shared and simply stay unused, if not allocated.

However, the shared memory parts require explicit partitioning, which are the acceptance filtering lists (AFL)

and the common reception resources (flexible memory area). The following rules must be obeyed:

• AFL memory parts cannot be allocated to reception resources and vice versa.

• AFL memory parts are shared among all channels. Each rule takes one entry. It is not allowed to define more

rules than the maximum allowed total amount (i.e., 384 on a 6-channel RS-CANFD V2).

• If below the limit, the amount of AFL rules can be individually assigned to channels.

• The flexible memory area is shared for all reception resources, such as standard boxes and FIFO elements.

• A standard reception box is occupying 12+d bytes, where d is the message size of CAN-FD in bytes.

The message size d can be adjusted to be 8, 12, 16 or 20 bytes (RS-CANFD V2).

The message size d can be adjusted to be 8, 12, 16, 20, 24, 32, 48 or 64 bytes (RS-CANFD V3, V4).

• A FIFO (either RX only or TX/RX [“multi-purpose”]) consumes 12+d bytes for each of its elements.

The message size d can be adjusted to be 8, 12, 16, 20, 24, 32, 48 or 64 bytes.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 16 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

Thus a FIFO with a depth of 128 and payload size of 64 bytes will consume 9728 bytes. It cannot be activated

on a 3-channel RS-CANFD V2 unit, because it exceeds the limit of 5376 bytes.

The maximum number of entries must not be exceeded by adding up all boxes and FIFO elements.

For RAM testing, the approach is the same as for RS-CAN(Lite). See 1.5.3 Memory Layout of RS-CAN CAN

Controllers for details.

1.6.3 Merging Transmit Buffers in RS-CANFD V2

When using a transmit (“multi-purpose”) FIFO for transmission, it can be assigned to any transmit buffer, and

the size of the transmit buffer needs not to be considered.

However, when using classical transmit buffers, for RS-CANFD V2 transmit buffers need to be merged,

depending on the payload size to be transmitted. For RS-CANFD V3, this is no longer required, because all

transmit buffers are supporting the full 64-byte payload capacity.

A transmit buffer in RS-CANFD V2 can store up to 20 payload bytes. If more bytes shall be stored, merging has

to be activated by setting the Merge Mode flag in the global configuration. In Merge Mode, it is allowed to cross

the boundaries of the transmit message buffers with additional payload data, so that the one or two next buffers

would be unusable as separate buffers, just being a storage for the additional payload.

Merging of transmit buffers can be done for the lowest 6 buffers only, and the base of merged buffers must be

either buffer 0 or buffer 3. Either one, two or three buffers can be grouped in Merge Mode, without setting any

additional flags; just by specifying the payload size. Merging two buffers yields a maximum payload size of 48

bytes, merging three buffers yields 64 bytes payload size.

Figure 1.3 Merging Transmit Boxes Example for RS-CANFD V2

In the given example, buffer 0 is merged with buffer 1, to be a transmit message box for CAN-FD messages

with up to 48 bytes payload. Buffer 2 is available for up to 20 bytes payload. With another merging, the buffers

3, 4 and 5 are grouped to fit for a 64 bytes payload.

Buffer 6 is assigned to a multi-purpose TX FIFO. It can transmit any payload size up to 64 bytes even though

there is no merging for this buffer. The TX FIFO will manage the re-use of the buffer to sequentially transmit

the payload without need of additional storage. The payload itself resides in the FIFO, where the memory is

acquired.

Buffer 7 is again a buffer for a 20 bytes payload.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 17 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

Buffers 8 to 15 are joined into a transmit queue. Transmit queues in RS-CANFD V2 are not supporting larger

payloads than 20 bytes. Thus, the queue is set up for CAN-FD frames for up to 20 bytes payload size with a

queue depth of 8 buffers.

Prioritized transmission is supported for this queue, while the FIFO assigned to buffer 6 will not support

prioritized transmission among its content. Regarding transmission priority, all queue members, all buffers or

merged buffers, and the front message of the FIFO will arbitrate for highest priority.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 18 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

1.7 M_(TT)CAN Controllers

Within the evolution of CAN-FD, similarly like the RS-CANFD controllers, the M_(TT)CAN controllers were

updated in several steps. Within Renesas products, the versions V3.0.1 and V3.2.1 are implemented. The following

table shows the adapted topics which need to be considered when migrating.

Table 1.7 M_(TT)CAN Implementation Differences between Versions V3.0.1 and V3.2.1

Category M_(TT)CAN V3.0.1 M_(TT)CAN V3.2.1

CAN Protocol ISO 11898-1:2003 (classical CAN)

CAN-FD protocol not in line with ISO

ISO 11898-1:2015 compatible (CAN-FD)

Register Layout FBTP

TEST

CCCR

BTP

PSR

TDCR

IR, IE and ILS

RX Buffer and FIFO Elements

TX Buffer Elements

renamed to DBTP

increased configuration range

transmitter delay compensation moved to TDCR

transmitter delay compensation moved to PSR

EFBI and PXHD settings added

CMR flag removed

CME replaced by BRSE and FDOE

renamed to NBTP

reduced configuration range for prescaler

increased configuration range for bit timing

transmitter delay compensation moved from TEST

PXE flag added for protocol exception event

REDL and FLEC flags renamed

new added with transmitter delay compensation

offset and filter window length

flags STE..., FOE..., ACKE..., BE..., CRCE...

replaced by ARA..., PED... and PEA...

flag EDL renamed to FDF according to ISO

ESI and frame format selectable per transmission

Interrupt Sources See changes of IR, IE and ILS registers

Clocking Peripheral (“host”) clock issue:

At least 26,7 MHz required to operate

at 1 Mbit/s classical CAN

Peripheral clock issue fixed; requirement to be

faster than the communication clock.

Higher resolution for bit timing

Algorithms / Functions Transmitter delay compensation adapted

Selection of ESI state per transmission possible

Selection of classic or FD format per transmission

Delays Due to CCCR.CCE issue workaround,

the entry in INIT mode is delayed.

Regular delay when entering INIT mode (worst case

the length of a frame).

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 19 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

2. Bus Transceivers and CAN Controller Operation Modes

2.1 Abstract

This chapter covers:

• Which operation modes are available in transceivers and CAN controllers

• Which operation modes can be combined between transceivers and CAN controllers

• Which consequences may happen if bad combinations of operation modes between transceivers and CAN

controllers are used

• Is it possible to create a CAN bus without transceivers?

• What happens if a CAN transceiver gets disconnected or shortcuts on its CAN controller interface signals?

2.2 Overview

In the following table, it is shown which modes of CAN transceivers can be combined with modes of CAN

controllers: Green: YES, can be combined, Red: NO, cannot be combined; do never combine, not even during

state transitions, Yellow: N/R, not recommended, but may be an intermediate state during state transitions.

The modes are available in the various CAN controllers by different settings. See the following table and refer to

the user’s manual of your product, in order to find out how to set the operation mode.

Table 2.1 CAN Transceiver and Controller Mode Combinations

CAN Controller

Modes

CAN Transceiver Modes
Remarks

OFF SLEEP STANDBY OFFLINE RX-ONLY ACTIVE

RESET YES N/R N/R N/R N/R N/R RESET tolerates all states.

STOP N/R YES YES YES N/R N/R Transceiver should be inactive.

Consider fast wake up and activity.SLEEP N/R YES YES YES N/R N/R

HALT / INIT N/R YES YES YES YES YES Avoid floating port signals.

RX-ONLY NO N/R N/R N/R YES YES Allow bus activity detection at least.

OPERATING NO NO NO NO NO YES Do not block transmissions.

SELF TEST EXT. NO NO NO NO NO YES Self-reception in operating mode.

SELF TEST INT. YES YES YES YES YES YES Works independent of transceiver.

Table 2.2 CAN Controller Types and Operation Modes

CAN

Controller

Modes

CAN Controller Types (n: Channel Number)

FCAN /

DCAN

AFCAN /

DAFCAN

FCN / DCN

(x: F or D)
RCAN

RS-CAN,

RS-CANLite

RS-CANFD

V2, V3
M_(TT)CAN

Set Global Operation / Clear

Global Stop first.

RESET Clear
CGST.GOM

Clear
CnGMCTRL.

GOM

Clear
xCNnGMCLCTL.

xCNnGMCLPWOM

Set
CCTLR.
CANM0

Set
CnCTR.

CHMDC = 1

Set
CFDCnCTR.
CHMDC = 1

(not available)

STOP Set
CnCTRL.STOP

Set
CnCTRL.

PSMODE1

Set
xCNnCMCLCTL.

xCNnCMCLMDPF1

Set
CCTLR.
SLPM

Set
CnCTR.
CSLPR

Set
CFDCnCTR.

CSLPR

Set
CCCR.CSR

SLEEP Set
CnCTRL.SLEE

P

Set
CnCTRL.

PSMODE0

Set
xCNnCMCLCTL.

xCNnCMCLMDPF0
Not available

HALT / INIT
Set

CnCTRL.INIT

Set
CnCTRL.

OPMODE = 0

Set
xCNnCMCLCTL.

xCNnCMCLMDOF
= 0

Set
CCTLR.
CANM1

Set
CnCTR.

CHMDC = 2

Set
CFDCnCTR.
CHMDC = 2

Set
CCCR.INIT

RX-ONLY
Set

CnDEF.MOM

Set
CnCTRL.

OPMODE = 3

Set
xCNnCMCLCTL.

xCNnCMCLMDOF
= 3

Set
CTCR = 3

Set
CnCTR.CTME
CnCTR.CTMS

= 1

Set
CFDCnCTR.CTME
CFDCnCTR.CTMS

= 1

Set
CCCR.MON

OPERATING
Clear

CnCTRL.INIT

Set
CnCTRL.

OPMODE = 1

Set
xCNnCMCLCTL.

xCNnCMCLMDOF
= 1

Clear
CCTLR.SLPM
CCTLR.CANM

Clear
CnCTR.CHMDC
CnCTR.CSLPR

Clear
CFDCnCTR.CHMDC
CFDCnCTR.CSLPR

Set CCCR.CMR
Clear CCCR.INIT

SELF TEST

INT.

Set
CTBR = 5

(2 channels
needed at least)

Set
CnCTRL.

OPMODE = 5

Set
xCNnCMCLCTL.

xCNnCMCLMDOF
= 5

Set
CTCR = 7

Set
CnCTR.CTME
CnCTR.CTMS

= 3

Set
CFDCnCTR.CTME
CFDCnCTR.CTMS

= 3

Set CCCR.MON
Set TEST.LBCK

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 20 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

2.3 CAN Bus without Transceivers

Within internal point-to-point connections of nodes, the CAN bus can be used without transceivers.

However, some external circuitry is required at least, and the solution is not in line with the ISO specification.

On the other hand, as a CAN transceiver also limits the throughput and bandwidth, faster communication speed can

be achieved than specified within ISO 11898-2.

Note: Using faster communication speeds may be outside of the specification of a device, and thus may not be

guaranteed under all conditions.

In the following figure, the wiring of two devices using a CAN channel is shown.

Figure 2.1 CAN Bus without Transceivers

The value of the resistor depends on the bus speed and the driving capabilities of the connected device ports. For

the diodes, schottky types are recommended (higher speed and lower threshold voltage).

SELF TEST

EXT. Not available
Set

CTCR = 5

Set
CnCTR.CTME
CnCTR.CTMS

= 2

Set
CFDCnCTR.CTME
CFDCnCTR.CTMS

= 2

Set
TEST.LBCK

Table 2.2 CAN Controller Types and Operation Modes

CAN

Controller

Modes

CAN Controller Types (n: Channel Number)

FCAN /

DCAN

AFCAN /

DAFCAN

FCN / DCN

(x: F or D)
RCAN

RS-CAN,

RS-CANLite

RS-CANFD

V2, V3
M_(TT)CAN

Set Global Operation / Clear

Global Stop first.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 21 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

2.4 CAN Transceiver / Controller Interface Distortions

The reaction on distortions on the interface signals between CAN transceiver and CAN controller are mostly

identical on all Renesas CAN controller types. Exceptions are shown below.

We are distinguishing between interruptions (a signal is no longer connected) and shortcuts (a signal is fixed to a

level). Further, it is required to distinguish between the signals themselves, i.e., RX and TX. Any other signals of

the CAN transceiver are not covered by this chapter, because Renesas controllers are not supporting them natively

(means: by hardware on its own).

The following table shows the details. This shall serve for finding the distortions by their effects.

Table 2.3 CAN Transceiver / Controller Interface Signal Error Scenarios

Signal / Scenario TX (“CTXDn”) RX (“CRXDn”)

Open / unconnected The transceiver is pulling up the TX

signal to recessive (high) level.

Transmission is not possible, the CAN

bus remains unaffected.

Reception is not possible, because the

CAN controller cannot acknowledge.

Any transmission attempt in the CAN

controller will cause TEC errors,

resulting in “Bus-Off” condition after 390

bit times. Detail: (a)

Any reception attempt of a frame on the

bus will cause an increase of the REC

error counter; after 16 frames the CAN

controller will be in error passive state.

Detail: (b)

a. Assuming that the CAN controller did have a TEC=0, when the scenario starts. 17 transmission attempts

with 3 active error frames and 14 passive error frames with associated spacing will occur, until the bus-off

state is reached at a value TEC=256.

b. Assuming that the CAN controller did have a REC=0, when the scenario starts.

If there are other stations on the CAN bus, who are providing acknowledge, then reception is possible.

As RX is an input, see the rows of shortcut

scenarios for applicable effects.

Shortcut to ‘1’ level

(recessive)

See “open / unconnected” of TX. Transmission is not possible, but error frames

will be seen on the CAN bus, until the CAN

controller reaches error passive state as

indicated in detail (a).

Reception is not possible, no frames are

recognized.

Shortcut to ‘0’ level

(dominant)

The transceiver is blocking the dominant

level after a maximum distortion time

according to its specification. During the

distortion time before cut-off by the

transceiver, the CAN bus is blocked

(“locked dominant”).

Any transmission attempt in the CAN

controller will cause TEC errors,

resulting in “Bus-Off” condition after 390

bit times.

Any reception attempt of a frame on the

bus will cause an increase of the REC

error counter; after 16 frames the CAN

controller will be in error passive state.

Detail: (b)

The CAN controller recognizes a “locked

dominant” condition.

Integration and transmission on the CAN bus is

not possible.

Depending on the CAN controller

implementation, a fault indication (interrupt,

error) or a locked condition occurs. (c)

c. FCAN, DCAN, RCAN, FCN, DCN, M_(TT)CAN: Locked condition. Soft reset of CAN controller is required.

RS-CAN, RS-CANFD: Fault indication. Can recover by operation mode setting.

Shortcut between

TX and RX

If the driver strength of CAN controller TX dominates, transmissions will be possible but

endlessly repeated, because no acknowledge can be received. After 16 transmission

attempts, the CAN controller will be error passive. Reception will not be possible.

If the driver strength of CAN transceiver RX dominates, transmissions will not be possible

(see detail (a). Receptions are possible, with conditions as shown in detail (b).

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 22 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

3. CAN Bus Errors and Recovery of CAN Controller

3.1 Abstract

This chapter covers:

• What are the roles “transmitter” and “receiver” of a CAN controller according to ISO

• What happens, if a CAN transmitter does not get acknowledge from any receiver

• What happens, if a CAN transmitter does not see its transmitted bit value on the CAN bus

• What happens, if a CAN transmitter does not see its transmitted error frame on the CAN bus

• What happens, if a CAN receiver cannot receive its own acknowledge flag

• What happens, if a CAN receiver sees any error on the CAN bus (message format or else)

• What happens, if the CAN bus is permanently dominant

• What happens, if operation mode changes are performed under error conditions

• What happens, if bus off recovery must be performed

3.2 Roles of CAN controllers

According to ISO 11898-1, a CAN controller can be either “Transmitter” or “Receiver”.

• A “Transmitter” is a CAN controller, which arbitrates or is currently sending a message, after it has won the

arbitration.

• A “Receiver” is a CAN controller, which is not currently sending a message, or which has lost the arbitration.

If a CAN controllers detects errors, it is increasing its error counters. Any successful transmission or reception

decreases the error counters. Depending on the level of the error counters, a CAN controller may be “Error Active”

(fully operational), “Error Passive” (partly operational), or “Bus Off” (not operational).

An “Error Passive” CAN controller is still able to send messages, even though it has a penalty to wait for a longer

bus idle phase, until it is accessing the bus. Also, the “Error Passive” CAN controller is not able to send active

Error Frames. This means, that it can see further errors on the bus, but obviously can’t indicate this to other CAN

controllers. The “Error Passive” state can be reached, if a certain amount of reception or transmission errors have

been detected.

If a CAN controller goes “Bus Off”, then it stops any transmissions or receptions. Depending on its setting, it must

either wait on a user (software) trigger to restart again, or it has to perform a recovery sequence. The recovery

sequence is a long penalty time, while waiting for several long gaps during the bus communication. Therefore, on a

highly loaded bus system, a “Bus Off” node might not be able to reconnect itself to rejoin the communication, if not

triggered by the user (software). The “Bus Off” state can be reached only, if a certain higher amount of

transmission errors have been detected. Reception errors are not leading to the “Bus Off” state, neither do missing

acknowledges (see “3.3.1 No Acknowledge by another Station (Receiver)”).

3.3 Error situations of a CAN Transmitter

3.3.1 No Acknowledge by another Station (Receiver)

If a message is sent out correctly without errors, but no other station has acknowledged it, then the CAN

Transmitter will flag its message by an Error Frame, and then repeat the message, until it is acknowledged.

However, each unacknowledged message increases the transmit error count; even though a “Bus Off” state

cannot be reached by that.

But, when reaching the “Error Passive” state, the error flagging cannot be done any more. Instead, the distance

between the messages will increase, because the CAN controller now has a penalty to have to wait a longer time

on a free bus condition.

3.3.2 Transmission is not read back

Every CAN Transmitter is permanently monitoring its own transmission by reading back from the bus. If this

fails, then this situation is an error condition.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 23 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

Consequently, a CAN controller needs a CAN bus transceiver, which is providing the read-back functionality. If

a transceiver shall not be used (for example, for intra-module communications), then special circuitry is

required instead (see “2.3 CAN Bus without Transceivers”).

Within the arbitration phase of a message, dominant levels may overrule recessive levels. In this case, this is no

bit error, but a lost arbitration instead. Then, the CAN controller will stop its current transmission and repeat it,

as soon as the CAN bus is free again.

If a sent bit value is not read back outside of the arbitration phase, or if during arbitration phase, a dominant sent

bit is received recessive, then this is called a bit error, which will increase the transmit error counter of the CAN

controller. Such kind of error can happen by several reasons:

(1) The CAN bus transceiver is not in a valid operation mode

• Activate the CAN bus transceiver or replace it. See “2. Bus Transceivers and CAN Controller Operation

Modes” for valid combinations of CAN bus transceiver and CAN controller operation modes.

(2) The CAN bus has huge capacitive load or a short-cut.

• Check the CAN bus level voltage in an idle bus state. It should be at 2.5V on both lines.

• Check the CAN bus level voltage during transmissions. The differential voltage between the bus lines

increases by at least 1.5V, if dominant bits are on the bus.

(3) Another CAN controller on the same bus has sent an Error Frame (only bit errors of recessive bits).

• Check the bit rate of all CAN controllers on the bus. Easiest way to do this, is to measure the width of an Error

Frame on the local TX signal of the CAN controller. It must be 6 bits wide of the expected bit rate.

• Format of the CAN bus is incompatible. Do not combine classical CAN nodes with CAN-FD nodes.

Transmission errors of this kind will cause the CAN controller to go to Error Passive or Bus Off states.

3.4 Error situations of a CAN Receiver

3.4.1 Frame Form Errors

While receiving CAN messages, the frame format is permanently checked if it is in line with the CAN MAC

specification. For example, the following format parameters are checked:

• Bit stuffing rules

• Values of dedicated control bits in a message

• Checksum value of a message

During reception, the CAN controller performs hard- and soft-synchronizations. With that, it can adjust to

slightly misaligned bit rates. Also, by having a dedicated sampling point position, glitches (spikes) within bits

can be filtered.

However, if synchronization cannot be achieved any more, or if disturbances on the bus are getting too heavy,

or if there is a node on the CAN bus which is working with an incompatible frame format, then frame form

errors will occur.

The receiving CAN controller will react by sending an Error Frame (active or passive, depending on its status).

3.4.2 Reaction on Error Frames of other Nodes

An Error Frame, which is received, is violating the bit stuffing rules. Therefore, a CAN receiver will react on an

Error Frame by sending an Error Frame on its own.

In addition, the initiating node of an Error Frame will see the reaction Error Frame of other nodes, and will

substitute this Error Frame by another, starting at the first bit of the second Error Frame. Like this, Error Frames

get accumulated and partly substituted with a maximum length of two Error Frames plus one bit (13 bits in

total).

After this, the bus gets idle again, because every node must keep a recessive delimiter after an Error Frame.

The consequence for a local node is, that due to Error Frames accumulation from other nodes, the internal error

counters will increase again.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 24 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

3.4.3 Acknowledgment Errors

If the acknowledge bit of a CAN receiver gets disturbed, this is a bit error, because the dominant acknowledge

bit cannot be turned into a recessive bit, apart from bit error situations. Consequently, this causes an increase of

the internal receive error counters and the transmission of an Error Frame.

3.5 Blocking situations for CAN controllers

3.5.1 Permanently dominant blocked CAN bus

A permanently (or a longer time, more than 13 bits) blocked CAN bus on the dominant level is a serious error

condition, which disables all communication. Three scenarios exist, which are leading either to “Error Passive”,

to the “Bus Off” or “Not Integrated” state of CAN bus nodes.

(1) If a node is just starting, trying to integrate on the CAN bus (setting operational mode):

The dominant level will freeze the integration algorithm, as it is waiting for at least 11 recessive bits. All

Renesas CAN controllers apart from RS-CAN, RS-CANFD (all versions), will freeze, until the dominant

level has been resolved. Here, a software timeout is required in order to avoid a blocking situation.

RS-CAN and RS-CANFD (all versions) have a detection mechanism integrated, which will raise an

interrupt or set a flag, if a blocked dominant bus is detected. This allows software to handle the situation.

(2) If a node is operating, but receiving a message or waiting for a message to receive:

The dominant blocked bus will cause an error detection, which in turn triggers an Error Flag to be sent.

After that, the error delimiter will be found to be corrupted. This causes subsequent errors, so that the

“Error Passive” state is reached after 24 bits.

(3) If a node is operating and just going to send a message, when the CAN bus is blocked dominant:

The bit errors during transmission will cause that the node reaches “Error Passive” state after 24 bits, and

will go “Bus Off” after further 16 bits of dominant blocking situation.

3.5.2 Transceiver in wrong mode or defect

Several CAN transceivers are presenting a permanent dominant signal, if they are triggered to wake up by a

CAN bus event. Therefore, proper combinations of operation modes of CAN controllers and transceivers have

to be used, in order to avoid blocking situations. See “2. Bus Transceivers and CAN Controller Operation

Modes” for more information.

A defect CAN transceiver may do the same; but also sporadically or permanently not presenting the CAN bus

value in receive direction or falsify transmit levels.

• If a CAN transceiver is not showing all dominant signals on a CAN bus, this will lead to severe

communication disturbances on the bus for the whole network, because the CAN controller may assume a free

bus, where it is not.

• If a CAN transceiver is not showing all recessive signals on a CAN bus, this will cause local errors only, so

that the CAN controller may go “Bus Off” or “Error Passive”.

• If a CAN transceiver is not sending dominant bits, this will cause local errors only, so that the CAN controller

may go “Bus Off” or “Error Passive”. This scenario may also happen if a CAN transceiver is in a standby

mode, while the CAN controller operates.

• If a CAN transceiver is not sending recessive bits, but dominant instead, this will lead to severe

communication disturbances on the bus for the whole network and the local CAN controller, too, which may

go “Bus Off” or “Error Passive”.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 25 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

3.6 Bus Off state: Recovery methods and conditions

When recovering from the “Bus Off” state, at least the following options are possible for Renesas CAN controllers

(availability of application for CAN controller types is given in brackets):

(1) Automatic bus off recovery according to ISO 11898-1 [all]

In case of a “Bus Off” error state, the recovery sequence with 128 times of 11 recessive bits is checked, then

the CAN controller is in operative mode again.

(2) Bus off recovery according to ISO 11898-1 after software command

[RCAN, RS-CAN, RS-CANFD (all versions) only]

In case of a “Bus Off” error state, the CAN controller stops. After a command by software, the recovery

sequence with 128 times of 11 recessive bits is checked, then the CAN controller is in operative mode again.

(3) Immediate recovery to integration state after software command [all except DCAN and FCAN]

In case of a “Bus Off” error state, the CAN controller stops. After a command by software, the CAN controller

is restarted in integration state and rejoins the CAN bus after 11 recessive bits.

As DCAN and FCAN controller types only support the method of (1), special a software measure is required for

these. Triggered by the Bus Off interrupt, the DCAN and FCAN controllers can be put into initialization mode,

where the communication is stopped. After that, option (3) can be implemented by restarting the CAN controller

upon software command.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 26 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

4. Emulation of Efficient Energy Management Concepts of CAN (EEM)

4.1 Abstract

This chapter covers:

• Short introduction in EEM concepts for CAN

• Emulation principles of EEM for CAN without specific hardware (transceiver)

• Requirements for successful emulation of EEM

4.2 Partial Networking

4.2.1 Principle of Operation

In a CAN network, typically all nodes are permanently connected. If the network is in a sleep state, all nodes

must be in this state. If at least one node wakes up, its activity on the CAN bus is waking up all other nodes at

the network, too.

Regarding effective energy management, it is however desirable, to have certain nodes active, and other nodes

in a sleeping state. Therefore, the network waking up behaviour has been improved to become selective.

The legacy wake up pattern (WUP) is a shaped pulse on the network line, but it has no information for a

selective wake up method. Therefore, in addtion the wake up frame (WUF) has been declared. The WUF is a

CAN frame in classical CAN format (non-FD), whose identifier (ID) and data fields are containing selective

wake up information.

Certain assigned nodes of the network would take the role to decide, which parts of the network would wake up,

by transmitting the appropriate WUP frames. The WUP frames can also be used to set certain nodes in a sleep

state.

Like this, a network configuration may change from “A” to “B”, as shown in the figure below.

Figure 4.1 Partial Networking Configuration Change

New kinds of CAN transceivers are able to detect both WUF and WUP events on the CAN bus, and they even

can decode the WUF content to analyze a local wake up condition. However, these tranceivers are more

expensive and need an additional interface to program the wake up conditions.

4.2.2 Requirements for Systems and CAN Controllers

Partial Networking can be emulated with conventional CAN transceivers and CAN controllers, which are

having dedicated feature sets. This will avoid the necessity to use a dedicated CAN transceiver for partial

networking (ISO 11898-6). Functionality of detection of the WUF will move into the CAN controller, which

must stay active even in sleep state of the microcontroller device. Consequently, the following requirements for

the microcontroller (MCU) and its integrated CAN controller can be defined:

• A low power mode of the MCU must exist with high power saving effect, where the CAN controller is still

active with enough precision (quartz oscillator should run), in order to decode the WUF.

• The used conventional CAN transceiver should provide a low power consumption mode, where it passes the

CAN bus signal to the CAN controller (RX), but may have transmission disabled (TX off).

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 27 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

4.2.3 Application on Selective CAN-FD Usage

4.2.3.1 Definition and Requirements

Most legacy CAN controllers are not supporting CAN-FD according to the new ISO 11898-1 standard of 2014

or younger, if the MCU products are older than this new ISO specification.

It is a drawback of CAN-FD, that CAN-FD is not downwards compatible with the classical CAN of the

previous ISO 11898-1 standards. This means, legacy classical CAN controllers will disturb the CAN-FD

protocol if they are connected to a CAN-FD bus system, so that the communication would brake.

One of the concepts to allow legacy classical CAN controllers on a CAN-FD bus is the usage of Partial

Networking. As long as the CAN-FD bus is using the classical CAN communication mode, the legacy nodes

may be active; and as soon as the new CAN-FD format is used, the legacy classical CAN nodes would be put

into sleep state.

Still, this concept can also be emulated, thus saving a special CAN transceiver of ISO 11898-6, which now also

would need to be capable to tolerate the CAN-FD communication.

The drawback of the emulation is, that the energy efficiency will not reach the level of a CAN-FD partial

networking transceiver solution. Nevertheless, in some cases this lack of efficiency may be neglectable. For

example, if the Partial Networking and CAN-FD usage is performed during system upgrades (software

downloads) or similar temporary use cases only.

The concept defines the following requirements:

(1) The WUF of Partial Networking is a classical CAN frame.

This is to allow the legacy classical CAN controllers to handle it according to ISO 11898-6, but emulated.

(2) The WUF and sleep commands of Partial Networking is a highest priority message.

For fast and timing-precise switching, the Partial Networking messages should win arbitration against all

other bus traffic.

(3) The partial networks must not overlap.

This means, that the node which performs Partial Networking control by WUF, must do the network

switching break in a “break-before-make” manner. So, each switching first must stop the previous

communication mode (either nor not CAN-FD), before activating nodes of the other mode. Otherwise, bus

errors would occur during the switching phase. As the CAN bus arbitrates, the control of the Partial

Networking switching functionality must be done within one single node; for example a central gateway

unit.

The emulation of the concept defines the following, additional requirements, in order to work safely:

(4) When following a CAN-FD frame, a WUF must be sent at least twice.

If a legacy classical CAN controller emulates Partial Networking, it will listen (-only) to the CAN bus in

order to get the WUF. Within CAN-FD phases however, the classical node might get into any error

condition, which needs not to be recovered at the end of a CAN-FD frame. As the classical node might

need to complete its local error processing (like sending an internal error frame), this processing may

overlap a subsequently following frame, invalidating it by that.

(5) A bus integration phase (CAN bus is recessive for 11 bits) must be inserted after the last WUF.

When the WUF is received, the emulation of Partial Networking in the local CAN controller requires an

operation mode change from “receive-only” into “communication”. Consequently, the CAN controller

would restart its transfer layer with the bus integration phase.

(6) An additional delay must be considered to allow the mode change after a WUF.

As the local CAN controller changes its mode, apart from the required bus integration, during the mode

change, the local CAN controller is not listening to the CAN bus.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 28 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

4.2.3.2 Principle of Operation in RL78/F1x (or similar with RS-CAN)

The following figures illustrate the operation principle. “RL78/F1x” is a MCU with legacy classical CAN

controller, not able to support CAN-FD. It is emulating the Partial Networking, and by this, including the

additional requirements as mentioned, it is able to participate on a CAN-FD bus system during classical CAN

operation phases.

Figure 4.2 Changing Partial Networking to Classical CAN Network operation

Repeating the WUF for the classic CAN is only required, if the “CAN FD OFF” Partial Networking message is

not a separate one. In this application, the CAN FD OFF” message is a classical CAN message, and therefore,

the WUF frame needs not to be repeated.

The classical CAN controller will need 13 bits of intermission during its integration phase, before it can start

communication, plus an additional delay of about 10~50 clocks of its operation clock, in order to perform the

mode change. The additional delay length is very much implementation dependent.

It must be avoided that after the mode change, that the CAN bus is at 100% load, because then the required 13

bits of intermission would not be available to allow the integration phase to complete. Maximum bus load

should be lower than 90%.

In the application, the same ID is used for both enabling the CAN-FD communication and waking up the the

classical CAN node of RL78/F1x. Using ID=0 is representative for the highest priority of the network; this may

be adjusted depending on the used network definition.

Figure 4.3 WUF Frame for Selective CAN-FD Usage

Using this WUF Frame, the “CAN FD OFF” message is mapped to “FD ENABLE = CLASSIC ENABLE= 0”,

and the “classic WUF” message is mapped to “FD ENABLE = 0, CLASSIC ENABLE = 1”. To return to CAN-

FD usage, the sequence is vice versa: “classic OFF” is identical with “CAN FD OFF”, and “CAN FD ON” is

mapped to “FD ENABLE = 1, CLASSIC ENABLE = 0”.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 29 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

4.2.3.3 Classical CAN Node Execution Flow in RL78 (or similar with RS-CAN)

The applicaton example provides a simplified flow chart, which shall explain the implementation approach in a

generic manner.

Figure 4.4 Selective CAN-FD by Partial Networking Classical Node Flow Chart

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 30 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

The CAN-FD nodes would require to have a similar flow execution, but by using the “FD ENABLE” flag

instead of the “CLASSIC ENABLE” flag.

The classical node’s behaviour in case of its enabled communication is a simple copying and sending back of a

received message with a modified identifier. This is highlighted blue in the flow chart, and should be seen as an

example behaviour to show the working concept.

To enable the communication if the “CLASSIC ENABLE” flag is set in the WUF message, first the RESET

mode of the CAN controller is set. This clears any upcounted errors of the previous operation, which may have

been caused by not understood CAN-FD frames.

Note: The CAN controller of RL78/F1x is supporting the RESET mode. For other CAN controllers of Renesas (like

AFCAN or FCN), the INIT mode can be used alternatively, in conjunction with a forced clearing of any error

states (CCERC).

To disable the communication if the “CLASSIC ENABLE” flag is not set in the WUF message, all pending

transmissions of the previous communication are canceled, as far as they are still pending. Then, the HALT

mode is set in order to move to the RX-ONLY mode. In the RX-ONLY mode, the CAN controller can receive

messages (as far as they are not CAN-FD messages) in order to detect a new WUF, but the CAN controller will

not send. This prevents the distortion of the CAN bus by error frames, if CAN-FD messages would appear.

Note: The CAN controller of RL78/F1x is supporting the HALT mode. For other CAN controllers of Renesas (like

AFCAN or FCN), the INIT mode can be used alternatively.

4.2.3.4 Renesas CAN Controller Compatibility and Evaluation Result

Renesas CAN controllers of type RS-CANFD (all versions) do not need this application, because they are

CAN-FD enabled.

Renesas CAN controllers of type RS-CAN and RS-CANLite are supporting this application and have been

evaluated successfully.

Renesas CAN controllers of type AFCAN, DAFCA, FCN and DCN are supporting this application in principle,

because they are providing the RX-ONLY mode.

Renesas CAN controllers of type FCAN are supporting this application in principle by using the TPE (Transmit

Pin Enable) function to emulate the RX-ONLY mode.

Renesas CAN controllers of type RCAN are supporting this application in principle by using the “Listen-Only-

Mode” as RX-ONLY mode.

Renesas CAN controllers of type DCAN are not supporting this application.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 31 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

4.3 Pretended Networking

4.3.1 Principle of Operation

Pretended Networking is an alternative or secondary way to implement EEM on CAN, thus reducing the power

consumption of the overall system. While Partial Networking is using dedicated network configuration

changes to disable nodes of the network, Pretended Networking is based on local decisions and power reduction

of individual nodes.

With Pretended Networking, the network configuration typically does not change. Instead, the local CAN nodes

may decide to reduce their power consumption and functionality depending on the overall system status, which

is derived and interpreted from current network messages. But in any case, a node which uses Pretended

Networking, shall not degrade its availability for other nodes; in other words, the local power state shall not

affect the CAN communication capabilities of a node.

Even when in a power down mode, the regular operation capability is pretended towards other nodes, unless

explicitly queried.

4.3.2 Requirements for Systems and CAN Controllers

Pretended Networking typically is not supported by dedicated hardware, because its implementation has too

many variations. For this reason, the software emulation of Pretended Networking is the favourite way of

implementation in most cases. However, in order to have a real benefit in efficiency, certain requirements for

the MCU hardware should be fulfilled.

Figure 4.5 Efficient CAN Controller Hardware for Pretended Networking

(1) The CAN controller should support effective filtering functionality.

A standard masking principle very often is not sufficient, because when in power down state, the

conditions of Pretended Networking to resume full operation may be various. This means, several different

messages without a common grouping criteria may be required to check in order to detect a resume

condition. If additional filtering must be done by software, the power saving mode must be left for that, so

that the efficiency of the power down mode will suffer.

If the CAN controller in addition supports filtering of messages by data content (not just by identifier), this

would improve the effectiveness even more.

(2) The CAN controller should be able to wake the CPU System from a standby mode.

This also implies that the CAN controller may run (and is still provided with clock), without the CPU

system. While Pretended Networking Level 1 simply requires a “HALT” state of the CPU (idle, but

clocked), Level 2 of Pretended Networking requires more efficiency in power saving. Even though a

suspended CPU will have longer reaction time to resume, the Level 2 of Pretended Networking is designed

to support as much power saving as possible.

Note: The Renesas MCU series F1x is providing the appropriate CAN controller and power saving functionality to

support Pretended Networking Levels 1 and 2 (by software-emulation of ICOM).

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 32 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

4.4 EEM Concept Comparison

When comparing Partial and Pretended Networking, it turns out that every concept has its advantages and

disadvantages. It is possible to combine both concepts in a CAN node, so that depending on the network situation

either concept can become effective.

Figure 4.6 Power Consumption and Reaction Time Characteristics of EEM Concepts

Advantage of Partial Networking is lower power consumption, if the EEM concept is active. On the other hand,

the resuming time is much longer than for Pretended Networking. When using Pretended Networking, it is vice

versa. The current values in the above diagram are examples, showing a “typical” CAN transceiver and MCU in

added values.

4.5 Application Examples for Partial and Pretended Networking

Renesas is providing additional information and sample programs for RH850/F1x regarding EEM and CAN

controller usage. These can be found with references “R01AN2488EJ”, “R01AN1877ED”.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 33 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5. Sample Software Description

5.1 Abstract

This chapter is describing the software packages, which are available upon request as usage examples (so-called

“Sample Software”) for the currently available CAN controllers on microcontroller devices.

The software and the description in this chapter are given free of charge, and therefore some conditions apply:

• No guarantee of function for customer specific hardware implementations

• No liability from Renesas side on consequent issues (such as failures, loss of data, injury), caused by its usage

• No allowance to use the software in any commercial product

• No copying of the software without mentioning these conditions

• No announcement of any changes from Renesas side

• No tracking of issues or versioning

• No upgrade compatibility when replaced

The following is covered by this chapter:

• Lower CAN driver functionality

• Mapping of the lower CAN driver to specific device properties

• Applications based on lower CAN driver functions, including a serial or debugger based monitor program

As a general approach, this documentation is not describing each and every step and definition of the software.

Instead, we are describing the functionality by showing the algorithmic content, hereby highlighting certain topics

which are of certain interest.

All other information the user shall determine from the software programs directly.

The documentation is made for several kinds of CAN controllers, as it is a target to have the API as much close and

similar, we are distinguishing among the CAN controllers in sub-chapters. Each CAN controller has a certain

prefix, this allows that several software parts for different controller types can be integrated at the same time. The

prefix is indicated by <xxx> in this description.

Not all functions are available for all CAN controller types (in case not mentioned, functions are not implemented).

5.2 Supported CAN Controller Hardware

In the current state of this documentation release, the following CAN controller types on device series can be

supported:

Table 5.1 Sample software availability on request for CAN Controller Hardware

Device Class Device Family Members CAN Controller Type Prefix <xxx>a

a. The prefix is used in function names and #define constant names of the different drivers of the CAN controller types.

Indexb

b. Label referenced by function chapters (“implementations”), to show if available/implemented.

78K0R FJ3 AFCAN (c)

c. Sample Software for AFCAN is no longer maintained.
Existing packages can be provided “as is”, but without support and guarantee of operation.

EE_AFCAN (A)

RL78 D1A, F12

V850 FG2, FJ2, SG2, FJ3, FK3, JH3,

CARGATE+, -F, -3G, PHOENIX-FS

DN4 FCN (B)

RL78 F13, F14, F15 RS-CANLite EE_RSCAN (C)

RH850 F1A, F1L, F1M, F1H, D1M, D1L, P1M RS-CAN (D)

F1K, E2L, E2M, E2H, E2UH RS-CANFD V2 EE_RSCFD

 (d)

d. Versions V2 and V3 with same API, implementation depending on product. Configuration ranges of V2 (E2) and V3 (E3)

are different. Both versions are referenced by (Ex).

(E2|x)

F1KM RS-CANFD V3 (E3|x)

U2A RS-CANFD V4 RSCFD (E4)

P1H-C M_CAN MCAN (F)

M_TTCAN MTTCAN (G)

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 34 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3 Lower Level CAN Driver Functionality

5.3.1 Overview

Purpose of a lower level CAN driver is to implement the hardware based abstraction into a certain function set,

which we will further call “API” (Application Programming Interface).

The main tasks in a CAN driver for this API are:

• Initialization of the CAN controller environment, such as port and clock settings

• Initialization and configuration of the CAN controller

• Starting and stopping of the CAN controller

• Providing means of sending and receiving messages

• Providing means of interrupt processing, including hooks for interrupt handling expansions

• Providing status information of the CAN controller

• Reading and clearing error states of the CAN controller

• Optionally, some self-testing routines

The lower level CAN driver resides in the files *_p.c with API *_p.h and definition in *.h.

5.3.2 Environmental Initialization

Within this driver description, we assume that the clock speed of the CAN controller is fixed and given by some

setting of the clock system of a specific device. Therefore, we will have a certain definition constant, which

specifies the clock speed, and this constant will have an influence on the bit rate setting, for example.

Other timing we are doing by simple loops with a maximum loop count in order to have a safe way out of hardware

failures.

Summarized, for clock settings, the lower CAN driver has no API. The clock speed is a known constant and

timeout loops have to be adjusted by specifying the maximum amount of loops (which in fact has a dependency on

the used clock speed, of course).

Regarding interrupts, the lower level driver contains a commonly called interrupt routine, which also supports

callback mechanisms. By mapping (see 5.4), the interrupt sources are bound with the interrupt controller.

Each CAN channel has two ports to the outside world, which is the CAN transceiver. A CAN transceiver is doing

the physical layer adaptation from the symmetric CAN bus signal into the transmit and receive direction ports of

the CAN controller. The CAN controller requires that its transmission get visible on the CAN bus, and the CAN

bus gets visible (read back) on its reception path. This is provided by the CAN transceiver.

For this reason, the two I/O ports need to become initialized, before starting the CAN controller.

5.3.3 Used Types

The following data types are used in the API, which are bound to elementary ANSI C data types. Parameters and

functions are named with corresponding endings in order to indicate the data type.

Table 5.2 Used Types in API

Data Type Ending ANSI Type Description

u08 _u08 unsigned char 8 bits

s08 _s08 signed char 7 bits plus sign bit at MSB position

u16 _u16 unsigned short 16 bits

s16 _s16 signed short 15 bits plus sign bit at MSB position

u32 _u32 unsigned long 32 bits

s32 _s32 signed long 31 bits plus sign bit at MSB position

flt _flt float floating point decimal

dbl _dbl double floating point double precision decimal

pu08 _pu08 unsigned char * pointer to u08 (pass by reference)

pu16 _pu16 unsigned short * pointer to u16 (pass by reference)

pu32 _pu32 unsigned long * pointer to u32 (pass by reference)

bit _bit enum {false, true} boolean enumeration with false = 0, true = 1

[pointer to structure] - - see documentation of the function

void - void function returns no value

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 35 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.4 Port I/O Initialization

5.3.4.1 <xxx>_PortEnable()

Implementations: (A), (B), (C), (D), (Ex), (E4), (F), (G).

(1) All Implementations

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Controller channel [(C), (D), (Ex), (E4)]

MachineNumber_u08: Selected CAN Controller channel [(A), (B)]

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

The function enables (activates) the port I/O for the dedicated CAN controller unit and channel (if

several channels are available for a unit).

A standard port support library is called to perform the function.

For each used CAN controller unit and channel, the following dedicated #define constants must be

set in the driver’s mapping definition (see 5.4 for details and file information):

#define <xxx>_PORT_M<unit>RX<channel> PORT_p

#define <xxx>_PORT_BIT_M<unit>RX<channel> BIT_r

#define <xxx>_PORT_FUNC_M<unit>RX<channel> PORT_FUNCTION_ALTLV_a

#define <xxx>_PORT_M<unit>TX<channel> PORT_q

#define <xxx>_PORT_BIT_M<unit>TX<channel> BIT_t

#define <xxx>_PORT_FUNC_M<unit>TX<channel> PORT_FUNCTION_ALTLV_b

These settings will bind the port I/O lines p.r and q.t in the alternate port assignment level a vs. b to

the CAN controller unit <unit>, channel <channel>; where p, q, r, t, a and b are decimal text

characters (for numeric ports and port bits of the specific device).

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 36 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.4.2 <xxx>_PortDisable()

Implementations: (A), (B), (C), (D), (Ex), (E4), (F), (G).

(1) All Implementations

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Controller channel [(C), (D), (Ex), (E4)]

MachineNumber_u08: Selected CAN Controller channel [(A), (B)]

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

The function disables (deactivates) the port I/O for the dedicated CAN controller unit and channel (if

several channels are available for a unit).

A standard port support library is called to perform the function.

The #define constants used for this function are the same as for function <xxx>_PortEnable().

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 37 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.5 CAN Controller Initialization and Configuration

Even though there is the intention to have the same way of initialization for all kinds of CAN controllers, this is

not feasible always. The way of initialization for each CAN controller type by calling the following functions in

the right way is described in chapter 5.5.

5.3.5.1 <xxx>_SetGlobalConfiguration()

Implementations: (A), (B), (C), (D), (Ex), (E4).

(1) Implementations: (A), (B)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

MainClockPrescaler_u08: Main clock prescaler setting

ABTDelay_u08: Message delay setting for ABT mode [(A) only]

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

Explicit parameters are used to set the global configuration.

The global configuration is setting the global clock prescaler, test functionality and other global parts

of the functionality.

The function also waits on any hardware initialization phases after reset and releases the global soft

reset of the CAN controller.

(2) Implementations: (C), (D), (Ex), (E4)

(2-1) Parameters

UnitNumber_u08: Selected CAN Controller

Config: Global configuration structure

(2-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(2-3) Functional Description

Parameters are passed by using referencing a global configuration structure.

The global configuration is setting the global clock used for timestamps, global CAN-FD options,

test functionality, memory configuration (partitioning) and other global parts of the functionality.

The function also waits on any hardware initialization phases after reset and releases the global soft

reset of the CAN controller.

The global configuration structure <xxx>_cfg_global contains the following elements (when

referring to the structure element’s names, further information is available in the corresponding

user’s manual of the product):

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 38 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

Table 5.3 Global Configuration Structure Elements (Ex)

Element Type Value Range Description

gcfg

[GCFG Register]

<xxx>_c_gcfg.tpri

<xxx>_c_gcfg.dce

<xxx>_c_gcfg.dre

<xxx>_c_gcfg.mme

<xxx>_c_gcfg.dcs

<xxx>_c_gcfg.cmpoc

<xxx>_c_gcfg.eefe

<xxx>_c_gcfg.tmtsce

<xxx>_c_gcfg.tsp

<xxx>_c_gcfg.tsss

<xxx>_c_gcfg.tsbtcs

<xxx>_c_gcfg.itrcp

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

n ∈ {0 ,,, 15}

{0, 1}

{0 ... 7}

{0, 65535}

Transmission priority

DLC check enable

DLC replacement enable

Mirror mode enable

Communication clock selection (a)

Message payload overflow configuration (b)

ECC error flag enable (c)

Transmit timestamp capture enable (d)

Timestamp prescaler; value is 2n

Timestamp global clock select (bit time or global)

Timestamp channel bit time clock select

FIFO interval timer prescaler

a. When set to <xxx>_CLOCK_SYS, the communication clock is automatically adjusted to half of the peripheral clock of the CAN
controller. When set to <xxx>_CLOCK_MOSC, the direct main oscillator (low jitter) clock is used instead for communication.
Here, the user has to take care that the direct main oscillator clock is not faster than half of the peripheral clock.

b. Only available in (Ex) controllers.

gctr

[GCTR Register]

<xxx>_c_gctr.gmdc

<xxx>_c_gctr.gslpr

<xxx>_c_gctr.ie

<xxx>_c_gctr.tsrst

<xxx>_c_gctr.tswr

-

-

(e)

{0, 1}

{0, 1}

Always set to <xxx>_OPMODE_KEEP.

Not used during global configuration.

Global interrupt activation

Reset timestamp counter

Allow explicit setting of the timestamp counter (f)

gfdcfg

[GFDCFG

Register (g)]

<xxx>_c_gfdcfg.rped

<xxx>_c_gfdcfg.tsccfg

{0, 1}

{0, 1, 2}

Protocol exception event detection enable

Timestamp capturing point

<xxx>_TSCAPTURE...

SOF: At SOF; FRVALID: At EOF; RES: At Res Bit

gcrccfg

[GCRCCFG

Register (h)]

<xxx>_c_gcrccfg.nie {0, 1} ISO protocol compliance

<xxx>_PROTOCOL_ISO or

<xxx>_PROTOCOL_BOSCHV1 (non-ISO)

rmnb

[RMNB Register]

u32

<xxx>_c_rmnb.nrxmb

<xxx>_c_rmnb.rmpls

{0, ... }

{0, ... }

{0, ... }

Number of used standard message boxes (i)

Number of used standard message boxes (j)

Size of standard message boxes (k)

rnc

[RNC Register

set as an array]

u32[] {0, ... }

for each channel
Amount of reception rules per channel (l)

rfcc

[RFCC Register

set as an array]

- Not used within <xxx>_SetGlobalConfiguration().

See <xxx>_SetGlobalFIFOConfiguration() for

initialization.

cdtct

[CDTCT Register

(m)]

<xxx>_c_cdtct.rfdmae

<xxx>_c_cdtct.cfdmae

{0, 1}

for each FIFO; bit

position corresponds

with FIFO / channel

number

DMA Transfer Enable for Receive FIFO [7:0]

DMA Receive Transfer Enable for Multi-purpose

FIFO#0 of Channel [7:0]

cdttct

[CDTTCT

Register (n)]

<xxx>_c_cdtt.tq0dma

<xxx>_c_cdtt.tq3dma

<xxx>_c_cdtt.cfdma

{0, 1}

for each Queue or

FIFO; bit position

corresponds with

channel number

DMA Transfer Enable for TX-Queue#0 of Channel

DMA Transfer Enable for TX-Queue#3 of Channel

DMA Transfer Enable for TX-FIFO#2 of Channel

... [7:0]

gfcmc

[GFCMC

Register (o)]

<xxx>_c_gfcmc.flxc {0, 1}

bit position

corresponds with

channel pair [n, n+1]

Activate Flexible CAN Mode with channel pair.

<xxx>_FLEXCAN_CH0_1,

<xxx>_FLEXCAN_CH2_3,

<xxx>_FLEXCAN_CH4_5,

<xxx>_FLEXCAN_CH6_7

gftbac

[GFTBAC

Register (p)]

<xxx>_c_gftbac.flxmb01

<xxx>_c_gftbac.flxmb23

<xxx>_c_gftbac.flxmb45

<xxx>_c_gftbac.flxmb67

<xxx>_FLEXBUF_n

n ∈
{4|8|12|16|20|24|28

|32}

Number of TX Buffers which the even channel is

borrowing from the odd channel.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 39 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

c. Only available in (E2) controllers.

d. Only available in (E2) controllers.

e. Use either <xxx>_GINT_NONE, <xxx>_GINT_DLCCHECK, <xxx>_GINT_MSGLOST,
<xxx>_GINT_THLLOST, <xxx>_GINT_FDMSGOVF or a combination by binary or of these for (Ex).
In addition, <xxx>_GINT_GWTXQOVR, <xxx>_GINT_GWTXQLOST, <xxx>_GINT_GWFIFOOVR for (E4).

f. Only available in (Ex) controllers.

g. Only available in (Ex), (E4) controllers.

h. Only available in (Ex) controllers.

i. For (C) and (D) controllers.
See user’s manual for the maximum allowed value (depends on product).

j. For (Ex), (E4) controllers.
See user’s manual for the maximum allowed value (depends on product).
Consider maximum amount of available storage when setting this value.

k. Only available in (Ex), (E4) controllers. 0: 8 Bytes, 1: 12 Bytes, 2: 16 Bytes, 3: 20 Bytes - (E2),
(E3), (E4) additionally: 4: 24 Bytes, 5: 32 Bytes, 6: 48 Bytes, 7: 64 Bytes.

l. Total amount of rules for all channels must not exceed the limit as given in the user documentation.
(C): Max. 16 per channel
(D) : Max. 128 per channel
(E2): Max. 127 per channel
(E3): Max. 255 per channel
(E4): Max. 384 per channel

m. Only available in (E4) controllers.

n. Only available in (E4) controllers.

o. Only available in (E4) controllers.

p. Only available in (E4) controllers.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 40 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.5.2 <xxx>_SetGlobalFIFOConfiguration()

Implementations: (C), (D), (Ex), (E4).

(1) Implementations: (C), (D), (Ex), (E4)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

Config: Global configuration structure

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

Parameters are passed by using referencing the same global configuration structure as used in

<xxx>_SetGlobalConfiguration(). By <xxx>_SetGlobalFIFOConfiguration(), the part of global

Receive FIFO setup is performed in this separate step. The reason for this approach is, that global

Receive FIFO setup needs to be done after the RS-CAN(-FD) controller is already initialized in a

global operation state.

From the global configuration structure <xxx>_cfg_global, the remaining elements are used, as

shown in the table below:

Table 5.4 Global Configuration Structure Receive FIFO Initialization Elements

Element Type Value Range Description

rfcc

[RFCC Register

set as an array]

<xxx>_c_rfcc.rfe

<xxx>_c_rfcc.rfie

<xxx>_c_rfcc.rfpls

<xxx>_c_rfcc.rfdc

<xxx>_c_rfcc.rfim

<xxx>_c_rfcc.rfigcv

<xxx>_c_rfcc.rffie

-

{0, 1}

{0 ... 7}

{0 ... 7}

{0, 1}

n ∈ {0 ... 7}

{0, 1}

Not used during FIFO configuration

FIFO Receive Interrupt enable

Size of FIFO receive objects (a)

Depth of FIFO (b)

Interrupt mode:

<xxx>_FIFO_INT_ONLEVEL: use level of rfigcv

<xxx>_FIFO_INT_ONEVERY: on every message

Fill level of interrupt generation (see rfim) (c)

Receive FIFO Full Interrupt enable (d)

a. Only available in (Ex) controllers.
0: 8 Bytes, 1: 12 Bytes, 2: 16 Bytes, 3: 20 Bytes, 4: 24 Bytes, 5: 32 Bytes, 6: 48 Bytes, 7: 64 Bytes.
Consider maximum amount of available storage when setting this value (see user’s manual).

b. 0: 0 Messages (FIFO is disabled), 1: 4 Messages, 2: 8 Messages, 3: 16 Messages, 4: 32 Messages,
5: 48 Messages, 6: 64 Messages, 7: 128 Messages
Consider maximum amount of available storage when setting this value (see user’s manual).

c. Value n sets the fill level of generating an interrupt to (n+1)/8.
Use constants <xxx>_FIFO_ILEVEL_<n+1>D8 to set the level.

d. Only available in (E4) controllers.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 41 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.5.3 <xxx>_Set[...]Configuration()

Implementations: (A), (B), (C), (D), (Ex), (E4), (F), (G).

(1) Implementations: (A), (B)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

MachineNumber_u08: Selected CAN Channel of Controller

BitratePrescaler_u08: Division factor of bit rate prescaler (use zero for 1:1, 1 for 1:2 etc.)

Segment1Time_u16: Length of bit time segment 1 in TQ minus one

Segment2Time_u16: Length of bit time segment 2 in TQ minus one

SyncJumpWidth_u16: Synchronization jump width in TQ

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

For these controller types, the function name is <xxx>_SetMachineConfiguration().

Explicit parameters are used to set the channel configuration.

The channel configuration is setting the bit rate prescaler and bit timing settings of the protocol

engine:

Time segment sizes in time quanta, synchronization jump width in time quanta.

These parameters must be provided by the user explicitly for correct bit rate setting. The function

does not include any automatic bit timing setting functionality.

(2) Implementations: (C), (D)

(2-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Channel of Controller

Config: Channel configuration structure

(2-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(2-3) Functional Description

The function is named <xxx>_SetChannelConfiguration().

Parameters are passed by using referencing a channel configuration structure.

The channel configuration is setting the bit rate parameters either automatically (if bit rate is

specified) or by explicit parameters for the bit timing in time quanta. Also, the sampling point setting

has a default value of <xxx>_BT_SPTOPTIMUM, if no explicit time segment settings are specified.

In addition, the function defines several channel specific settings, default interrupt enable for

transmit boxes, transmit queue settings (RS-CAN only), transmit history list settings and Multi-

Purpose FIFO settings (see table below).

The channel configuration structure <xxx>_cfg_channel contains the following elements (when

referring to the structure element’s names, further information is available in the corresponding

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 42 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

user’s manual of the product):

Table 5.5 Channel Configuration Structure Elements

Element Type Value Range Description

bitrate

[Bit Rate]

u32 bits per second

0 ... 1000000

Bit rate to be set for communication. Set to 0, if

automatic bit timing setting is not desired.

tq_perbit

[Bit Resolution]

u08 Time Quanta

5 ... 25

Amount of time quanta per bit to be set for

communication. Set to 0, if no preferred setting.

syncjumpwidth

[Synchronization]

u08 Sync Time Quanta

1 .. 4

Synchronization Jump Width to be set for

communication. Set to 0, if maximum is required.

samplingpointpos

[Sampling Point]

flt Position in Bit (%/100)

0.5 ... 0.96

Sampling Point to be set for communication. Set to

0.0, if preferred default setting is acceptable.

ctr

[Channel CTR

Register]

<xxx>_c_ctr.chmdc

<xxx>_c_ctr.cslpr

<xxx>_c_ctr.rtbo

<xxx>_c_ctr.ie

<xxx>_c_ctr.bom

<xxx>_c_ctr.errd

<xxx>_c_ctr.ctme

<xxx>_c_ctr.ctms

<xxx>_c_ctr,trwe

<xxx>_c_ctr.trh

<xxx>_c_ctr.trr

{0, 1, 2}

-

{0, 1}

{one or several flags}

{0, 1, 2, 3}

{0, 1}

{0, 1}

{1, 2, 3}

{0, 1}

{0, 1}

{0, 1}

Channel state during configuration (a). Use either

<xxx>_OPMODE_OPER (operation mode),

<xxx>_OPMODE_RESET (reset mode) or

<xxx>_OPMODE_HALT (halt mode).

Not used during channel configuration.

Force to return from bus-off, if set to 1.

Interrupt sources of channel to be enabled. (b)

Bus off recovery specification (4 options) (c)

First error blocks further reports, if not set.

Test mode enable flag (if set, see ctms)

Test mode selection (d)

Allows writing of error counters, if set

Stops error counters, if set

Clears error counters, if set

a. The setting is not persistent and used only during the configuration phase. If no special requirement is given, it is recommend-
ed to set this to <xxx>_OPMODE_RESET. After configuration, the state will be <xxx>_OPMODE_HALT.

b. Channel interrupt sources are:
<xxx>_CINT_BUSERR, <xxx>_CINT_WARNING, <xxx>_CINT_PASSIVE, <xxx>_CINT_BUSOFF, <xxx>_CINT_RECOV-
ERY, <xxx>_CINT_OVERLOAD, <xxx>_CINT_BUSLOCK, <xxx>_CINT_ARBLOST.

c. Channel Bus Off Recovery options are:
<xxx>_BOM_ISO (according to ISO), <xxx>_BOM_HALTBOFF (HALT mode before recovery), <xxx>_BOM_HALTRECV
(HALT mode after recovery), <xxx>_BOM_SW (recovery control by software, no ISO recovery phase).

d. Set chmdc to <xxx>_OPMODE_HALT, when using test modes. Test modes are:
<xxx>_TEST_RXONLY (Receive-Only operation mode), <xxx>_TEST_EXTLOOP (external loop self-test mode - includes
transceiver), <xxx>_TEST_INTLOOP (internal loop self-test mode - excludes transceiver).

tmiec

[TX Interrupt

Enable flags]

u16 {0, 1}

for each TX buffer; bit

position corresponds

with buffer number

Enable transmit interrupt or transmit abort interrupt

for transmit buffer(s), if set.

txqcc (e)

[TX Queue

configuration]

e. This configuration setting is not available for RS-CANLite controller types.

<xxx>_c_txqcc.qe

<xxx>_c_txqcc.dc

<xxx>_c_txqcc.ie

<xxx>_c_txqcc.im

{0, 1}

{0, 2 ... 15}

{0, 1}

{0, 1}

Enable TX Queue, if set.

Depth of TX Queue (off, 3 to 16 messages).

TX Queue interrupt enabled, if set.

TX Queue interrupt mode. (f)

f. Use either <xxx>_TXQ_INT_ONEVERY (every transmission causes an interrupt) or <xxx>_TXQ_INT_ONLAST (interrupt
triggered when queue is empty)

thlcc

[Transmit History

configuration]

<xxx>_c_thlcc.thle

<xxx>_c_thlcc.ie

<xxx>_c_thlcc.im

<xxx>_c_thlcc.dte

{0, 1}

{0, 1}

{0, 1}

{0, 1}

Enable Transmit History, if set.

Transmit History interrupt enabled, if set.

Transmit History interrupt mode (g).

Specification what gets an entry in the list (h).

g. Use either <xxx>_THL_INT_ONEVERY (every new entry causes an interrupt) or <xxx>_THL_INT_ONLEVEL (interrupt trig-
gered when history list has a fill level of 3/4)

h. Use either <xxx>_THL_ENTRY_ALL (all transmission sources will cause an entry) or <xxx>_THL_ENTRY_QUEUED (only
FIFOs and TX Queues will cause entries)

cfcc

[Multi-Purpose

FIFO

configuration]

- Not used within <xxx>_Set[...]Configuration().

See <xxx>_SetCOMFIFOConfiguration() for

initialization.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 43 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

(3) Implementations: (Ex)

(3-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Channel of Controller

Config: Channel configuration structure

(3-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(3-3) Functional Description

The function is named <xxx>_SetChannelConfiguration().

Parameters are passed by using referencing a common configuration structure.

The common configuration is setting the bit rate parameters either automatically (if bit rate is

specified) or by explicit parameters for the bit timing in time quanta. Also, the sampling point setting

has a default value of <xxx>_BT_SPTOPTIMUM, if no explicit time segment settings are specified.

The channel configuration structure <xxx>_cfg_channel contains the following elements (when

referring to the structure element’s names, further information is available in the corresponding

user’s manual of the product):

Table 5.6 Channel Configuration Structure Elements

Element Type Value Range Description

arb_bitrate

[Arbitration Bit

Rate]

u32 bits per second

0 ... 1000000

Bit rate to be set for communication arbitration

phase in CAN-FD or in general for classic CAN.

Set to 0, if automatic bit timing setting is not

desired.

arb_

samplingpointpos

[Sampling Point]

flt Position in Bit (%/100)

0.5 ... 0.98

Sampling Point to be set for communication

arbitration phase in CAN-FD or in general for

classic CAN. Set to 0.0, if preferred default setting

is acceptable.

data_bitrate

[Arbitration Bit

Rate]

u32 bits per second

0 ... 20000000

(a)

Bit rate to be set for communication data phase in

CAN-FD. Set to 0, if automatic bit timing setting is

not desired.

data_

samplingpointpos

[Sampling Point]

flt Position in Bit (%/100)

0.5 ... 0.93

Sampling Point to be set for communication to be

set for communication data phase in CAN-FD. Set

to 0.0, if preferred default setting is acceptable.

ncfg

[Arbitration Bit

Timing]

(b)

<xxx>_c_ncfg.nbrp

<xxx>_c_ncfg.nsjw

<xxx>_c_ncfg.ntseg1

<xxx>_c_ncfg.ntseg2

{0 ... 1023}

{0 ... 31}

{1 ... 127}

{1 ... 31}

Bit Rate Prescaler for Arbitration.

Synchronization Jump Width for Arbitration.

Time Segment 1 for Arbitration.

Time Segment 2 for Arbitration.

dcfg

[Data Bit Timing]

(c)

<xxx>_c_dcfg.dbrp

<xxx>_c_dcfg.dtseg1

<xxx>_c_dcfg.dtseg2

<xxx>_c_dcfg.dsjw

{0 ... 127}

{1 ... 15}

{1 ... 7}

{0 ... 7}

Bit Rate Prescaler for Data Phase.

Time Segment 1 for Data Phase.

Time Segment 2 for Data Phase.

Synchronization Jump Width for Data Phase.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 44 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

ctr

[Channel CTR

Register]

<xxx>_c_ctr.chmdc

<xxx>_c_ctr.cslpr

<xxx>_c_ctr.rtbo

<xxx>_c_ctr.ie

<xxx>_c_ctr.bom

<xxx>_c_ctr.errd

<xxx>_c_ctr.ctme

<xxx>_c_ctr.ctms

<xxx>_c_ctr,trwe

<xxx>_c_ctr.trh

<xxx>_c_ctr.trr

<xxx>_c_ctr.crct

<xxx>_c_ctr.rom

{0, 1, 2}

-

{0, 1}

{one or several flags}

{0, 1, 2, 3}

{0, 1}

{0, 1}

{1, 2, 3}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

Channel state during configuration (d). Use either

<xxx>_OPMODE_OPER (operation mode),

<xxx>_OPMODE_RESET (reset mode) or

<xxx>_OPMODE_HALT (halt mode).

Not used during channel configuration.

Force to return from bus-off, if set to 1.

Interrupt sources of channel to be enabled. (e)

Bus off recovery specification (4 options) (f)

First error blocks further reports, if not set.

Test mode enable flag (if set, see ctms)

Test mode selection (g)

Allows writing of error counters, if set (h)

Stops error counters, if set (i)

Clears error counters, if set (j)

CRC error test activation, if set (k)

Restricted operation mode, if set

fdctr

[CAN-FD Control

Settings]

<xxx>_c_fdctr.eocclr

<xxx>_c_fdctr.socclr

{0, 1}

{0, 1}

Clear error occurrence counter, if set

Clear successful occurrence counter, if set

fdcfg

[CAN-FD

Configuration

Settings]

<xxx>_c_fdcfg.eoccfg

<xxx>_c_fdcfg.tdcoc

<xxx>_c_fdcfg.tdce

<xxx>_c_fdcfg.esic

<xxx>_c_fdcfg.tdco

<xxx>_c_fdcfg.gwen

<xxx>_c_fdcfg.gwfdf

<xxx>_c_fdcfg.gwbrs

<xxx>_c_fdcfg.tmme

<xxx>_c_fdcfg.fdoe

<xxx>_c_fdcfg.refe

<xxx>_c_fdcfg.cloe

{0, 1, 2, 4, 5, 6}

{0, 1}

{0, 1}

{0, 1}

{0 ... 127}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

Error occurrence counter configuration (l)

Transceiver delay compensation offset config. (m)

Transceiver delay compensation enabled, if set (n)

Error state indication configuration (o)

Transceiver delay compensation offset in

communication clock cycles, rounded to full TQ.

Multi-gateway function enabled, if set (p)

Multi-gateway function configuration for FDF (q)

Multi-gateway function configuration for BRS (r)

TX Buffer merged, if set (s)

CAN-FD only mode enabled, if set (t)

Enable RX edge filter, if set (u)

Classical CAN only mode, if set (v)

tmiec

[TX Interrupt

Enable flags]

u16 {0, 1}

for each TX buffer; bit

position corresponds

with buffer number

Enable transmit interrupt or transmit abort interrupt

for transmit buffer(s), if set.

txqcc (w)

[TX Queue

configuration, as

an array for (E3)]

<xxx>_c_txqcc.qe

<xxx>_c_txqcc.dc

<xxx>_c_txqcc.ie

<xxx>_c_txqcc.im

{0, 1}

{0, 2 ... 15 | 31}

{0, 1}

{0, 1}

Enable TX Queue, if set.

Depth of TX Queue

(off, 3 to 16 (E2) or 32 (E3) messages).

TX Queue interrupt enabled, if set.

TX Queue interrupt mode. (x)

thlcc

[Transmit History

configuration]

<xxx>_c_thlcc.thle

<xxx>_c_thlcc.ie

<xxx>_c_thlcc.im

<xxx>_c_thlcc.dte

{0, 1}

{0, 1}

{0, 1}

{0, 1}

Enable Transmit History, if set.

Transmit History interrupt enabled, if set.

Transmit History interrupt mode (y).

Specification what gets an entry in the list (z).

cfcc

[Multi-Purpose

FIFO

configuration]

- Not used within <xxx>_Set[...]Configuration().

See <xxx>_SetCOMFIFOConfiguration() for

initialization.

a. The maximum value depends on the capabilities of the hardware implementation (clock speed).

b. Values in this register are setting the configuration with one more than programmed. These values are used, if automatic bit
timing setting is suppressed by specifying 0 or 0.0 for arbitration bitrate / sampling point.

c. Values in this register are setting the configuration with one more than programmed. These values are used, if automatic bit
timing setting is suppressed by specifying 0 or 0.0 for data bitrate / sampling point.

d. The setting is not persistent and used only during the configuration phase. If no special requirement is given, it is recommend-
ed to set this to <xxx>_OPMODE_RESET. After configuration, the state will be <xxx>_OPMODE_HALT.

e. Channel interrupt sources are:
<xxx>_CINT_BUSERR, <xxx>_CINT_WARNING, <xxx>_CINT_PASSIVE, <xxx>_CINT_BUSOFF, <xxx>_CINT_RECOV-
ERY, <xxx>_CINT_OVERLOAD, <xxx>_CINT_BUSLOCK, <xxx>_CINT_ARBLOST.

Table 5.6 Channel Configuration Structure Elements

Element Type Value Range Description

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 45 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

f. Channel Bus Off Recovery options are:
<xxx>_BOM_ISO (according to ISO), <xxx>_BOM_HALTBOFF (HALT mode before recovery), <xxx>_BOM_HALTRECV
(HALT mode after recovery), <xxx>_BOM_SW (recovery control by software, no ISO recovery phase).

g. Set chmdc to <xxx>_OPMODE_HALT, when using test modes. Test modes are:
<xxx>_TEST_RXONLY (Receive-Only operation mode), <xxx>_TEST_EXTLOOP (external loop self-test mode - includes
transceiver), <xxx>_TEST_INTLOOP (internal loop self-test mode - excludes transceiver).

h. For (E2) controllers only.

i. For (E2) controllers only.

j. For (E2) controllers only.

k. For (E3) controllers only.

l. User either <xxx>_EOC_ALLTXRX (all frames), <xxx>_EOC_ALLTX (all transmitter frames), <xxx>_EOC_ALLRX (all receiv-
er frames), <xxx>_EOC_ALLTXRXFD (only CAN-FD frames), <xxx>_EOC_ALLTXFD (only CAN-FD transmitter frames) or
<xxx>_EOC_ALLRXFD (only CAN-FD receiver frames)

m. Use either <xxx>_TDC_OFFSETONLY (to disable measured offset) or <xxx>_TDC_MEASOFFSET (to combine measured
offset with additional offset added by soft setting).

n. Use either <xxx>_TDC_ENABLE (to enable) or <xxx>_TDC_DISABLE (to disable).

o. Use either <xxx>_ESI_BYNODE (to set ESI by local node status) or <xxx>_ESI_BYACTBUFFER (to set ESI by software with-
in TX buffers, if the node is error active).

p. Use either <xxx>_MULTIGW_ENABLE (activate HW multi-gateway function) or <xxx>_MULTIGW_DISABLE (disable HW
multi-gateway function). The multi-gateway function allows the conversion of CAN frame formats in the HW gateway, i.e., con-
verting classical CAN frames to CAN-FD frames or vice versa.

q. Use either <xxx>_FDF_CLASSIC (to convert into classical CAN frames) or <xxx>_FDF_FD (to convert into CAN-FD frames).

r. Use either <xxx>_BRS_SWITCH (to convert into CAN-FD fast data frames, if <xxx>__FDF_FD is set, too) or
<xxx>_BRS_NOSWITCH (to use arbitration bit rate only).

s. For (E2) controllers only.
Use either <xxx>_TXBOXMERGE (to merge the lower 6 TX Buffers into 2 CAN-FD buffers with full data length support) or
<xxx>_TXBOXNOMERGE (to restrict CAN-FD data size for transmission to 20 bytes).

t. Use either <xxx>_FDONLY (to treat classical CAN frames as errors and don’t send them) or <xxx>_FDMIXED (to tolerate
both classical CAN and CAN-FD frames for reception and transmission).

u. Use either <xxx>_RXEDGEFILTER_ON (to filter glitches on RX for hard synchronization, which are shorter than 2 dominant
TQ), or <xxx>_RXEDGEFILTER_OFF (to allow any recessive to dominant edge for a hard synchronization, if it is within in-
termission).

v. For (E3) controllers only.

w. On (E2) controller types, the addressing is not indexed. Only one queue is available.
On (E3) controller types, the addressing is indexed (in preparation for several queues to be available in future).

x. Use either <xxx>_TXQ_INT_ONEVERY (every transmission causes an interrupt) or <xxx>_TXQ_INT_ONLAST (interrupt
triggered when queue is empty)

y. Use either <xxx>_THL_INT_ONEVERY (every new entry causes an interrupt) or <xxx>_THL_INT_ONLEVEL (interrupt trig-
gered when history list has a fill level of 3/4)

z. Use either <xxx>_THL_ENTRY_ALL (all transmission sources will cause an entry) or <xxx>_THL_ENTRY_QUEUED (only
FIFOs and TX Queues will cause entries)

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 46 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

(4) Implementations: (E4)

(4-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Channel of Controller

Config: Channel configuration structure

(4-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(4-3) Functional Description

The function is named <xxx>_SetChannelConfiguration().

Parameters are passed by using referencing a common configuration structure.

The common configuration is setting the bit rate parameters either automatically (if bit rate is

specified) or by explicit parameters for the bit timing in time quanta. Also, the sampling point setting

has a default value of <xxx>_BT_SPTOPTIMUM, if no explicit time segment settings are specified.

The channel configuration structure <xxx>_cfg_channel contains the following elements (when

referring to the structure element’s names, further information is available in the corresponding

user’s manual of the product):

Table 5.7 Channel Configuration Structure Elements

Element Type Value Range Description

arb_bitrate

[Arbitration Bit

Rate]

u32 bits per second

0 ... 1000000

Bit rate to be set for communication arbitration

phase in CAN-FD or in general for classic CAN.

Set to 0, if automatic bit timing setting is not

desired.

arb_

samplingpointpos

[Sampling Point]

flt Position in Bit (%/100)

0.5 ... 0.98

Sampling Point to be set for communication

arbitration phase in CAN-FD or in general for

classic CAN. Set to 0.0, if preferred default setting

is acceptable.

data_bitrate

[Arbitration Bit

Rate]

u32 bits per second

0 ... 20000000

(a)

Bit rate to be set for communication data phase in

CAN-FD. Set to 0, if automatic bit timing setting is

not desired.

data_

samplingpointpos

[Sampling Point]

flt Position in Bit (%/100)

0.5 ... 0.93

Sampling Point to be set for communication to be

set for communication data phase in CAN-FD. Set

to 0.0, if preferred default setting is acceptable.

ncfg

[Arbitration Bit

Timing]

(b)

<xxx>_c_ncfg.nbrp

<xxx>_c_ncfg.nsjw

<xxx>_c_ncfg.ntseg1

<xxx>_c_ncfg.ntseg2

{0 ... 1023}

{0 ... 127}

{1 ... 255}

{1 ... 127}

Bit Rate Prescaler for Arbitration.

Synchronization Jump Width for Arbitration.

Time Segment 1 for Arbitration.

Time Segment 2 for Arbitration.

dcfg

[Data Bit Timing]

(c)

<xxx>_c_dcfg.dbrp

<xxx>_c_dcfg.dtseg1

<xxx>_c_dcfg.dtseg2

<xxx>_c_dcfg.dsjw

{0 ... 255}

{1 ... 31}

{1 ... 15}

{0 ... 15}

Bit Rate Prescaler for Data Phase.

Time Segment 1 for Data Phase.

Time Segment 2 for Data Phase.

Synchronization Jump Width for Data Phase.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 47 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

ctr

[Channel CTR

Register]

<xxx>_c_ctr.chmdc

<xxx>_c_ctr.cslpr

<xxx>_c_ctr.rtbo

<xxx>_c_ctr.ie

<xxx>_c_ctr.bom

<xxx>_c_ctr.errd

<xxx>_c_ctr.ctme

<xxx>_c_ctr.ctms

<xxx>_c_ctr.crct

<xxx>_c_ctr.rom

{0, 1, 2}

-

{0, 1}

{one or several flags}

{0, 1, 2, 3}

{0, 1}

{0, 1}

{1, 2, 3}

{0, 1}

{0, 1}

Channel state during configuration (d). Use either

<xxx>_OPMODE_OPER (operation mode),

<xxx>_OPMODE_RESET (reset mode) or

<xxx>_OPMODE_HALT (halt mode).

Not used during channel configuration.

Force to return from bus-off, if set to 1.

Interrupt sources of channel to be enabled. (e)

Bus off recovery specification (4 options) (f)

First error blocks further reports, if not set.

Test mode enable flag (if set, see ctms)

Test mode selection (g)

CRC error test activation, if set

Restricted operation mode, if set

fdctr

[CAN-FD Control

Settings]

<xxx>_c_fdctr.eocclr

<xxx>_c_fdctr.socclr

{0, 1}

{0, 1}

Clear error occurrence counter, if set

Clear successful occurrence counter, if set

fdcfg

[CAN-FD

Configuration

Settings]

<xxx>_c_fdcfg.eoccfg

<xxx>_c_fdcfg.tdcoc

<xxx>_c_fdcfg.tdce

<xxx>_c_fdcfg.esic

<xxx>_c_fdcfg.tdco

<xxx>_c_fdcfg.gwen

<xxx>_c_fdcfg.gwfdf

<xxx>_c_fdcfg.gwbrs

<xxx>_c_fdcfg.fdoe

<xxx>_c_fdcfg.refe

<xxx>_c_fdcfg.cloe

{0, 1, 2, 4, 5, 6}

{0, 1}

{0, 1}

{0, 1}

{0 ... 255}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

Error occurrence counter configuration (h)

Transceiver delay compensation offset config. (i)

Transceiver delay compensation enabled, if set (j)

Error state indication configuration (k)

Transceiver delay compensation offset in

communication clock cycles, rounded to full TQ.

Multi-gateway function enabled, if set (l)

Multi-gateway function configuration for FDF (m)

Multi-gateway function configuration for BRS (n)

CAN-FD only mode enabled, if set (o)

Enable RX edge filter, if set (p)

Classical CAN only mode, if set

tmiec

[TX Interrupt

Enable flags]

u32 {0, 1}

for each TX buffer; bit

position corresponds

with buffer number

Enable transmit interrupt or transmit abort interrupt

for transmit buffer(s), if set.

txq[] (q)

[TX Queue

configuration, as

an array for

queues 0...3]

<xxx>_c_txqcc.qe

<xxx>_c_txqcc.gwe

<xxx>_c_txqcc.owe

<xxx>_c_txqcc.ie

<xxx>_c_txqcc.im

<xxx>_c_txqcc.dc

<xxx>_c_txqcc.fie

<xxx>_c_txqcc.ofrxie

<xxx>_c_txqcc.oftxie

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 2 ... 15 | 31}

{0, 1}

{0, 1}

{0, 1}

Enable TX Queue, if set.

Enable gateway mode, if set (only queues 0...2)

Enable overwrite mode, if set

TX Queue interrupt enabled, if set.

TX Queue interrupt mode. (r)

Depth of TX Queue

(off, 3 to 16 (E2) or 32 (E3) messages).

TX Queue 0..2 full interrupt enabled, if set

TX Queue 0..2 one frame reception interrupt, if set

TX Queue one frame transmit interrupt, if set

thlcc

[Transmit History

configuration]

<xxx>_c_thlcc.thle

<xxx>_c_thlcc.ie

<xxx>_c_thlcc.im

<xxx>_c_thlcc.dte

<xxx>_c_thlcc.dge

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

Enable Transmit History, if set.

Transmit History interrupt enabled, if set.

Transmit History interrupt mode (s).

Specification what gets an entry in the list (t).

Also capture HW Gateway transfers, if set.

cfcc

[Multi-Purpose

FIFO

configuration]

- - Not used within <xxx>_Set[...]Configuration().

See <xxx>_SetCOMFIFOConfiguration() for

initialization.

cfcce

[Multi-Purpose

FIFO enhanced

configuration]

a. The maximum value depends on the capabilities of the hardware implementation (clock speed).

b. Values in this register are setting the configuration with one more than programmed. These values are used, if automatic bit
timing setting is suppressed by specifying 0 or 0.0 for arbitration bitrate / sampling point.

Table 5.7 Channel Configuration Structure Elements

Element Type Value Range Description

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 48 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

c. Values in this register are setting the configuration with one more than programmed. These values are used, if automatic bit
timing setting is suppressed by specifying 0 or 0.0 for data bitrate / sampling point.

d. The setting is not persistent and used only during the configuration phase. If no special requirement is given, it is recommend-
ed to set this to <xxx>_OPMODE_RESET. After configuration, the state will be <xxx>_OPMODE_HALT.

e. Channel interrupt sources are:
<xxx>_CINT_BUSERR, <xxx>_CINT_WARNING, <xxx>_CINT_PASSIVE, <xxx>_CINT_BUSOFF, <xxx>_CINT_RECOV-
ERY, <xxx>_CINT_OVERLOAD, <xxx>_CINT_BUSLOCK, <xxx>_CINT_ARBLOST, <xxx>_CINT_TXABORT,
<xxx>_CINT_ERRCOVF, <xxx>_CINT_SUCCOVF, <xxx>_CINT_TDCVIOL.

f. Channel Bus Off Recovery options are:
<xxx>_BOM_ISO (according to ISO), <xxx>_BOM_HALTBOFF (HALT mode before recovery), <xxx>_BOM_HALTRECV
(HALT mode after recovery), <xxx>_BOM_SW (recovery control by software, no ISO recovery phase).

g. Set chmdc to <xxx>_OPMODE_HALT, when using test modes. Test modes are:
<xxx>_TEST_RXONLY (Receive-Only operation mode), <xxx>_TEST_EXTLOOP (external loop self-test mode - includes
transceiver), <xxx>_TEST_INTLOOP (internal loop self-test mode - excludes transceiver).

h. User either <xxx>_EOC_ALLTXRX (all frames), <xxx>_EOC_ALLTX (all transmitter frames), <xxx>_EOC_ALLRX (all receiv-
er frames), <xxx>_EOC_ALLTXRXFD (only CAN-FD frames), <xxx>_EOC_ALLTXFD (only CAN-FD transmitter frames) or
<xxx>_EOC_ALLRXFD (only CAN-FD receiver frames)

i. Use either <xxx>_TDC_OFFSETONLY (to disable measured offset) or <xxx>_TDC_MEASOFFSET (to combine measured
offset with additional offset added by soft setting).

j. Use either <xxx>_TDC_ENABLE (to enable) or <xxx>_TDC_DISABLE (to disable).

k. Use either <xxx>_ESI_BYNODE (to set ESI by local node status) or <xxx>_ESI_BYACTBUFFER (to set ESI by software with-
in TX buffers, if the node is error active).

l. Use either <xxx>_MULTIGW_ENABLE (activate HW multi-gateway function) or <xxx>_MULTIGW_DISABLE (disable HW
multi-gateway function). The multi-gateway function allows the conversion of CAN frame formats in the HW gateway, i.e., con-
verting classical CAN frames to CAN-FD frames or vice versa.

m. Use either <xxx>_FDF_CLASSIC (to convert into classical CAN frames) or <xxx>_FDF_FD (to convert into CAN-FD frames).

n. Use either <xxx>_BRS_SWITCH (to convert into CAN-FD fast data frames, if <xxx>__FDF_FD is set, too) or
<xxx>_BRS_NOSWITCH (to use arbitration bit rate only).

o. Use either <xxx>_FDONLY (to treat classical CAN frames as errors and don’t send them) or <xxx>_FDMIXED (to tolerate
both classical CAN and CAN-FD frames for reception and transmission).

p. Use either <xxx>_RXEDGEFILTER_ON (to filter glitches on RX for hard synchronization, which are shorter than 2 dominant
TQ), or <xxx>_RXEDGEFILTER_OFF (to allow any recessive to dominant edge for a hard synchronization, if it is within in-
termission).

q. Flags GWE, FIE, FRXIE are only applicable for TX Queues 0...2. If a TX Queue is not used in gateway mode (GWE=0), then

the flags FIE and FRXIE are ignored.

r. Use either <xxx>_TXQ_INT_ONEVERY (every transmission causes an interrupt) or <xxx>_TXQ_INT_ONLAST (interrupt
triggered when queue is empty)

s. Use either <xxx>_THL_INT_ONEVERY (every new entry causes an interrupt) or <xxx>_THL_INT_ONLEVEL (interrupt trig-
gered when history list has a fill level of 3/4)

t. Use either <xxx>_THL_ENTRY_ALL (all transmission sources will cause an entry) or <xxx>_THL_ENTRY_QUEUED (only
FIFOs and TX Queues will cause entries)

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 49 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

(5) Implementations: (F)

(5-1) Parameters

UnitNumber_u08: Selected CAN Controller

Config: Channel configuration structure

ErrorStatus_pu08: Error status return by reference

(5-2) Return Values

<xxx>_ERROR on parameter failures or an error status indication, otherwise <xxx>_OK.

(5-3) Functional Description

The function is named <xxx>_SetConfiguration().

Parameters are passed by using referencing a common configuration structure.

The common configuration is setting the bit rate parameters either automatically (if bit rate is

specified) or by explicit parameters for the bit timing in time quanta. Also, the sampling point setting

has a default value of <xxx>_BT_SPTOPTIMUM, if no explicit time segment settings are specified.

The function returns error information by reference, which can be the following:

<xxx>_CONFIG_OK - No error

<xxx>_CONFIG_ERROR_UNITNOTEXIST - Invalid unit number was specified

<xxx>_CONFIG_ERROR_NOTININIT - Must be in INIT mode to allow configuration setting

<xxx>_CONFIG_ERROR_BITTIMING - Bit timing cannot be achieved by given settings

<xxx>_CONFIG_ERROR_OUTOFRAM - Configuration of RAM exceeds the RAM size

<xxx>_CONFIG_ERROR_HWTIMEOUT - No reaction from hardware (timeout limit)

The timeout limit can be set by using the <xxx>_SHUTDOWNTIMEOUT #define constant in the

driver’s mapping definition (see 5.4 for details and file information).

The common configuration structure <xxx>_config contains the following elements (when referring

to the structure element’s names, further information is available in the corresponding user’s manual

of the product):

Table 5.8 Common Configuration Structure Elements

Element Type Value Range Description

arb_bitrate

[Arbitration Bit

Rate]

u32 bits per second

0 ... 1000000

Bit rate to be set for communication arbitration

phase in CAN-FD or in general for classic CAN.

Set to 0, if automatic bit timing setting is not

desired.

arb_

samplingpointpos

[Sampling Point]

flt Position in Bit (%/100)

0.5 ... 0.98

Sampling Point to be set for communication

arbitration phase in CAN-FD or in general for

classic CAN. Set to 0.0, if preferred default setting

is acceptable.

data_bitrate

[Arbitration Bit

Rate]

u32 bits per second

0 ... 20000000

(a)

Bit rate to be set for communication data phase in

CAN-FD. Set to 0, if automatic bit timing setting is

not desired.

data_

samplingpointpos

[Sampling Point]

flt Position in Bit (%/100)

0.5 ... 0.93

Sampling Point to be set for communication to be

set for communication data phase in CAN-FD. Set

to 0.0, if preferred default setting is acceptable.

btp

[Arbitration Bit

Timing]

(b)

<xxx>_c_btp.sjw

<xxx>_c_btp.tseg2

<xxx>_c_btp.tseg1

<xxx>_c_btp.brp

{0 ... 15}

{0 ... 15}

{1 ... 63}

{0 ... 1023}

Synchronization Jump Width for Arbitration.

Time Segment 2 for Arbitration.

Time Segment 1 for Arbitration.

Bit Rate Prescaler for Arbitration.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 50 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

fbtp

[Data Bit Timing]

(c)

<xxx>_c_fbtp.fsjw

<xxx>_c_fbtp.ftseg2

<xxx>_c_fbtp.ftseg1

<xxx>_c_fbtp.fbrp

<xxx>_c_fbtp.tdc

<xxx>_c_fbtp.tdco

{0 ... 3}

{0 ... 7}

{1 ... 15}

{0 ... 31}

{0 ... 1}

{0 ... 31}

Synchronization Jump Width for Data Phase.

Time Segment 2 for Data Phase.

Time Segment 1 for Data Phase.

Bit Rate Prescaler for Data Phase.

Enables Transceiver Delay Compensation if set.

Transceiver Delay Compensation value. (d)

tscc

[Timestamp

Counter

Configuration]

<xxx>_c_tscc.tss

<xxx>_c_tscc.tcp

{0, 1, 2}

{0 ... 15}
Timestamp Selection. (e)

Timestamp and Timeout counter prescaler. (f)

gfc

[Global Filter

Configuration]

<xxx>_c_gfc.rrfe

<xxx>_c_gfc.rrfs

<xxx>_c_gfc.anfe

<xxx>_c_gfc.anfs

{0 ... 1}

{0 ... 1}

{0, 1, 2}

{0, 1, 2}

Extended Remote Frame Filter setting. (g)

Standard Remote Frame Filter setting. (h)

Extended Frames handling, if no filter matches. (i)

Standard Frames handling, if no filter matches. (j)

xidam

[Extended ID AND

Mask]

<xxx>_c_xidam.eidm {0 ... 0x1FFFFFFF} Additional masking of Extended ID for SAE J1939.

If a bit is set, the mask is transparent.

rxfnc, n ∈ {0 ... 1}

[RX FIFO n

Configuration]

<xxx>_c_rxfc.fsa

<xxx>_c_rxfc.fs

<xxx>_c_rxfc.fwm

<xxx>_c_rxfc.fom

-

-

{0 ... 64}

{0 ... 1}

This value is calculated automatically by the driver.

Not used, set in <xxx>_ramconfig structure.

Watermark interrupt level of FIFO (0 to disable).

RX FIFO operation mode. (k)

txbc

[TX Buffer

Configuration]

<xxx>_c_txbc.tbsa

<xxx>_c_txbc.ndtb

<xxx>_c_txbc.tfqs

<xxx>_c_txbc.tfqm

-

-

-

{0 ... 1}

This value is calculated automatically by the driver.

Not used, set in <xxx>_ramconfig structure.

Not used, set in <xxx>_ramconfig structure.

TX FIFO operation mode (l)

txefc

[TX Event Buffer

Configuration]

<xxx>_c_txefc.efsa

<xxx>_c_txefc.efs

<xxx>_c_txefc.efwm

-

-

{0 ... 32}

This value is calculated automatically by the driver.

Not used, set in <xxx>_ramconfig structure.

Watermark interrupt level (0 to disable).

ramconfig

[RAM

Configuration]

<xxx>_ramconfig. ...

mcan_a_stdfilters_count

mcan_a_extfilters_count

mcan_a_fifo0_size

mcan_a_fifo1_size

mcan_a_rxbuffers_count

mcan_a_txbuffers_count

mcan_a_txqueue_size

mcan_a_thl_size

(prefix for all)

(m) Number of Standard ID Filter objects.

Number of Extended ID Filter objects.

Number of receive objects for RX FIFO 0.

Number of receive objects for RX FIFO 1.

Number of standard receive buffers.

Number of transmit buffers in total.

Number of transmit objects for TX FIFO or queue.

Number of entries of the Event Buffer.

rxesc

[RX Buffer/FIFO

Size

Configuration]

<xxx>_c_rxesc.f0ds

<xxx>_c_rxesc.f1ds

<xxx>_c_rxesc.rbds

{0 ... 7} Size of data field for CAN-FD operation.

000= 8 bytes

001= 12 bytes

010= 16 bytes

011= 20 bytes

100= 24 bytes

101= 32 bytes

110= 48 bytes

111= 64 bytes

txesc

[TX Buffer Size

Configuration]

<xxx>_c_txesc.tbds

a. The maximum value depends on the capabilities of the hardware implementation (clock speed).

b. Values in this register are setting the configuration with one more than programmed. These values are used, if automatic bit
timing setting is suppressed by specifying 0 or 0.0 for arbitration bitrate / sampling point.

c. Values in this register are setting the configuration with one more than programmed. These values are used, if automatic bit
timing setting is suppressed by specifying 0 or 0.0 for data bitrate / sampling point.

d. Additional offset from measured delay to secondary sample point in counts of communication clock cycles.

e. Use either <xxx>_TSS_OFF (no timestamp), <xxx>_TSS_INTERNAL (use internal counter), or <xxx>_TSS_EXTERNAL
(use other counter provided by device implementation)

f. Value is amount of bit times of the configured arbitration bit rate plus one.

g. Use either <xxx>_GFC_REMOTEACCEPT (accept remote frames in general) or <xxx>_GFC_REMOTEREJECT (reject re-
mote frames in general).

h. Use either <xxx>_GFC_REMOTEACCEPT (accept remote frames in general) or <xxx>_GFC_REMOTEREJECT (reject re-
mote frames in general).

Table 5.8 Common Configuration Structure Elements

Element Type Value Range Description

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 51 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

(6) Implementations: (G)

See implementation (F), with some TTCAN extensions (t.b.d.).

i. Use either <xxx>_GFC_NOMATCHFIFO0 (store non-matching frames in RX FIFO 0), <xxx>_GFC_NOMATCHFIFO1 (store
non-matching frames in RX FIFO 1) or <xxx>_GFC_NOMATCHREJECT (reject non-matching frames).

j. Use either <xxx>_GFC_NOMATCHFIFO0 (store non-matching frames in RX FIFO 0), <xxx>_GFC_NOMATCHFIFO1 (store
non-matching frames in RX FIFO 1) or <xxx>_GFC_NOMATCHREJECT (reject non-matching frames).

k. Use either <xxx>_FIFO_MODE_BLOCKING (to set blocking mode) or <xxx>_FIFO_MODE_OVERWRITE (to set overwrite
mode).

l. Use either <xxx>_TXB_FIFOMODE (to set TX buffers as a FIFO) or <xxx>_TXB_QUEUEMODE (to set TX buffers as a trans-
mit queue).

m. The amount of instances for each kind of objects can be chosen in certain ranges, while considering the available RAM size
of the M_(TT)CAN controller as specified in the device documentation.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 52 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.5.4 <xxx>_SetCOMFIFOConfiguration()

Implementations: (C), (D), (Ex), (E4).

(1) Implementations: (C), (D), (Ex), (E4)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Channel of Controller

Config: Channel configuration structure

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

Parameters are passed by using referencing the same channel configuration structure as used in

<xxx>_Set[...]Configuration(). By <xxx>_SetCOMFIFOConfiguration(), the part of Multi-Purpose

FIFO setup is performed in this separate step. The reason for this approach is, that global Multi-

Purpose FIFO setup needs to be done after the RS-CAN(-FD) controller is already initialized in a

global operation state.

From the global configuration structure <xxx>_cfg_channel, the remaining elements are used, as

shown in the table below:

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 53 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

Table 5.9 Global Configuration Structure Receive FIFO Initialization Elements

Element Type Value Range Description

cfcc (a)

[Multi-Purpose

FIFO

configuration]

a. Order of elements within structure is different in implementations.

<xxx>_c_cfcc.cfe

<xxx>_c_cfcc.cfrxie

<xxx>_c_cfcc.cftxie

<xxx>_c_cfcc.cfpls

<xxx>_c_cfcc.cfdc

<xxx>_c_cfcc.cfim

<xxx>_c_cfcc.cfigcv

<xxx>_c_cfcc.cfm

<xxx>_c_cfcc.cfitss

<xxx>_c_cfcc.cfitr

<xxx>_c_cfcc.cftml

<xxx>_c_cfcc.cfitt

-

{0, 1}

{0, 1}

{0 ... 7}

{0 ... 7}

{0, 1}

n ∈ {0 ... 7}

{0, 1, 2}

{0, 1}

{0, 1}

{0 ... }

{0 ... 255}

Not used during FIFO configuration.

FIFO RX Interrupt enable.

FIFO TX Interrupt enable.

Size of FIFO receive objects (b)

Depth of FIFO (c)

FIFO Interrupt mode (d)

Fill level of interrupt generation (see cfim) (e)

FIFO operation mode (f)

Transmission interval timer source selection (g)

Transmission interval timer resolution (h)

Linked Transmit Buffer of FIFO (i)

Amount of interval timer clocks for FIFO

transmission delay.

b. Only available in (Ex) controllers.
0: 8 Bytes, 1: 12 Bytes, 2: 16 Bytes, 3: 20 Bytes, 4: 24 Bytes, 5: 32 Bytes, 6: 48 Bytes, 7: 64 Bytes.
Consider maximum amount of available storage when setting this value (see user’s manual).

c. 0: 0 Messages (FIFO is disabled), 1: 4 Messages, 2: 8 Messages, 3: 16 Messages, 4: 32 Messages,
5: 48 Messages, 6: 64 Messages, 7: 128 Messages
Consider maximum amount of available storage when setting this value (see user’s manual).

d. <xxx>_FIFO_INT_ONLEVEL: use level of rfigcv; <xxx>_FIFO_INT_ONEVERY: on every message

e. Value n sets the fill level of generating an interrupt to (n+1)/8.
Use constants <xxx>_FIFO_ILEVEL_<n+1>D8 to set the level.

f. Use either <xxx>_FIFO_MODE_RX (receive mode), <xxx>_FIFO_MODE_TX (transmit mode) or <xxx>_FIFO_MODE_GW
(gateway mode).

g. Use either <xxx>_FIFO_IT_REFCLK (the peripheral clock is used for the timer) or <xxx>_FIFO_IT_BTCLK (the communica-
tion bit time quanta clock is used for the timer).

h. Use either <xxx>_FIFO_IT_REFCLK1 (when using the peripheral clock for the timer, this clock is not divided) or <xxx>_FI-
FO_IT_REFCLK10 (the peripheral clock is divided by 10 as reference for the timer).

i. The range of valid buffer numbers varies among the CAN controller types.

cfcce (j)

[Multi-Purpose

FIFO enhanced

configuration]

j. Supported by implementation (E4) only.

<xxx>_c_cfcce.cffie

<xxx>_c_cfcce.cfofrxie

<xxx>_c_cfcce.cfoftxie

<xxx>_c_cfcce.cfmowm

<xxx>_c_cfcce.cfbme

{0, 1}

{0, 1}

{0, 1}

{0, 1}

{0, 1}

FIFO Full Interrupt enabled, if set

FIFO one frame reception Interrupt enabled, if set

FIFO one frame transmit Interrupt enabled, if set

FIFO overwrite mode (k)

FIFO buffering disable (temporary stop) (l)

k. Set either <xxx>_COM_FIFO_OWMODE to allow overwriting of the last received message, if a newly received message

arrives while the FIFO is full, or <xxx>_COM_FIFO_DSCMODE, to discard the new received message. Overwriting is only

allowed in HW gateway mode.

l. Set this flag during operation to suspend the FIFO transmission, when in FIFO TX mode or HW gateway mode.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 54 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.5.5 <xxx>_CreateInterrupt()

Implementations: (A), (B), (C), (D), (Ex), (F), (G).

(1) Implementations: (A), (B)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

MachineNumber_u08: Selected CAN Channel of Controller

IntNumber_u08: Interrupt specification

SetIntLevel_u08: Interrupt enable/level for interrupt controller setting

FunctionVector: Pointer to a function returning void as a callback function

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

For each channel of a CAN controller, each interrupt source can be selected by IntNumber_u08 and

their corresponding interrupt can be enabled in the interrupt controller by setting the level control by

SetIntLevel_u08. If the interrupt is called, the given callback function vector is executed after

processing the essential issues of the CAN driver, for further processing by the user application. If

the function vector is NULL, then the callback is disabled.

The essential processing of the CAN driver is to clear any pending interrupts and to record any error

interrupt status in the variable <xxx>_LastMachineErrorInterrupt_u08[] array.

The interrupt specification of IntNumber_u08 is as follows:

<xxx>_INT_TX: Transmit interrupt

<xxx>_INT_RX: Receive interrupt

<xxx>_INT_ERR: Error interrupt

<xxx>_INT_WUP: Wake up interrupt

The interrupt level can be in a range of 0 to 7 (as defined in the applied CPU core systems), using the

<xxx>_INTCLEAR #define constant in the driver’s mapping definition (see 5.4 for details and file

information) to disable the interrupt.

For each used CAN controller unit and channel, the following dedicated #define constants must be

set in the driver’s mapping definition (see 5.4 for details and file information):

#define <xxx>_INTM<unit>C<channel>ERR <devicefile register name of error interrupt>

#define <xxx>_INTM<unit>C<channel>WUP <devicefile register name of wake up interrupt>

#define <xxx>_INTM<unit>C<channel>RX <devicefile register name of receive interrupt>

#define <xxx>_INTM<unit>C<channel>TX <devicefile register name of transmit interrupt>

These settings will bind the interrupt controller registers to the CAN controller unit <unit>, channel

<channel>; where each register is represented by its device file name.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 55 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

(2) Implementations: (C), (D), (Ex), (E4)

(2-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Channel of Controller

IntNumber_u08: Interrupt specification

SetIntLevel_u16: Interrupt enable/level for interrupt controller setting

FunctionVector: Pointer to a function returning void as a callback function

(2-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(2-3) Functional Description

For each channel of a CAN controller, each interrupt source can be selected by IntNumber_u08 and

their corresponding interrupt can be enabled in the interrupt controller by setting the level control by

SetIntLevel_u16. If the interrupt is called, the given callback function vector is executed after

processing the essential issues of the CAN driver, for further processing by the user application. If

the function vector is NULL, then the callback is disabled.

In order to set global interrupts, the constant <xxx>_GLOBAL must be used as channel number.

The essential processing of the CAN driver is to clear any pending interrupts and to record any error

interrupt status in the variable <xxx>_LastErrorCode_Global_u08 variable. Interrupt status is

recorded in <xxx>_InterruptFlag_Global_u08 and <xxx>_InterruptFlag_Channel_u08[] array.

The interrupt specification of IntNumber_u08 is as follows:

<xxx>_INT_GERR: Global errors of CAN controller

<xxx>_INT_RXFn: Global receive FIFO interrupt (specify n = 0 ...7)

<xxx>_INT_TX: Transmit interrupt

<xxx>_INT_TXA: Transmit abortion interrupt

<xxx>_INT_TXQ: Transmit queue interrupt

<xxx>_INT_CERR: Channel error interrupt

<xxx>_INT_TXHL: Transmit history list interrupt

<xxx>_INT_RXCF: Channel multi purpose FIFO receive interrupt

<xxx>_INT_TXCF: Channel multi purpose FIFO transmit interrupt

<xxx>_INT_GWERR: Channel gateway error interrupt [(E4) implementation only]

The interrupt level is a value as defined in the applied CPU core systems EI level interrupt control

registers, using the <xxx>_INTCLEAR #define constant in the driver’s mapping definition (see 5.4

for details and file information) to disable the interrupt. Use the <xxx>_INTENABLEDEFAULT

#define constant by OR combination, in order to always set the TBxxx flag of the interrupt controller

table reference mode - unless the vector table is mapped differently.

For each used CAN controller unit and channel, the following dedicated #define constants must be

set in the driver’s mapping definition (see 5.4 for details and file information, n = 0 ... 7):

#define <xxx>_INT_M<unit>GERR <devicefile register name of global error interrupt>

#define <xxx>_INT_M<unit>RXFn <devicefile register name of global RX FIFO interrupt>

#define <xxx>_INT_M<unit>TX<channel> <devicefile register name of transmit interrupt>

#define <xxx>_INT_M<unit>TXA<channel> <devicefile register name of transmit abort interrupt>

#define <xxx>_INT_M<unit>TXQ<channel> <devicefile register name of transmit queue interrupt>

#define <xxx>_INT_M<unit>ERR<channel> <devicefile register name of channel error interrupt>

#define <xxx>_INT_M<unit>THL<channel> <devicefile register name of transmit history list interrupt>

#define <xxx>_INT_M<unit>RXCF<channel> <devicefile register name of multi purpose FIFO RX interrupt>

#define <xxx>_INT_M<unit>TXCF<channel> <devicefile register name of multi purpose FIFO TX interrupt>

#define <xxx>_INT_M<unit>GWERR<channel> <devicefile register name of gateway error interrupt>

[(E4) implementation only]

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 56 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

These settings will bind the interrupt controller registers to the CAN controller unit <unit>, channel

<channel>; where each register is represented by its device file name.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 57 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

(3) Implementations: (F), (G)

(3-1) Parameters

UnitNumber_u08: Selected CAN Controller

IntLineNumber_u08: Interrupt line specification

SetIntLevel_u16: Interrupt enable/level for interrupt controller setting

FunctionVector: Pointer to a function returning void as a callback function

(3-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(3-3) Functional Description

For each CAN controller, each interrupt line can be selected by IntLineNumber_u08 and their

corresponding interrupt can be enabled in the interrupt controller by setting the level control by

SetIntLevel_u16. If the interrupt is called, the given callback function vector is executed after

processing the essential issues of the CAN driver, for further processing by the user application. If

the function vector is NULL, then the callback is disabled.

The essential processing of the CAN driver is to clear any pending interrupts and to record the

interrupt status in the variables <xxx>_InterruptFlag_Line_u08 and <xxx>_InterruptFlag_Unit_u08

variables.

The interrupt specification of IntNumber_u08 is as follows:

<xxx>_INT_LINE_0: Interrupt line 0

<xxx>_INT_LINE_1: Interrupt line 1

<xxx>_INT_LINE_FE: Interrupt line of debug message reception with filter event line 2

The interrupt level is a value as defined in the applied CPU core systems EI level interrupt control

registers, using the <xxx>_INTCLEAR #define constant in the driver’s mapping definition (see 5.4

for details and file information) to disable the interrupt. Use the <xxx>_INTENABLEDEFAULT

#define constant by OR combination, in order to always set the TBxxx flag of the interrupt controller

table reference mode - unless the vector table is mapped differently.

For each used CAN controller unit and channel, the following dedicated #define constants must be

set in the driver’s mapping definition (see 5.4 for details and file information, n = 0 ... 7):

#define <xxx>_INT_M<unit>LINE0 <devicefile register name of line 0 interrupt>

#define <xxx>_INT_M<unit>LINE1 <devicefile register name of line 1 interrupt>

#define <xxx>_INT_M<unit>LINEFE <devicefile register name of debug message FE2 interrupt>

These settings will bind the interrupt controller registers to the CAN controller unit <unit>; where

each register is represented by its device file name.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 58 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.5.6 <xxx>_SetInterrupt()

Implementations: (A), (B), (C), (D), (Ex), (E4), (F), (G).

(1) Implementations: (A), (B)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

MachineNumber_u08: Selected CAN Channel of Controller

InterruptMask_u16: Interrupt mask

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

The function allows to enable and disable interrupt sources of the CAN controller unit, depending on

the addressed CAN controller channel. In order to enable an interrupt, see the user’s manual of the

device: the value given for InterruptMask_u16 is written into the CAN controller’s CnIE register,

where n corresponds with the given value of MachineNumber_u08. Set corresponding bits to enable,

clear bits to disable an interrupt1.

(2) Implementations: (C), (D), (Ex)

(2-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Channel of Controller

InterruptSelection_u08: Interrupt source selection

InterruptSubSelection_u08: Interrupt sub-source selection

(2-2) Functional Description

The function allows to enable and disable interrupt sources of the CAN controller unit, depending on

the addressed CAN controller channel and the interrupt source selection. Use the following constants

to select an interrupt source:

1. Note that using this function during operation may cause lost interrupts, as the CAN controller does not store

interrupt events.

Table 5.10 Interrupt Sources of Implementations (C), (D) and (Ex)

Channel

Specification

Interrupt Source

(InterruptSelection_u08)

Interrupt Sub-Source

(InterruptSubSelection_u08)
Description

<xxx>_GLOBAL <xxx>_INT_GERR (a) <xxx>_GINT_NONE Disable global error interrupts

<xxx>_GINT_DLCCHECK DLC smaller than expected

interrupt

<xxx>_GINT_MSGLOST Message lost interrupt

<xxx>_GINT_THLLOST Transmit history entry lost

interrupt

<xxx>_GINT_RAMPARITY RAM parity failure interrupt

<xxx>_INT_RXFn {0, 1} Enable (1) or disable (0)

common receive FIFO n interrupt

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 59 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

Channel c (b) <xxx>_INT_TX {0 ... <available TX buffers>-1} Set transmit interrupt of buffer

<xxx>_INT_TXA Set transmit abort interrupt of

buffer

<xxx>_INT_TXQ {0, 1} Enable (1) or disable (0)

transmit queue interrupt

<xxx>_INT_TXHL Enable (1) or disable (0)

transmit history list interrupt

<xxx>_INT_CERR See (c)

<xxx>_INT_RXCF {0 ... <available multi-purpose FIFOs

per channel>-1}

Set receive interrupt of multi-

purpose FIFO

<xxx>_INT_TXCF Set transmit interrupt of multi-

purpose FIFO

a. Use OR operation of sub-sources combination to enable one or several global interrupts.

b. The channel number c is given in the range of {0 ,,, <available channels>-1}.

When addressing a channel, use <xxx>_INT_NOINT to disable an interrupt (all interrupts of the specified source).

c. Channel error interrupts are one or a combination of the following:

<xxx>_CINT_OFF: Disable channel error interrupt

<xxx>_CINT_BUSERR: Bit error channel error interrupt

<xxx>_CINT_WARNING: Error warning level reached (increasing) channel error interrupt

<xxx>_CINT_PASSIVE: Error passive level reached (increasing) channel error interrupt

<xxx>_CINT_BUSOFF: Bus off entered channel error interrupt

<xxx>_CINT_RECOVERY: Bus off recovery complete channel error interrupt

<xxx>_CINT_OVERLOAD: Overload frame detected channel error interrupt

<xxx>_CINT_BUSLOCK: Bus locked dominant channel error interrupt

<xxx>_CINT_ARBLOST: Arbitration lost channel error interrupt

Table 5.10 Interrupt Sources of Implementations (C), (D) and (Ex)

Channel

Specification

Interrupt Source

(InterruptSelection_u08)

Interrupt Sub-Source

(InterruptSubSelection_u08)
Description

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 60 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

(3) Implementations: (E4)

(3-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Channel of Controller

InterruptSelection_u08: Interrupt source selection

InterruptSubSelection_u08: Interrupt sub-source selection

InterruptEnable_u08: Interrupt activation

(3-2) Functional Description

The function allows to enable and disable interrupt sources of the CAN controller unit, depending on

the addressed CAN controller channel and the interrupt source selection. Use the following constants

to select an interrupt source:

Table 5.11 Interrupt Sources of Implementation (E4)

Channel

Specification

Interrupt Source

(InterruptSelection_u08)

Interrupt Sub-Source

(InterruptSubSelection_u08)

Interrupt Enable

(InterruptEnable_u08)
Description

<xxx>_GLOBAL <xxx>_INT_GERR

(a)

a. Use OR operation of sub-sources combination to enable one or several global interrupts.

(not used) <xxx>_GINT_NONE Disable global error

interrupts

<xxx>_GINT_DLCCHECK DLC smaller than

expected

<xxx>_GINT_MSGLOST Message lost

<xxx>_GINT_THLLOST Transmit history entry lost

<xxx>_GINT_FDMSGOVF CAN-FD message

overflow

<xxx>_GINT_GWTXQOVR TX Queue message

overwrite error

<xxx>_GINT_GWTXQLOST TX Queue message lost

<xxx>_GINT_GWFIFOOVR HW gateway FIFO

message overwrite error

<xxx>_INT_RXFn {0, 1} Enable (1) or disable (0)

common receive FIFO n

interrupt

Channel c (b)

b. The channel number c is given in the range of {0 ,,, <available channels>-1}.

When addressing a channel, use <xxx>_INT_NOINT to disable an interrupt (all interrupts of the specified source).

<xxx>_INT_TX {0 ...

<xxx>_MAXTXBUFFERS

- 1}

{0, 1} Clear or set transmit

interrupt of selected

buffer

<xxx>_INT_TXA {0, 1} Clear or set transmit abort

interrupt of selected

buffer

<xxx>_INT_TXQ {0 ...

<xxx>_MAXTXQUEUES

- 1}

{0, 1} Clear or set selected

transmit queue interrupt

<xxx>_INT_GWERR (not used) {0, 1} Clear or set both TX-

Queue and multi-purpose

FIFO full interrupts

(used in gateway mode)

<xxx>_INT_TXHL {0, 1} Clear or set transmit

history list interrupt

<xxx>_INT_CERR See (c) Clear or set channel

related interrupt

<xxx>_INT_RXCF {0 ...

<xxx>_MAXCOMFIFOS

- 1}

<xxx>_INT_DISABLE

<xxx>_INT_ENABLE

<xxx>_INT_ENOFRX

<xxx>_INT_EN_ALL

multi-purpose FIFO:

Disable interrupt

Enable interrupt

Enable for every frame

Enable all interrupts

<xxx>_INT_TXCF

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 61 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

c. Channel error interrupts are one or a combination of the following:

<xxx>_CINT_OFF: Disable channel error interrupt

<xxx>_CINT_BUSERR: Bit error channel error interrupt

<xxx>_CINT_WARNING: Error warning level reached (increasing) channel error interrupt

<xxx>_CINT_PASSIVE: Error passive level reached (increasing) channel error interrupt

<xxx>_CINT_BUSOFF: Bus off entered channel error interrupt

<xxx>_CINT_RECOVERY: Bus off recovery complete channel error interrupt

<xxx>_CINT_OVERLOAD: Overload frame detected channel error interrupt

<xxx>_CINT_BUSLOCK: Bus locked dominant channel error interrupt

<xxx>_CINT_ARBLOST: Arbitration lost channel error interrupt

<xxx>_CINT_TXABORT: Transmit Abort interrupt

<xxx>_CINT_ERRCOVF: Error occurrence counter overflow interrupt (see field “fdcfg” of channel configuration)

<xxx>_CINT_SUCCOVF: Successful occurrence counter overflow interrupt (opposite count of previous)

<xxx>_CINT_TDCVIOL: Transmit delay compensation violation error interrupt

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 62 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

(4) Implementations: (F)

(4-1) Parameters

UnitNumber_u08: Selected CAN Controller

InterruptType_u32: Interrupt source selection

InterruptLineSelection_u08: Interrupt line specification

InterruptEnable_bit: Enable / disable flag

(4-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(4-3) Functional Description

The function allows to enable and disable interrupt sources of the CAN controller unit, depending on

the interrupt source selection and the selected interrupt line, on which the interrupt is signalized (see

<xxx>_CreateInterrupt()). Use the following constants to select an interrupt source:

<xxx>_CINT_OFF No interrupt selected

<xxx>_CINT_ALL All interrupt sources selected

<xxx>_CINT_RF0N RX FIFO 0 new message arrived

<xxx>_CINT_RF0W RX FIFO 0 watermark fill level reached

<xxx>_CINT_RF0F RX FIFO 0 full

<xxx>_CINT_RF0L RX FIFO 0 message lost

<xxx>_CINT_RF1N RX FIFO 1 new message arrived

<xxx>_CINT_RF1W RX FIFO 1 watermark fill level reached

<xxx>_CINT_RF1F RX FIFO 1 full

<xxx>_CINT_RF1L RX FIFO 1 message lost

<xxx>_CINT_DRX RX Buffer new message arrived

<xxx>_CINT_HPM High priority message arrived

<xxx>_CINT_TC Transmission completion

<xxx>_CINT_TCF Transmission cancellation completed (aborted successfully)

<xxx>_CINT_TFE TX FIFO empty

<xxx>_CINT_TEFN Transmit history list new message added

<xxx>_CINT_TEFW Transmit history list watermark fill level reached

<xxx>_CINT_TEFF Transmit history list full

<xxx>_CINT_TEFL Transmit history list entry lost

<xxx>_CINT_ELO Error logging overflow

<xxx>_CINT_EP Error passive state entered

<xxx>_CINT_EW Error warning state entered

<xxx>_CINT_BO Bus off state entered

<xxx>_CINT_CRCE CRC error detected

<xxx>_CINT_BE Bit error detected

<xxx>_CINT_ACKE Acknowledge error detected

<xxx>_CINT_FOE Format error detected

<xxx>_CINT_STE Stuff error detected

<xxx>_CINT_TSW Timestamp counter wrap around occurred

<xxx>_CINT_MRAF Message RAM access failure detected

<xxx>_CINT_TOO Timeout occurred of RX FIFO 0/1 or transmit history list

<xxx>_CINT_BEC Message RAM bit error detected and corrected by ECC

<xxx>_CINT_BEU Message RAM bit error detected but not corrected

<xxx>_CINT_WDI Watchdog interrupt

(5) Implementations: (G)

See implementation (F), with additional TTCAN interrupt sources (t.b.d.).

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 63 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.6 Reception / Filter Configuration

5.3.6.1 <xxx>_SetStdFilterEntry()

Implementations: (F), (G).

(1) Implementations: (F), (G)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

RuleNumber_u16: Reception rule number within standard reception filters RAM section

FilterEntry: Reception rule specification structure

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

The function is used to create a new CAN standard ID reception rule, which specifies what kind of

arrived standard ID messages are treated in which way (whether to store or not, where to store, etc).

Reception rules are checked on each message reception, in the sequence of the rule numbers, which

are specified by RuleNumber_u16 - so this is a kind of priority setting. It is not allowed to create

gaps between rules. If a rule shall be deleted, it can either be replaced by a new one (allowed to do

this on either rule position), or to be replaced by a disabled one (only allowed to do as the last rule

with highest order number).

The standard ID reception rule (filter specification) is passed by a reception rule structure,

<xxx>_filter_std, whose elements are shown in the table below:

Table 5.12 Standard Filter Initialization Elements

Element Type Value Range Description

sfid2

[Standard Filter

ID 2]

u32 {0 ... 0x3FF} If sfec is set to <xxx>_FILTER_STORE_BUFFER:

Set this value to <xxx>_FILTER_BUFFER_STORE

and add the buffer number to it.

Otherwise, the value represents an 11-bit value,

depending on sfec setting.

sfid1

[Standard Filter

ID 1]

u32 {0 ... 0x3FF} Standard ID to match with the reception filter.

sfec

[Standard Filter

Element

Configuration]

u32 <xxx>_FILTER_DISABLED

<xxx>_FILTER_STORE_FIFO0

<xxx>_FILTER_STORE_FIFO1

<xxx>_FILTER_REJECT

<xxx>_FILTER_PRIORITY

<xxx>_FILTER_STORE_BUFFER

Filter is disabled.

Message to be stored in RX FIFO 0. (*)

Message to be stored in RX FIFO 1. (**)

Matching messages will not be stored.

Message is a high priority message. (a)

Message to be stored in a RX Buffer (see sfid2).

a. Combine this setting with (*) or (**) by OR operation. The high priority interrupt can be triggered upon reception.

sft

[Standard Filter

Type]

u32 <xxx>_FILTERTYPE_RANGE

<xxx>_FILTERTYPE_DUAL

<xxx>_FILTERTYPE_CLASSIC

Filter matches within the range of sfid1 ... sfid2.

Filter matches for sfid1 and sfid2.

Filter matches for sfid1 with sfid2 as binary mask. (b)

b. A cleared bit masks the corresponding bit of the ID, so that this bit will be ignored upon match checking.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 64 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.6.2 <xxx>_SetExtFilterEntry()

Implementations: (F), (G).

(1) Implementations: (F), (G)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

RuleNumber_u16: Reception rule number within standard reception filters RAM section

FilterEntry: Reception rule specification structure

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

The function is used to create a new CAN extended ID reception rule, which specifies what kind of

arrived extended ID messages are treated in which way (whether to store or not, where to store, etc).

Reception rules are checked on each message reception, in the sequence of the rule numbers, which

are specified by RuleNumber_u16 - so this is a kind of priority setting. It is not allowed to create

gaps between rules. If a rule shall be deleted, it can either be replaced by a new one (allowed to do

this on either rule position), or to be replaced by a disabled one (only allowed to do as the last rule

with highest order number).

The extended ID reception rule (filter specification) is passed by a reception rule structure,

<xxx>_filter_ext, whose elements are shown in the table below:

Table 5.13 Extended Filter Initialization Elements

Element Type Value Range Description

f0

[Extended Filter

lower word]

<xxx>_filter_f0.efid1

<xxx>_filter_f0.efec

{0 ... 0x1FFFFFFF}

See sfec in 5.3.6.1.

Extended ID to match with the reception filter.

Extended filter element configuration.

f1

[Extended Filter

upper word]

<xxx>_filter_f1.efid2

<xxx>_filter_f1.eft

{0 ... 0x1FFFFFFF}

See sft in 5.3.6.1.

See sfid2 in 5.3.6.1.

Extended filter type.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 65 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.6.3 <xxx>_SetAFLEntry()

Implementations: (C), (D), (Ex), (E4).

(1) Implementations: (C), (D), (Ex)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Channel of Controller

RuleNumber_u16: Reception rule number within standard reception filters RAM section

AFLEntry: Reception rule specification structure

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

The function is used to create a new CAN reception rule, which specifies what kind of arrived

messages are treated in which way (whether to store or not, where to store, etc).

Reception rules are checked on each message reception, in the sequence of the rule numbers, which

are specified by RuleNumber_u16 - so this is a kind of priority setting. It is not allowed to create

gaps between rules. If a rule shall be deleted, it can either be replaced by a new one (allowed to do

this on either rule position), or to be replaced by an empty one (only allowed to do as the last rule

with highest order number).

Within the global configuration, a maximum limit is defined for reception rules per channel. The

function is checking that this limit is not crossed, as this could cause a corrupted memory image.

The reception rule (filter specification) is passed by a reception rule structure, <xxx>_a_afl, whose

elements are shown in the table below:

Table 5.14 Filter Rule Initialization Elements

Element Type Value Range Description

id

[Identifier

specification]

<xxx>_a_aflid.id

<xxx>_a_aflid.lb

<xxx>_a_aflid.rtr

<xxx>_a_aflid.ide

{0 ... 0x1FFFFFFF}

{0 , 1}

{0 , 1}

{0 , 1}

Identifier of message(s) to be receivable.

Rule applied to own sent messages, if set. (a)

Data or remote frame specification. (b)

Standard- or extended frame specification (c)

a. Own sent messages can be received again by defining rules with the lb flag set (<xxx>_AFL_TXENTRY).

This is only allowed in mirror and self test modes, however.

Regular receive rules must be defined with this flag cleared to <xxx>_AFL_RXENTRY.

b. Use either <xxx>_FRAME_DATA (for data frames) or <xxx>_FRAME_REMOTE (for remote frames).

c. Use either <xxx>_ID_STD (for standard frames) or <xxx>_ID_EXT (for extended frames).

mask

[Mask

specification]

<xxx>_r_mask.id

<xxx>_r_mask.rtr

<xxx>_r_mask.ide

{0 ... 0x1FFFFFFF}

{0 , 1}

{0 , 1}

Mask of identifier for received messages. (d)

Data or remote frame specification. (e)

Standard- or extended frame specification (f)

d. A cleared bit masks the corresponding bit of the ID, so that this bit will be ignored upon match checking.

Use <xxx>_MASK_IDDONTCARE to create a basic CAN reception, and <xxx>_MASK_IDFULLCAN for full CAN.

e. Use either <xxx>_FRAME_DATA (for data frames) or <xxx>_FRAME_REMOTE (for remote frames).

f. Use either <xxx>_ID_STD (for standard frames) or <xxx>_ID_EXT (for extended frames).

ptr0

[Reception target

lower word]

<xxx>_a_aflptr0.rmdp

<xxx>_a_aflptr0.rmv

<xxx>_a_aflptr0.ptr

<xxx>_a_aflptr0.dlc

{0 ... b}

{0 , 1}

{0 ... }

{0 ... 15}

Reception target buffer number. (g)

Reception target buffer activation. (h)

Reception label value (rule label, HRH) (i)

Minimum DLC of a frame to be received. (j)

ptr1 (k)

[Reception target

upper word]

<xxx>_a_aflptr1.rxfifomask

<xxx>_a_aflptr1.comfifomask

{0 ... 11111111B}

{0 ... 1111...1111B}

One flag per RX FIFO to set reception.

One flag per multi-purpose FIFO to set

reception (depends on product).

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 66 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

g. The range of valid receive buffer numbers varies among the CAN controller types.

h. Set the flag to activate reception in the buffer indicated by rmdp.

i. For (C), (D) and (E2) controller types, the maximum label value is 0xFFF.

For (E3) controller types, the maximum label value is 0xFFFF.

j. Set to zero in order to disable the DLC check.

k. The maximum allowed reception targets to be activated at a time in a rule varies among the CAN controller types.

This maximum includes the standard receive buffer, too.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 67 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

(2) Implementations: (E4)

(2-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Channel of Controller

RuleNumber_u16: Reception rule number within standard reception filters RAM section

AFLEntry: Reception rule specification structure

(2-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(2-3) Functional Description

The function is used to create a new CAN reception rule, which specifies what kind of arrived

messages are treated in which way (whether to store or not, where to store, etc).

Reception rules are checked on each message reception, in the sequence of the rule numbers, which

are specified by RuleNumber_u16 - so this is a kind of priority setting. It is not allowed to create

gaps between rules. If a rule shall be deleted, it can either be replaced by a new one (allowed to do

this on either rule position), or to be replaced by an empty one (only allowed to do as the last rule

with highest order number).

Within the global configuration, a maximum limit is defined for reception rules per channel. The

function is checking that this limit is not crossed, as this could cause a corrupted memory image.

The reception rule (filter specification) is passed by a reception rule structure, <xxx>_a_afl, whose

elements are shown in the table below:

Table 5.15 Filter Rule Initialization Elements

Element Type Value Range Description

id

[Identifier

specification]

<xxx>_a_aflid.id

<xxx>_a_aflid.lb

<xxx>_a_aflid.rtr

<xxx>_a_aflid.ide

{0 ... 0x1FFFFFFF}

{0 , 1}

{0 , 1}

{0 , 1}

Identifier of message(s) to be receivable.

Rule applied to own sent messages, if set. (a)

Data or remote frame specification. (b)

Standard- or extended frame specification (c)

a. Own sent messages can be received again by defining rules with the lb flag set (<xxx>_AFL_TXENTRY).

This is only allowed in mirror and self test modes, however.

Regular receive rules must be defined with this flag cleared to <xxx>_AFL_RXENTRY.

b. Use either <xxx>_FRAME_DATA (for data frames) or <xxx>_FRAME_REMOTE (for remote frames).

c. Use either <xxx>_ID_STD (for standard frames) or <xxx>_ID_EXT (for extended frames).

mask

[Mask

specification]

<xxx>_a_mask.id

<xxx>_a_mask.ifl1

<xxx>_a_mask.rtr

<xxx>_a_mask.ide

{0 ... 0x1FFFFFFF}

{0 , 1}

{0 , 1}

{0 , 1}

Mask of identifier for received messages. (d)

Upper bit of additional rule label “IFL”

Data or remote frame specification. (e)

Standard- or extended frame specification (f)

d. A cleared bit masks the corresponding bit of the ID, so that this bit will be ignored upon match checking.

Use <xxx>_MASK_IDDONTCARE to create a basic CAN reception, and <xxx>_MASK_IDFULLCAN for full CAN.

e. Use either <xxx>_FRAME_DATA (for data frames) or <xxx>_FRAME_REMOTE (for remote frames).

f. Use either <xxx>_ID_STD (for standard frames) or <xxx>_ID_EXT (for extended frames).

ptr0

[Reception target

lower word]

<xxx>_a_aflptr0.dlc

<xxx>_a_aflptr0.srd0

<xxx>_a_aflptr0.srd1

<xxx>_a_aflptr0.srd2

<xxx>_a_aflptr0.ifl0

<xxx>_a_aflptr0.rmdp

<xxx>_a_aflptr0.rmv

<xxx>_a_aflptr0.ptr

{0 ... 15}

{0 , 1}

{0 , 1}

{0 , 1}

{0 , 1}

{0 ... b}

{0 , 1}

{0 ... 0xFFFF}

Minimum DLC of a frame to be received. (g)

Routing target redirection option (h)

-- see above --

-- see above --

Lower bit of additional rule label “IFL”

Reception target buffer number. (i)

Reception target buffer activation. (j)

Reception label value (rule label, HRH)

ptr1 (k)

[Reception target

upper word]

<xxx>_a_aflptr1.rxfifomask

<xxx>_a_aflptr1.comfifomask

{0 ... 11111111B}

{0 ... 1111...1111B}

One flag per RX FIFO to set reception.

One flag per multi-purpose FIFO to set

reception (depends on product).

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 68 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

g. Set to zero in order to disable the DLC check.

h. If the SRDx flag is set, then the rule redirects a reception from multi-purpose FIFO #x to TX-Queue #x, if the reception target

“comfifomask” is set to receive by a multi-purpose FIFO. Only allowed for TX-Queues / FIFOs 0 .. 2.

i. The range of valid receive buffer numbers varies among the CAN controller types.

j. Set the flag to activate reception in the buffer indicated by rmdp.

k. The maximum allowed reception targets to be activated at a time in a rule varies among the CAN controller types.

This maximum includes the standard receive buffer, too.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 69 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.6.4 <xxx>_SetMachineMask()

Implementations: (A), (B).

(1) Implementations: (A), (B)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

MachineNumber_u08: Selected CAN Channel of Controller

MaskNumber_u08: Reception mask number to be altered

MaskExtendedFlag_u16: Frame type of mask (standard or extended)

MaskValue_u32: Mask value to be set

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

Set the global reception mask selected by its number to the given MaskValue_u32. Select the frame

format by specifying either <xxx>_ID_STD (standard frames) or <xxx>_ID_EXT (extended frames)

as MaskExtendedFlag_u16. If a bit in MaskValue_u32 is set, the corresponding bit in ID fields of

message buffers assigned to this mask will be ignored when checking the received ID for matching.

The mask number can be one of <xxx>_MASK_m, where m is in {0...3} for (A) implementations and

in {0...7} for (B) implementations.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 70 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.6.5 <xxx>_SetReceiveMessage()

Implementations: (A), (B).

(1) Implementations: (A), (B)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

MachineNumber_u08: Selected CAN Channel of Controller

BufferNumber_u08: Selected message buffer used for reception

ExtendedFrame_u08: Frame format specification (standard or extended)

RemoteFrame_u08: Frame type specification (data or remote frame)

InterruptEnable_u08: Receive interrupt activation for selected message buffer

OverWriteEnable_u08: Receive message buffer overwriting configuration

BufferMaskFlag_u08: Selected global reception mask (see <xxx>_SetMachineMask())

Identifier_u32: Identifier of message(s) to be received

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

The function initializes a message buffer of the selected CAN controller unit and channel for usage

as a receive buffer.

When setting ExtendedFrame_u08 to <xxx>_ID_STD, the buffer is initialized for standard frames

reception; if set to <xxx>_ID_EXT, the buffer is initialized for extended frames reception.

When setting RemoteFrame_u08 > 0, the buffer is initialized for remote frame reception.

When setting InterruptEnable_u08 > 0, the buffer is initialized to generate receive interrupts.

When setting OverWriteEnable_u08 > 0, the buffer is allowed to be overwritten by new messages,

even if its content was not yet read by using the <xxx>_ReceiveMessage() function.

With the BufferMaskFlag_u08, the receive mask is specified, which shall be associated with the

buffer. Use the constants <xxx>_MASK_n to select the mask to be applied [implementation (A): n =

{0...3}, implementation (B): n = {0...7}]. Set BufferMaskFlag_u08 to zero, if no mask has to be

associated (i.e., for defining a Full-CAN buffer).

The parameter Identifier_u32 sets the identifier of the message(s) to be received in the buffer. If a

mask is applied, the identifier is set to don’t care bitwise, at those bits where the mask has a bit set.

See <xxx>_SetMachineMask() for details.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 71 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.7 Operation and Status

5.3.7.1 <xxx>_Reset()

Implementations: (A), (B)

(1) Implementations: (A), (B)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

(1-2) Return Values

<xxx>_ERROR on parameter failures or hardware timeout, otherwise <xxx>_OK.

(1-3) Functional Description

Performs a shut down of the selected CAN controller unit, including all its channels.

In order to shut down a CAN channel synchronously (i.e., not violating the CAN protocol), the

function <xxx>_Start() with an operation mode of <xxx>_OPMODE_INIT should be used before

calling this function.

For implementations of (B), any ongoing soft reset is checked; if this does not end within the

<xxx>_SHUTDOWNTIMEOUT time, the function stops and returns an error.

The function clears all interrupt sources and stops communication immediately. If this procedure

should cause a blocking beyond the <xxx>_SHUTDOWNTIMEOUT time, then a forced shut down is

initiated. Typically, if the CAN bus is blocked dominant, such a situation may arise.

All message buffers are cleared - for implementation (B), this is done by using the soft reset

hardware support. For this reason, it is recommended to use this function after every hard reset, in

order to have all CAN memory properly initialized.

(2) Implementations (C), (D), (Ex), (E4)

See <xxx>_Start() function with parameter <xxx>_OPMODE_RESET.

(3) Implementations (F), (G)

The reset functionality is implicit with the configuration. See <xxx>_SetConfiguration().

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 72 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.7.2 <xxx>_Start()

Implementations: (A), (B), (C), (D), (Ex), (E4), (F) (G).

(1) Implementations: (A), (B), (C), (D), (Ex), (E4), (F) (G)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Controller channel [(C), (D), (Ex)]

MachineNumber_u08: Selected CAN Controller channel [(A), (B)]

OperationMode_u08: Selected Operation Mode

ClearErrorCounter_u08: Option to clear REC and TEC error counters

[(A), (B), (C), (D), (Ex), (E4)]

TimeStampSetting_u16: Sets timestamp counter on defined value

[(A), (B), (C), (D), (Ex), (E4)]

TimeOutSetting_u16: Sets timeout of watchdog [(F), (G)]

ABTDelay_u08: Message interval in ABT operation mode [(A), (B)]

(1-2) Return Values

<xxx>_ERROR on parameter failures or hardware timeout, otherwise <xxx>_OK.

(1-3) Functional Description

Activates communication in a dedicated operation mode on the selected CAN controller unit and

channel. The selected channel must be in a configured state and the CAN controller memory must be

initialized correctly as a precondition to call this function.

The CAN error counters (as specified in ISO 11898-1) can be cleared forcibly in some

implementations by setting a value > 0 to this parameter.

With the TimeStampSetting_u16 parameter, in implementations (A) and (B) the timestamp counter

can be set on a dedicated value, which in implementations (C), (D), (Ex) and (E4), the timestamp

counter can simply be cleared by setting a value > 0.

Using the TimeOutSetting_u16 parameter in implementations (F) and (G), the watchdog timer

prescaler can be set to the given value.

When using the ABT mode in implementations (A) or (B), the delay between consecutive messages

of an ABT block can be set in units of CAN bit times given as 2(5+ABTDelay_u08).

If the parameter ChannelNumber_u08 is set to <xxx>_GLOBAL, then the function is executed for all

available channels of the addressed CAN controller unit UnitNumber_u08.

The following operation modes can be selected in the dedicated implementations by using the shown

codes for OperationMode_u08:

Table 5.16 Operation Modes of CAN Controllers

Code Operation Mode Implementations Description

<xxx>_OPMODE_RESET Reset mode (C), (D), (Ex),

(E4)

Soft reset setting which

corresponds with <xxx>_Reset().

Allows configuration.

<xxx>_OPMODE_HALT Stopped mode (C), (D), (Ex),

(E4)

Stops communication.

<xxx>_OPMODE_INIT Initialization mode (A), (B), (F), (G) Stops communication and allows

configuration. (a)

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 73 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

<xxx>_OPMODE_OPER (b) Normal operation modes (A), (B), (C), (D),

(Ex), (E4)

Unrestricted, regular operation.

<xxx>_OPMODE_CLASSIC (F), (G) (c) Regular operation with classical

CAN only (d).

<xxx>_OPMODE_CANFD Regular operation with CAN-FD,

but no bit rate switching (e).

<xxx>_OPMODE_CANFDBRS Regular operation with CAN-FD,

including bit rate switching.

<xxx>_OPMODE_ABT ABT mode (A), (B) Like normal operation mode, but

including block transmissions.

<xxx>_OPMODE_RECONLY Receive-only mode (A), (B), (C), (D),

(Ex), (E4)

Restricted operation with no

transmission, no error flagging, no

acknowledging to other nodes.

<xxx>_OPMODE_SSHOT Single-shot mode (A), (B) Like normal operation mode, but

no retransmission on errors or

arbitration loss.

<xxx>_OPMODE_STEST Internal self-test mode (A), (B), (C), (D),

(Ex), (E4)

Receives own sent messages, no

communication to external.

a. In implementations (F) and (G), this command has no effect, if TimeOutSetting_u16 is zero. If TimeOutSetting_u16 is not
zero, then the initialization mode is entered. Use the <xxx>_Stop() API with <xxx>_PSMODE_INIT in implementations (F)
and (G) to set initialization mode without modifying the TimeOutSetting_u16.

b. If this mode is ORed with the mode flag <xxx>_OPMODE_RECOVERY in implementations (A) and (B), the function waits

until the bus-off recovery of the CAN controller is completed, before returning.

The CAN-FD or classical CAN operation mode selection of implementations (Ex) and (E4) is performed by configuration

(as exclusive setting) or per transmission request (see function <xxx>_SendMessage()).

c. The operational modes of implementations (F) and (G) can be combined by ORin the mode code with the following options:
<xxx>_SPMODE_RECONLY - corresponds with the receive-only mode <xxx>_OPMODE_RECONLY.
<xxx>_SPMODE_STEST - corresponds with the internal self-test mode <xxx>_OPMODE_STEST.
<xxx>_SPMODE_SSHOT - corresponds with the single shot mode <xxx>_OPMODE_SSHOT.
<xxx>_SPMODE_RESTRICT - restricted operation mode with no transmissions and error flagging, but acknowledging.

d. Classical only mode is also available on (E3) and (E4) controllers, but has to be set by configuration, not operation mode.

See <xxx>_Set[...]Configuration().

e. CAN-FD only mode is also available on (Ex) and (E4) controllers, but has to be set by configuration, not operation mode.

See <xxx>_Set[...]Configuration().

Table 5.16 Operation Modes of CAN Controllers

Code Operation Mode Implementations Description

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 74 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.7.3 <xxx>_Stop()

Implementations: (A), (B), (C), (D), (Ex), (E4), (F), (G).

(1) Implementations: (A), (B), (C), (D), (Ex), (E4), (F), (G)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Controller channel [(C), (D), (Ex), (E4)]

MachineNumber_u08: Selected CAN Controller channel [(A), (B)]

StopMode_u08: Selected Operation Mode

(1-2) Return Values

<xxx>_ERROR on parameter failures or hardware timeout, otherwise <xxx>_OK.

(1-3) Functional Description

Deactivates communication and optionally enters a power saving mode of the selected CAN

controller unit and channel. The selected channel must be in a configured state and the CAN

controller memory must be initialized correctly as a precondition to call this function.

The following stop / power down modes can be selected in the dedicated implementations by using

the shown codes for StopMode_u08:

Table 5.17 Stop / Power Down Modes of CAN Controllers

Code Operation Mode Implementations Description

<xxx>_STOPMODE_SLEEP Sleep mode (A), (B) Enters sleep mode. (a)

a. Sleep mode wakes up on any recessive to dominant edge on the CAN bus and subsequently enters to the lastly selected

operation mode. Special care has to be taken when using this mode in combination with the wakeup interrupt, as this

interrupt occurs only once.

The sleep mode is entered synchronously, when the CAN bus is idle and no pending transmissions are there.

<xxx>_STOPMODE_STOP Stop mode (A), (B) Enters stop mode, which disables

the CAN controller internal clock

and does not wake up

automatically. (b)

b. It is required to specify the <xxx>_STOPMODE_SLEEP beforehand, which must have been executed successfully and

no wakeup condition have occurred meanwhile. For this reason, this stopping of the CAN controller clock is a

synchronous operation.

<xxx>_OPMODE_SLEEP Stop mode (C), (D), (Ex),

(E4)

Disables CAN controller clock and

freezes its state. (c,d)

<xxx>_OPMODE_HALT

<xxx>_OPMODE_OPER

<xxx>_OPMODE_RECONLY

<xxx>_OPMODE_STEST

See Table 5.16 Operation

Modes of CAN Controllers

Alternative way to enter

operational or halted mode as

shown in the referenced table.

<xxx>_PSMODE_RUN Keep operation mode as

set in Table 5.16 Operation

Modes of CAN Controllers

(F), (G) Has no effect and returns no error.

<xxx>_PSMODE_INIT Initialization mode Stops communication

synchronously.

<xxx>_PSMODE_STOP Stop mode Stops communication

synchronously and in addition

disables the CAN controller

internal clock. Does not wake up

from this mode automatically.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 75 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

c. It is recommended to use this mode only after setting the <xxx>_OPMODE_HALT beforehand, because the command is

asynchronous to the CAN bus. These CAN controller implementations do not have an automatic wake up functionality

implemented. Software must check by appropriate port settings for wake up conditions (i.e., some port edge interrupt).

d. By specifying <xxx>_GLOBAL as ChannelNumber_u08, the mode is applied globally, i.e., for all channels belonging to

this CAN controller.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 76 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.7.4 <xxx>_GetStatus()

Implementations: (A), (B), (C), (D), (Ex), (E4), (F), (G).

(1) Implementations: (A), (B), (C), (D), (Ex), (E4), (F), (G)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Controller channel [(C), (D), (Ex), (E4)]

MachineNumber_u08: Selected CAN Controller channel [(A), (B)]

StatusNumber_u08: Selected status to be reported

StatusValue_pu08: Status value returned by reference [(A), (B), (C), (D), (E2)]

StatusValue_pu16: Status value returned by reference [(E3), (F), (G)]

StatusValue_pu32: Status value returned by reference [(E4)]

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

By writing to the referenced pointer address of StatusValue_pu08 / StatusValue_pu16 /

StatusValue_pu32, the function returns status information of the selected CAN controller unit and

channel.

Allowed status selectors by setting StatusNumber_u08 are depending on the CAN controller

implementation and are given as follows:

Table 5.18 Status Return Values of CAN Controllers

Code Return Value Implementations Description

<xxx>_STATUS_OPMODE Current operation mode (A), (B), (C), (D),

(Ex), (E4), (F),

(G) (a)

Use constants as of setting the

mode to determine the returned

value. See Table 5.16 Operation

Modes of CAN Controllers and

Table 5.17 Stop / Power Down

Modes of CAN Controllers.

<xxx>_STATUS_PSMODE Current power save

mode

<xxx>_STATUS_SPMODE Current operation mode

options

(F), (G)

<xxx>_STATUS_RECEIVE Current activity (A), (B), (C), (D),

(Ex), (E4), (F),

(G)

Set during receive activity.

<xxx>_STATUS_TRANSMIT Set during transmit activity.

<xxx>_STATUS_BUSOFF Bus off state Set if bus off.

<xxx>_STATUS_RXERRCNTLEV Error counter range state (A), (B) 0: Less than warning level

1: Warning level

3: Error passive or bus off level
<xxx>_STATUS_TXERRCNTLEV

<xxx>_STATUS_ERRCNTLEV (C), (D), (Ex),

(E4), (F), (G)
Status value is error level (b)

<xxx>_STATUS_ERRPLEV Error passive state Status value set, if error passive

<xxx>_STATUS_RXERRPLEV (A), (B)

<xxx>_STATUS_ERRCODE_CLAR Last error code of

arbitration phase /

classical CAN mode

(F), (G) Status value is set to error detail

information (c).

<xxx>_STATUS_ERRCODE_FDAT Last error code of CAN-

FD data phase

<xxx>_STATUS_ROVF Receive history list status (A), (B) Status value is set on overflow.

<xxx>_STATUS_RHPM Status value is set on empty

state.

<xxx>_STATUS_RGPT Status value returns the history

list entry (box number).

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 77 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

<xxx>_STATUS_TOVF Transmit history list /

event list status

(A), (B), (C), (D),

(Ex), (E4), (F),

(G)

Status value is set on overflow.

<xxx>_STATUS_THPM Status value is set on empty

state.

<xxx>_STATUS_TGPT Status value returns the history

list entry label (or box number)

(d).

<xxx>_STATUS_VALID Communication status Status value is set, if the bus

integration phase is complete.

<xxx>_STATUS_LASTRECEIVE Indicate last or currently

used buffer in

communication.

(A), (B) Status value indicates last

receive buffer.

<xxx>_STATUS_CURTRANSMIT Status value indicates last

transmit buffer.

<xxx>_STATUS_TRERRCOUNT Transmit error counter (A), (B), (C), (D),

(Ex), (E4), (F),

(G)

Status value is TEC

<xxx>_STATUS_RXERRCOUNT Receive error counter Status value is REC

<xxx>_STATUS_NEWRXHISTORY Prepares next history /

event list element to be

read out (no return value)

(A), (B) Prepares RX history list

<xxx>_STATUS_NEWTXHISTORY (A), (B), (C), (D),

(Ex), (E4), (F),

(G)

Prepares TX history list / event

list

<xxx>_STATUS_TXTS Transmit timestamp (E3), (F), (G) Status value is timestamp taken

after TX completion.

<xxx>_STATUS_INT_RXFIFO RX FIFO interrupt status (C), (D), (Ex),

(E4)

Status value is set on interrupt

(e).

<xxx>_STATUS_INTERRUPT Interrupt flag of driver Status value is interrupt flag (f).

<xxx>_STATUS_INTS Pending interrupt status (A), (B) Status value is INTS register.

<xxx>_STATUS_MLT_RXFIFO Message loss indication

of dedicated reception

target. Status value is set

on message loss on...

(C), (Ex), (E4) ... any RX FIFO

<xxx>_STATUS_MLT_COMFIFO ... any multi-purpose FIFO (RX)

<xxx>_STATUS_MLT_TXQUEUE (E4) ... any TX-Queue

<xxx>_STATUS_MLT_RXFIFO0 (F), (G) RX FIFO 0

<xxx>_STATUS_MLT_RXFIFO1 RX FIFO 1

<xxx>_STATUS_MOW_COMFIFO Message overwrite

indication of dedicated

reception target. Status

value is set on overwrite

event on...

(E4) ... any multi-purpose FIFO (RX)

<xxx>_STATUS_MOW_TXQUEUE ... any TX-Queue operated in

gateway mode.

<xxx>_STATUS_BUSLOAD Activates bus load

measurement and

returns bus load value of

previous measurement.

The first readout has to be

discarded, because the

measurement is started by the

same call of this function.

<xxx>_STATUS_TIMESTAMP Current value of

timestamp counter

GTSC register value of selected

CAN controller unit.

a. By specifying <xxx>_GLOBAL as ChannelNumber_u08, the mode is returned for the global function of the selected CAN

controller unit (UnitNumber_u08).

b. Apply one of these filter to status value: <xxx>_ERROR_WARNING, <xxx>_ERROR_PASSIVE,

<xxx>_ERROR_BUSOFF.

c. Error detail information is one of: <xxx>_ERRORDETAIL_NONE (no error), <xxx>_ERRORDETAIL_STUFF (stuff error),

< xxx>_ERR OR DETAIL_FOR M (fo rm e r ro r) , <xxx> _ERR ORD ETAIL _ACK (ackn ow led ge e r ro r) ,

< xxx>_ERR OR DETAIL_B IT1 (b i t 1 l eve l e r ro r) , < xxx>_ERR ORD ETAIL _B IT0 (b i t 0 l eve l e r ro r) ,

<xxx>_ERRORDETAIL_CRC (CRC error).

d. In implementations (A) and (B), the label is not available and thus the box number is returned. In implementations (C), (D),

(Ex) and (E4), the box number is returned, if the message transmit label was set to <xxx>_TID_NOTUSED; otherwise, the

label is returned. In implementations (F) and (G), the message transmit label is returned.

e. In implementation (E4), the combination of RX-FIFO interrupt and RX-FIFO full interrupt is returned; the full interrupt flag

is contained in the value right-shifted by <xxx>_RXFIFO_STATUS_FULL_P.

Table 5.18 Status Return Values of CAN Controllers

Code Return Value Implementations Description

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 78 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

f. If ChannelNumber_u08 is set to <xxx>_GLOBAL, the global interrupt flag status is returned within the status value;

otherwise the channel interrupt flag status is returned.

Global interrupt flags are combined by OR: <xxx>_INT_GERR (global error), <xxx>_INT_RXFn (RX FIFO) with n = {0 ...

1} on (C), {0 ... 7} on (D), (Ex).

Channel interrupt flags are combined by OR: <xxx>_INT_TX (transmission complete), <xxx>_INT_TXA (transmission

aborted), <xxx>_INT_TXQ (Queue), <xxx>_INT_CERR (channel error), <xxx>_INT_TXHL (history l ist),

<xxx>_INT_RXCF (multi-purpose FIFO RX), <xxx>_INT_TXCF (multi-purpose FIFO TX).

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 79 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.7.5 <xxx>_GetFIFOStatus()

Implementations: (C), (D), (Ex), (E4).

(1) Implementations: (C)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

PathType_u08: Select FIFO type:

<xxx>_PATH_RXFIFO (to read status of a RX FIFO) or

<xxx>_PATH_COMFIFO (to read status of a multi-purpose FIFO)

FIFONumber_u08: 0 or 1 for <xxx>_PATH_RXFIFO or 0 for <xxx>_PATH_COMFIFO

FIFOEmpty_pu08: Set, if the selected FIFO is empty

FIFOFull_pu08: By reference; set, if the selected FIFO is full

FIFOMessageLost_pu08: By reference; set, if the selected FIFO has lost a message

FIFOInterrupt_pu08: By reference; set, if the selected FIFO has generated an interrupt

FIFOMessageCount_pu16: By reference; Number of messages within the selected FIFO

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

The function reports the current status of the addressed FIFO unit.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 80 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

(2) Implementations: (D), (Ex), (E4)

(2-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Controller channel

FIFONumber_u08: Selected FIFO to be addressed

StatusType_u08: Selected FIFO status to be checked

StatusValue_pu08: Status return value returned by reference

(2-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(2-3) Functional Description

The function reports the current status of the addressed FIFO unit.

If the ChannelNumber_u08 is set to <xxx>_GLOBAL, then the RX FIFO units are addressed, and

the value range of FIFONumber_u08 is within {0 ... 7}. Otherwise, for each selected channel, one of

three multi-purpose FIFO units can be addressed by setting FIFONumber_u08 in the range of {0 ...

2}.

Depending on StatusType_u08, the function returns the following status information by reference in

StatusValue_pu08:

<xxx>_FIFO_STATUS_FULL: Set, if the selected FIFO is full

<xxx>_FIFO_STATUS_EMPTY: Set, if the selected FIFO is empty

<xxx>_FIFO_STATUS_LOST: Set, if the selected FIFO has lost a message

<xxx>_FIFO_STATUS_LEVEL: Set, if the selected FIFO’s fill level has been reached (E4 only)

<xxx>_FIFO_STATUS_MCNT: Returns selected FIFO’s actual fill level (E4 only)

<xxx>_FIFO_STATUS_OVR: Set, if in the selected FIFO a message was overwritten

(E4 only, only for multi-purpose FIFO units)

<xxx>_FIFO_STATUS_OFRX: Set, if the selected FIFO has received at least one message

(E4 only, only for multi-purpose FIFO units in gateway mode)

<xxx>_FIFO_STATUS_OFTX: Set, if the selected FIFO has transmitted at least one message

(E4 only, only for multi-purpose FIFO units in gateway mode)

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 81 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.7.6 <xxx>_GetError()

Implementations: (A), (B), (C), (D), (Ex), (E4).

(1) Implementations: (A), (B)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

MachineNumber_u08: Selected CAN Controller channel

InterruptErrorFlag_pu08: Return by reference: Driver error interrupt flag

LastMachineErrorFlag_pu08: Return by reference: Last error of channel

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

From the selected CAN controller unit and channel, the function returns by reference interrupt status

and communication error statuses. The return value by InterruptErrorFlag_pu08 contains the last

v a l u e o f t h e I N T S r e g i s t e r s in c e th e l a s t e r r o r i n t e r r u p t . Th e r e tu r n v a lu e

LastMachineErrorFlag_pu08 reads out the LEC (last error code) of the channel, independently from

any interrupt.

Values for LEC can be either:

<xxx>_LEC_OK (no error),

<xxx>_LEC_STUFF (stuff error),

<xxx>_LEC_FORM (form error),

<xxx>_LEC_ACK (acknowledge error),

<xxx>_LEC_BITREC (recessive bit error),

<xxx>_LEC_BITDOM (dominant bit error),

<xxx>_LEC_CRC (CRC error).

The error state in hardware is cleared by this function call.

(2) Implementations: (C), (D), (Ex), (E4)

(2-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Controller channel

InterruptErrorFlag_pu16: Return by reference: Driver error interrupt flag

LastErrorFlag_pu16: Return by reference: Last error of channel

(2-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(2-3) Functional Description

From the selected CAN controller unit and channel, the function returns by reference communication

error status information. While InterruptErrorFlag_pu16 returns the last communication error status

after the lastly occurred interrupt, LastErrorFlag_pu16 returns the same directly read from hardware,

independently from any interrupt.

If ChannelNumber_u08 is specified by <xxx>_GLOBAL, the following error codes are returned and

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 82 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

bitwise combined:

<xxx>_GERROR_DLCCHECK (DLC too small error),

<xxx>_GERROR_MSGLOST (message lost error - implementations (C), (D), (Ex) only),

<xxx>_GERROR_MLT_TXFIFO (message lost error - implementation (E4) only),

<xxx>_GERROR_MLT_TXQUEUE (message lost in TX-Queue error - implementation (E4) only),

<xxx>_GERROR_THLLOST (transmit history list overflow error),

<xxx>_GERROR_RAMPARITY (RAM parity error - implementation (C) only),

<xxx>_GERROR_PLLFAIL (clocking failure error - implementations (C), (D), (Ex) only),

<xxx>_GERROR_OTBFAIL (transfer layer buffer failure error)

<xxx>_GERROR_FDMSGOVF (CAN-FD payload overflow error - implementation (E4) only),

<xxx>_GERROR_MOW_TXFIFO (multi-purpose FIFO message overwrite event - (E4) only),

<xxx>_GERROR_MOW_TXQUEUE (TX-Queue message overwrite event - (E4) only).

Otherwise, channel specific error status is returned and bitwise combined:

<xxx>_ERROR_BUSERR (CAN bus error),

<xxx>_ERROR_WARNING (error warning level reached),

<xxx>_ERROR_PASSIVE (error passive level reached),

<xxx>_ERROR_BUSOFF (bus off state reached),

<xxx>_ERROR_RECOVERY (channel is in bus off recovery state),

<xxx>_ERROR_OVERLOAD (an overload flag was detected on the CAN bus),

<xxx>_ERROR_BUSLOCK (the CAN bus was locked dominant excessively long),

<xxx>_ERROR_ARBLOST (arbitration lost),

<xxx>_ERROR_STUFFING (stuff error detected),

<xxx>_ERROR_FORM (form error detected),

<xxx>_ERROR_ACK (missing acknowledge error),

<xxx>_ERROR_CRC (CRC error detected),

<xxx>_ERROR_BITLEV1 (recessive bit error detected),

<xxx>_ERROR_BITLEV0 (dominant bit error detected),

<xxx>_ERROR_ACKDELIM (acknowledge delimiter error detected).

The error state in hardware is cleared by this function call.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 83 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.7.7 <xxx>_GetTimeStampCounter()

Implementations: (D), (Ex), (E4).

(1) Implementations: (D), (Ex), (E4)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

TimeStampValue_pu32: Return value by reference: Timestamp counter value

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

From the selected CAN controller unit and channel, the function returns by reference the current

count value of the timestamp counter.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 84 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.8 Transmission and Reception

5.3.8.1 <xxx>_SetSendMessage()

Implementations: (A), (B).

(1) Implementations: (A), (B)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

MachineNumber_u08: Selected CAN Controller channel

BufferNumber_u08: Selected message buffer number to be used for transmission

ExtendedFrame_u08: Extended frame format specification

RemoteFrame_u08: Remote frame selection

InterruptEnable_u08: Transmit interrupt activation for this buffer

DataLength_u08: Data length code (DLC) of the message to be sent

Identifier_u32: Identifier (ID) of the message to be sent

DataField_pu08: Pointer to data buffer of the message to be sent

(1-2) Return Values

<xxx>_ERROR on parameter failures or hardware timeout, otherwise <xxx>_OK.

(1-3) Functional Description

Using the selected CAN controller unit, channel and message buffer, the function prepares a message

to be sent out. Transmission of the message is not performed by this function.

The data buffer pointed to by DataField_pu08 must provide enough data bytes, as they are specified

by the data length code of DataLength_u08. The maximum data length is <xxx>_DLC_MAX.

If the frame format of ExtendedFrame_u08 is set to <xxx>_ID_STD, the value range of

Identifier_u32 is {0 ... 0x7FF}; if it is set to <xxx>_ID_EXT, then the value range of Identifier_u32

is {0 ... 0x3FFFFFFF}. Any shifting of the identifier in case of standard frames is not required, this is

performed by the function.

If remote frames shall be sent instead of data frames, then RemoteFrame_u08 shall be set to 1,

otherwise to 0. In case of remote frames, the values for DataLength_u08 and DataField_pu08 are

still required and need to be provided properly with safe dummy values at least.

If a transmit interrupt shall be generated after successful transmission of the message, then the flag

InterruptEnable_u08 has to be set 1, otherwise 0. Note that interrupt generation also depends on

other settings, see functions <xxx>_CreateInterrupt() and <xxx>_SetInterrupt().

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 85 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.8.2 <xxx>_SetReceiveMessage()

Implementations: (A), (B).

(1) Implementations: (A), (B)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

MachineNumber_u08: Selected CAN Controller channel

BufferNumber_u08: Selected message buffer number to be used for transmission

ExtendedFrame_u08: Extended frame format specification

RemoteFrame_u08: Remote frame selection

InterruptEnable_u08: Transmit interrupt activation for this buffer

OverWriteEnable_u08: Overwrite enable setting for this buffer

BufferMaskFlag_u08: Global reception mask selection for this buffer

Identifier_u32: Identifier (ID) of the message to be sent

(1-2) Return Values

<xxx>_ERROR on parameter failures or hardware timeout, otherwise <xxx>_OK.

(1-3) Functional Description

Using the selected CAN controller unit, channel and message buffer, the function prepares a message

buffer for reception.

If the frame format of ExtendedFrame_u08 is set to <xxx>_ID_STD, the value range of

Identifier_u32 is {0 ... 0x7FF}; if it is set to <xxx>_ID_EXT, then the value range of Identifier_u32

is {0 ... 0x3FFFFFFF}. Any shifting of the identifier in case of standard frames is not required, this is

performed by the function.

If remote frames shall be received instead of data frames, then RemoteFrame_u08 shall be set to 1,

otherwise to 0.

If a reception interrupt shall be generated after a successful reception within this message buffer, then

the flag InterruptEnable_u08 has to be set 1, otherwise 0. Note that interrupt generation also depends

on other settings, see functions <xxx>_CreateInterrupt() and <xxx>_SetInterrupt().

If the OverWriteEnable_u08 is not set, a reception within a buffer is locking the buffer, until read by

using <xxx>_ReceiveMessage(); thus, an interrupt would be generated only once and new receptions

would not take place until the buffer is read.

If the OverWriteEnable_u08 is set, any new message which matches the reception criteria (matching

mask combined with ID) may overwrite the buffer at any time. Thus, reading the buffer by using

<xxx>_ReceiveMessage() would always yield the last message which matched and was received.

The BufferMaskFlag_u08 is specifying the assigned global reception mask for this buffer. The masks

can be set by using <xxx>_SetMachineMask(). The mask number shall be addressed by using the

constants <xxx>_MASK_n, where the range of n depends on the implementation: For [A], n = {0 ...

3}, for [B], n = {0 ... 7}.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 86 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.8.3 <xxx>_SendMessage()

Implementations: (A), (B), (C), (D), (Ex), (E4), (F), (G).

(1) Implementations: (A), (B)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

MachineNumber_u08: Selected CAN Controller channel

BufferNumber_u08: Selected message buffer number to be used for transmission

AbortFlag_u08: Aborts transmission if pending in selected buffer

(1-2) Return Values

<xxx>_ERROR on parameter failures, when called in Initialization Mode, or when trying to abort a

transmission of a buffer, where no transmission is pending or ongoing. Otherwise <xxx>_OK.

(1-3) Functional Description

Using the selected CAN controller unit, channel and message buffer, the function triggers a message

to be sent out. If a transmission is pending for a message buffer, the transmission can be aborted by

setting AbortFlag_u08 to 1. As the function will return <xxx>_ERROR, if an abortion is tried on a

free buffer, the function can be used to find a free buffer by this, followed by a second call for a

transmission on the same buffer, if it was found to be free.

If MachineNumber_u08 is set to <xxx>_GLOBAL, then the ABT Mode trigger is set instead of a

trigger of a dedicated message buffer. In this case, the BufferNumber_u08 is not relevant.

For implementations [A] and [B], the function is covering the transmit abortion functionality, which

is not available with the API <xxx>_TxAbort().

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 87 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

(2) Implementations (C), (D), (Ex), (E4)

(2-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Controller channel

Status_pu08: Status return value by reference

Message: Pointer to structure of message to be loaded and sent

Structure name is <xxx>_message, where <xxx> is in lower case.

(2-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(2-3) Functional Description

Using the selected CAN controller unit and channel, the function loads a message and triggers its

transmission. Depending on parameters within the <xxx>_message structure, the function uses

certain hardware resources or searches for free resources to perform a transmission.

The function returns a status by reference, contained in the location of Status_pu08. The following

status return values are provided:

<xxx>_FAULT_NONE Transmission request accepted

<xxx>_FAULT_PARAMETER Unit, channel or message path details are out of range

<xxx>_FAULT_BUSY Desired transmission path is currently busy

<xxx>_FAULT_ECCERR Transmission not started because of ECC errors

(implemented in (E4) only)

The <xxx>_message structure contains the following elements:

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 88 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

Table 5.19 Transmit Message Structure Elements (C), (D), (E2)

Element Type Value Range Description

hdr

[Message

header]

<xxx>_t_mask.id

<xxx>_t_mask.thlen

<xxx>_t_mask.rtr

<xxx>_t_mask.ide

{0 ... 0x1FFFFFFF}

{0 , 1}

{0 , 1}

{0 , 1}

Identifier of message to be sent. (a)

Entry in transmit history list after successful

transmission, if set.

Transmits a remote frame, if set.

Transmits an extended ID frame, if set.

a. For standard ID messages, the value range is restricted to {0 ... 0x7FF}.

flag

[Additiional flags

and header info]

<xxx>_r_ptr.ts

<xxx>_r_ptr.ptr

<xxx>_r_ptr.dlc

-

{0 ... 0xFFF}

{0 ... 8}

{0 ... 15}

Not used for transmission.

Message label for transmit history list.

Message length code. [C], [D]

Message length code. [E] (b)

b. The length code has to be specified according to ISO 11898-1.

fdsts

[CAN-FD

information]

(E2) only

<xxx>_r_fdsts.esi

<xxx>_r_fdsts.brs

<xxx>_r_fdsts.fdf

{0 , 1}

{0 , 1}

{0 , 1}

Error state indicator. (c)

Use the data bit rate switching, if set.

Use the CAN-FD frame format, if set.

If not set, classical CAN frame format is used.

c. If set, message is sent with ESI=1. If not set, message is sent according to the channel’s error passive status (ISO).

data

[Message data]

u08[<xxx>_DLC_MAX]

u08[<xxx>_DLC_FDMAX]

{0 ... 0xFF} Data array of bytes to be sent. [C], [D]

Data array of bytes to be sent. [E]

path

[Transmission

path]

u08 Dedicated values

(d)

d. <xxx>_PATH_MSGBOX: Transmit from a free message box.

<xxx>_PATH_COMFIFO: Transmit from a multi-purpose FIFO in transmit mode.

<xxx>_PATH_TXQUEUE: Transmit from a transmit queue.

<xxx>_PATH_ANY: Check all transmit resources in the sequence as given above for a free resource.

Specification from which resource to transmit

the message.

pathdetail

[Transmission

path detail]

u08 Depends on path

(e)

e. If path is <xxx>_PATH_MSGBOX: Value range is {0 ... <xxx>_MAXTXBUFFERS-1} or wildcard in non-merged TX mode.

Value range is {0 ... <xxx>_MAXTXMBUFFERS-1} or wildcard in merged TX mode.

See 5.3.5.3, (E), for TX merge mode configuration in [E] implementations.

If path is <xxx>_PATH_COMFIFO: Value range is {0 ... MAXCOMFIFOS-1} or wildcard.

If path is <xxx>_PATH_TXQUEUE: Value range is {0 ... MAXTXQUEUES-1} or wildcard.

If path is <xxx>_PATH_ANY: Wildcard value of <xxx>_PATHDETAIL_ANY is allowed only.

Specific path resource to use for transmission.

Use <xxx>_PATHDETAIL_ANY wildcard to

choose the first free resource starting from

zero.

Table 5.20 Transmit Message Structure Elements (E3), (E4)

Element Type Value Range Description

hdr

[Message

header]

<xxx>_t_mask.id

<xxx>_t_mask.thlen

<xxx>_t_mask.rtr

<xxx>_t_mask.ide

{0 ... 0x1FFFFFFF}

{0 , 1}

{0 , 1}

{0 , 1}

Identifier of message to be sent. (a)

Entry in transmit history list after successful

transmission, if set.

Transmits a remote frame, if set.

Transmits an extended ID frame, if set.

flag

[Additiional flags

and header info]

<xxx>_r_ptr.ts

<xxx>_r_ptr.dlc

-

{0 ... 8}

{0 ... 15}

Not used for transmission.

Message length code. (C), (D)

Message length code. (Ex) (b)

fdsts

[CAN-FD

information]

<xxx>_r_fdsts.esi

<xxx>_r_fdsts.brs

<xxx>_r_fdsts.fdf

<xxx>_r_fdsts.ptr

<xxx>_r_fdsts.ifl

{0 , 1}

{0 , 1}

{0 , 1}

{0 ... 0xFFFF}

{0 ... 3}

Error state indicator. (c)

Use the data bit rate switching, if set.

Use the CAN-FD frame format, if set.

If not set, classical CAN frame format is used.

Message label for transmit history list.

Additional filtering label for AFL when

transmitting in gateway mode ((E4) only).

data

[Message data]

u08[<xxx>_DLC_FDMAX] {0 ... 0xFF} Data array of bytes to be sent.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 89 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

path

[Transmission

path]

u08 Dedicated values

(d)

Specification from which resource to transmit

the message.

pathdetail

[Transmission

path detail]

u08 Depends on path

(e)

Specific path resource to use for transmission.

Use <xxx>_PATHDETAIL_ANY wildcard to

choose the first free resource starting from

zero.

a. For standard ID messages, the value range is restricted to {0 ... 0x7FF}.

b. The length code has to be specified according to ISO 11898-1.

c. If set, message is sent with ESI=1. If not set, message is sent according to the channel’s error passive status (ISO).

d. <xxx>_PATH_MSGBOX: Transmit from a free message box.

<xxx>_PATH_COMFIFO: Transmit from a multi-purpose FIFO in transmit mode.

<xxx>_PATH_TXQUEUE: Transmit from a transmit queue.

<xxx>_PATH_ANY: Check all transmit resources in the sequence as given above for a free resource.

e. If path is <xxx>_PATH_MSGBOX: Value range is {0 ... <xxx>_MAXTXBUFFERS-1} or wildcard.

If path is <xxx>_PATH_COMFIFO:Value range is {0 ... MAXCOMFIFOS-1} or wildcard.

If path is <xxx>_PATH_TXQUEUE: Value range is {0 ... MAXTXQUEUES-1} or wildcard.

If path is <xxx>_PATH_ANY: Wildcard value of <xxx>_PATHDETAIL_ANY is allowed only.

Table 5.20 Transmit Message Structure Elements (E3), (E4)

Element Type Value Range Description

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 90 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

(3) Implementations (F), (G)

(3-1) Parameters

UnitNumber_u08: Selected CAN Controller

Status_pu08: Status return value by reference

Message: Pointer to structure of message to be loaded and sent

Structure name is <xxx>_tx, where <xxx> is in lower case.

(3-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(3-3) Functional Description

Using the selected CAN controller unit, the function loads a message and triggers its transmission.

Depending on parameters within the <xxx>_tx structure, the function uses certain hardware

resources or searches for free resources to perform a transmission.

The function returns a status by reference, contained in the location of Status_pu08. The following

status return values are provided:

<xxx>_FAULT_NONE Transmission request accepted

<xxx>_FAULT_PARAMETER Unit or message path details are out of range

<xxx>_FAULT_BUSY Desired transmission path is currently busy

The <xxx>_tx structure contains the following elements:

Table 5.21 Transmit Message Structure Elements (F), (G)

Element Type Value Range Description

t0

[Message

header 1st part]

<xxx>_tx_t0.id

<xxx>_tx_t0.rtr

<xxx>_tx_t0.xtd

{0 ... 0x1FFFFFFF}

{0 , 1}

{0 , 1}

Identifier of message to be sent. (a)

Transmits a remote frame, if set.

Transmits an extended ID frame, if set.

a. For standard ID messages, the value range is restricted to {0 ... 0x7FF}.

t1

[Message

header 2nd part]

<xxx>_tx_t1.dlc

<xxx>_tx_t1.efc

<xxx>_tx_t1.mm

{0 ... 8}

{0 ... 15}

{0 ... 1}

{0 ... 0xFF}

Message length code for classical CAN.

Message length code for CAN-FD frames. (b)

Entry in transmit event list after successful

transmission, if set.

Message label for transmit event list.

b. The length code has to be specified according to ISO 11898-1.

data

[Message data]

union of access sizes:

lw [<xxx>_DLC_FDMAX/4]

sw [<xxx>_DLC_FDMAX/2]

b [<xxx>_DLC_FDMAX]

{0 ... 0xFFFFFFFF}

{0 ... 0xFFFF}

{0 ... 0xFF}

Data array of long words to be sent.

Data array of short words to be sent.

Data array of bytes to be sent.

path

[Transmission

path]

u08 Dedicated values

(c)

c. <xxx>_PATH_MSGBOX: Transmit from a free message box.

<xxx>_PATH_FIFOQUEUE: Transmit from a transmit queue or FIFO (availability depends on configuration).

<xxx>_PATH_ANY: Check all transmit resources in the sequence as given above for a free resource.

Specification from which resource to transmit

the message.

pathdetail

[Transmission

path detail]

u08 Depends on path

(d)

d. If path is <xxx>_PATH_MSGBOX: Value range is {0 ... <xxx>_MAXTXBUFFERS-1} or wildcard.

The availability of a dedicated message box depends upon the configuration.

If path is <xxx>_PATH_FIFOQUEUE: Parameter is not used.

If path is <xxx>_PATH_ANY: Wildcard value of <xxx>_PATHDETAIL_ANY is allowed only.

Specific path resource to use for transmission.

Use <xxx>_PATHDETAIL_ANY wildcard to

choose the first free resource starting from

zero.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 91 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.8.4 <xxx>_ReceiveMessage()

Implementations: (A), (B), (C), (D), (Ex), (E4), (F), (G).

(1) Implementations: (A), (B)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

MachineNumber_u08: Selected CAN Controller channel

BufferNumber_u08: Selected message buffer number to be read

TimeStampValue_pu16: Timestamp of reception - currently not supported

NewDataFlag_pu08: New reception data indication return by reference

OverwriteFlag_pu08: Overwritten buffer indication return by reference

ReservedBit0_pu08: R0 flag of received message - currently not supported

ReservedBit1_pu08: R1 flag of received message - currently not supported

DataLength_pu08: Received message data length return by reference

ExtendedFrame_pu08: Received message frame type return by reference

Identifier_pu32: Received message identifier return by reference

RemoteFrameReceived_pu08:Received message type return by reference - only supported for [B]

DataField_pu08: Received message data return by reference

(1-2) Return Values

<xxx>_ERROR on parameter failures, or when called in Reset, Sleep or Stop Mode. Otherwise

<xxx>_OK.

(1-3) Functional Description

Using the selected CAN controller unit, channel and message buffer, the function reads a message

from the dedicated message buffer.

The values NewDataFlag_pu08, OverwriteFlag_pu08, DataLength_pu08, ExtendedFrame_pu08,

Identifier_pu32, RemoteFrameReceived_pu08 ([B] only) and DataField_pu08 are read from the

message buffer hardware and returned by reference.

From processing point of view, the function first checks for a NewDataFlag, clears it in the hardware

and then reads out the data. If, at the completion of the reading process, the NewDataFlag is again

set, then the function repeats the reading process, because then the data has been overwritten

meanwhile. As a result, the function always returns the newest data of the most recently received

frames.

The values of the Identifier_pu32 are plain values which do not need to be shifted in case of any

frame format.

For DataField_pu08, the user must take care for appropriate memory space to write the data to.

At the returning of the function, the dedicated message buffer is again free to receive new messages.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 92 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

(2) Implementations: (C), (D), (Ex), (E4)

(2-1) Parameters

UnitNumber_u08: Selected CAN Controller

Status_pu08: Reception status returned by reference

Message: Pointer to structure of message received

Structure name is <xxx>_message, where <xxx> is in lower case.

(2-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(2-3) Functional Description

Using the selected CAN controller unit, the function receives a message from any or a selectable

resource. Depending on parameters within the <xxx>_message structure, the function uses certain

hardware resources or searches for resources with new data to receive a new message.

The function returns a status by reference, contained in the location of Status_pu08. The following

status return values are provided:

<xxx>_FAULT_NONE New data is available and has been provided with Message.

<xxx>_FAULT_PARAMETER Unit or message path details are out of range, or the

controller is not in an operating mode.

<xxx>_FAULT_NODATA No new data is available within the specified resource(s).

The <xxx>_message structure is used both for resource specification and for return of the messages.

It contains the following elements:

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 93 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

Table 5.22 Receive Message Structure Elements (C), (D), (E2)

Element Type Value Range Description

hdr

[Message

header]

<xxx>_t_mask.id

<xxx>_t_mask.thlen

<xxx>_t_mask.rtr

<xxx>_t_mask.ide

{0 ... 0x1FFFFFFF}

-

{0 , 1}

{0 , 1}

Identifier of message received. (a)

Not used for reception.

Remote frame received, if set.

Extended ID frame received, if set.

a. For standard ID messages, the value range is restricted to {0 ... 0x7FF}.

flag

[Additiional flags

and header info]

<xxx>_r_ptr.ts

<xxx>_r_ptr.ptr

<xxx>_r_ptr.dlc

{0 ... 0xFFFF}

{0 ... 0xFFF}

{0 ... 8}

{0 ... 15}

Reception timestamp counter value.

Message label from matching AFL rule.

Message length code. (C), (D)

Message length code. (E2) (b)

b. The length code is specified according to ISO 11898-1.

fdsts

[CAN-FD

information]

(E2) only

<xxx>_r_fdsts.esi

<xxx>_r_fdsts.brs

<xxx>_r_fdsts.fdf

{0 , 1}

{0 , 1}

{0 , 1}

Error state indicator within message.

Data bit rate switching of message.

CAN-FD frame format of message.

If not set, the message is was received in

classical CAN frame format.

data

[Message data]

u08[<xxx>_DLC_MAX]

u08[<xxx>_DLC_FDMAX]

{0 ... 0xFF} Data array of bytes received. (C), (D)

Data array of bytes received. (E2)

path

[Reception path]

u08 Dedicated values

(c)

c. <xxx>_PATH_MSGBOX: Check reception of standard message box(es).

<xxx>_PATH_RXFIFO: Check reception of a common receive FIFO.

<xxx>_PATH_COMFIFO: Check reception of a multi-purpose FIFO in receive mode.

<xxx>_PATH_ANY: Check all reception resources in the sequence as given above for a reception.

Specification from which resource to receive a

message.

pathdetail

[Reception path

detail]

u08 Depends on path

(d)

d. If path is <xxx>_PATH_MSGBOX: Value range is {0 ... <xxx>_MAXRXBUFFERS-1} or wildcard.

If path is <xxx>_PATH_RXFIFO: Value range is {0 ... MAXRXFIFOS-1} or wildcard.

If path is <xxx>_PATH_COMFIFO: Value range is {0 ... MAXCOMFIFOS-1} or wildcard.

If path is <xxx>_PATH_ANY: Wildcard value of <xxx>_PATHDETAIL_ANY is allowed only.

Specific path resource to check for reception.

Use <xxx>_PATHDETAIL_ANY wildcard to

choose the first free resource starting from

zero.

Table 5.23 Receive Message Structure Elements (E3), (E4)

Element Type Value Range Description

hdr

[Message

header]

<xxx>_t_mask.id

<xxx>_t_mask.thlen

<xxx>_t_mask.rtr

<xxx>_t_mask.ide

{0 ... 0x1FFFFFFF}

-

{0 , 1}

{0 , 1}

Identifier of message to be sent. (a)

Not used for reception.

Remote frame received, if set.

Extended ID frame received, if set.

flag

[Additiional flags

and header info]

<xxx>_r_ptr.ts

<xxx>_r_ptr.dlc

{0 ... 0xFFFF}

{0 ... 15}

Reception timestamp counter value.

Message length code. (b)

fdsts

[CAN-FD

information]

<xxx>_r_fdsts.esi

<xxx>_r_fdsts.brs

<xxx>_r_fdsts.fdf

<xxx>_r_fdsts.ptr

<xxx>_r_fdsts.ifl

{0 , 1}

{0 , 1}

{0 , 1}

{0 ... 0xFFFF}

{0 ,,, 3}

Error state indicator within message.

Data bit rate switching of message.

CAN-FD frame format of message.

If not set, the message is was received in

classical CAN frame format.

Message label from matching AFL rule.

Additional filtering label from matching AFL

rule ((E4) only).

data

[Message data]

u08[<xxx>_DLC_FDMAX] {0 ... 0xFF} Data array of bytes received.

path

[Reception path]

u08 Dedicated values

(c)

Specification from which resource to receive a

message.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 94 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

pathdetail

[Reception path

detail]

u08 Depends on path

(d)

Specific path resource to use for reception.

Use <xxx>_PATHDETAIL_ANY wildcard to

choose the first free resource starting from

zero.

a. For standard ID messages, the value range is restricted to {0 ... 0x7FF}.

b. The length code has to be specified according to ISO 11898-1.

c. <xxx>_PATH_MSGBOX: Check reception of standard message box(es).

<xxx>_PATH_RXFIFO: Check reception of a common receive FIFO.

<xxx>_PATH_COMFIFO: Check reception of a multi-purpose FIFO in receive mode.

<xxx>_PATH_ANY: Check all reception resources in the sequence as given above for a reception.

d. If path is <xxx>_PATH_MSGBOX: Value range is {0 ... <xxx>_MAXRXBUFFERS-1} or wildcard.

If path is <xxx>_PATH_RXFIFO: Value range is {0 ... MAXRXFIFOS-1} or wildcard.

If path is <xxx>_PATH_COMFIFO: Value range is {0 ... MAXCOMFIFOS-1} or wildcard.

If path is <xxx>_PATH_ANY: Wildcard value of <xxx>_PATHDETAIL_ANY is allowed only.

Table 5.23 Receive Message Structure Elements (E3), (E4)

Element Type Value Range Description

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 95 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

(3) Implementations (F), (G)

(3-1) Parameters

UnitNumber_u08: Selected CAN Controller

Status_pu08: Status return value by reference

Message: Pointer to structure of message received

Structure name is <xxx>_rx, where <xxx> is in lower case.

(3-2) Return Values

<xxx>_ERROR on parameter failures or when called in initialization mode, otherwise <xxx>_OK.

(3-3) Functional Description

Using the selected CAN controller unit, the function receives a message from any or a selectable

resource. Depending on parameters within the <xxx>_rx structure, the function uses certain

hardware resources or searches for resources with new data to receive a new message.

The function returns a status by reference, contained in the location of Status_pu08. The following

status return values are provided:

<xxx>_FAULT_NONE New data is available and has been provided with Message.

<xxx>_FAULT_PARAMETER Unit or message path details are out of range.

<xxx>_FAULT_NODATA No new data is available within the specified resource(s).

The <xxx>_rx structure contains the following elements:

Table 5.24 Receive Message Structure Elements (F), (G)

Element Type Value Range Description

r0

[Message

header 1st part]

<xxx>_rx_r0.id

<xxx>_rx_r0.rtr

<xxx>_rx_r0.xtd

<xxx>_rx_r0.esi

{0 ... 0x1FFFFFFF}

{0 , 1}

{0 , 1}

{0 , 1}

Identifier of message to be sent. (a)

Remote frame received, if set.

Extended ID frame received, if set.

Error state indicator within message.

a. For standard ID messages, the value range is restricted to {0 ... 0x7FF}.

r1

[Message

header 2nd part]

<xxx>_rx_r1.rxts

<xxx>_rx_r1.dlc

<xxx>_rx_r1.brs

<xxx>_rx_r1.edl

<xxx>_rx_r1.fidx

<xxx>_rx_r1.anmf

{0 ... 0xFFFF}

{0 ... 8}

{0 ... 15}

{0 , 1}

{0 , 1}

{0 , 0x7F}

{0 , 1}

Reception timestamp counter value.

Message length code for classical CAN.

Message length code for CAN-FD frames. (b)

Data bit rate switching of message.

CAN-FD frame format of message.

If not set, the message is was received in

classical CAN frame format.

Order number of reception rule which matched

If set, no reception rule did match.

b. The length code has to be specified according to ISO 11898-1.

data

[Message data]

union of access sizes:

lw [<xxx>_DLC_FDMAX/4]

sw [<xxx>_DLC_FDMAX/2]

b [<xxx>_DLC_FDMAX]

{0 ... 0xFFFFFFFF}

{0 ... 0xFFFF}

{0 ... 0xFF}

Data array of long words received.

Data array of short words received.

Data array of bytes to be received.

path

[Transmission

path]

u08 Dedicated values

(c)

c. <xxx>_PATH_MSGBOX: Check reception of standard message box(es).

<xxx>_PATH_FIFOQUEUE: Check reception of a FIFO (availability depends on configuration).

<xxx>_PATH_ANY: Check all reception resources in the sequence as given above for a reception.

Specification from which resource to transmit

the message.

pathdetail

[Transmission

path detail]

u08 Depends on path

(d)

Specific path resource to use for transmission.

Use <xxx>_PATHDETAIL_ANY wildcard to

choose the first free resource starting from

zero.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 96 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

d. If path is <xxx>_PATH_MSGBOX: Value range is {0 ... <xxx>_MAXRXBUFFERS-1} or wildcard.

The availability of a dedicated message box depends upon the configuration.

If path is <xxx>_PATH_FIFOQUEUE: Value range is {0 ... 1} or wildcard.

The availability of a dedicated FIFO depends upon the configuration.

If path is <xxx>_PATH_ANY: Wildcard value of <xxx>_PATHDETAIL_ANY is allowed only.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 97 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.8.5 <xxx>_CheckReceiveMessage()

Implementations: (A), (B).

(1) Implementations: (A), (B)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

MachineNumber_u08: Selected CAN Controller channel

BufferNumber_pu08: Preselected message buffer for DNFlags_pu32 flag group selection

Number of message buffer of oldest reception (return by reference)

StatusFlag_pu08: Status return value by reference

DNFlags_pu32: Map of New Data flags around the preselected buffer ([B] only)

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

Using the selected CAN controller unit and channel, the function checks for any messages which

have been received.

The function is using the Receive History List of the CAN controller hardware to check for any

received messages and performs the history list handling appropriately.

Any message waiting for reception by software is indicated (oldest first) by its containing buffer

(BufferNumber_pu08), so that in the following the function <xxx>_ReceiveMessage() can be called

to retrieve it.

Within implementations [B], the function additionally returns the New Data flags of a set of 32

buffers within DNFlags_pu32. As there may be more buffers than 32, the return value can be focused

on a subset of buffers in the range {0 ... 31} or {32 ... 63} and so on. These ranges are preselected by

pre-loading the value BufferNumber_pu08 with a buffer number belonging to the range desired.

Depending on the Receive History List check, the function returns the following status values by

reference within StatusFlag_pu08:

<xxx>_STATUS_ROVF: The receive history list has overflown and now is consequently reset.

<xxx>_STATUS_RHPM: No message has been received - the history list is empty.

<xxx>_STATUS_RGPT: A message waits for processing in buffer BufferNumber_pu08.

If the function returns with <xxx>_ERROR, then the value of StatusFlag_pu08 is invalid.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 98 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.8.6 <xxx>_CheckSendMessage()

Implementations: (A), (B).

(1) Implementations: (A), (B)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

MachineNumber_u08: Selected CAN Controller channel

BufferNumber_pu08: Number of message buffer of oldest transmission (return by reference)

StatusFlag_pu08: Status return value by reference

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

Using the selected CAN controller unit and channel, the function checks for any messages which

have been transmitted successfully.

The function is using the Transmit History List of the CAN controller hardware to check for any

transmitted messages and performs the history list handling appropriately.

Any message waiting for transmission recognition by software is indicated (oldest first) by its

containing buffer (BufferNumber_pu08).

Depending on the Transmit History List check, the function returns the following status values by

reference within StatusFlag_pu08:

<xxx>_STATUS_TOVF: The transmit history list has overflown and now is consequently reset.

<xxx>_STATUS_THPM: No message has been transmitted - the history list is empty.

<xxx>_STATUS_TGPT: A message has been sent from buffer BufferNumber_pu08.

If the function returns with <xxx>_ERROR, then the value of StatusFlag_pu08 is invalid.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 99 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.8.7 <xxx>_ClearReadyMessage()

Implementations: (A), (B).

(1) Implementations: (A), (B)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

MachineNumber_u08: Selected CAN Controller channel

LowerBufferNumberBoundary_u08: Lower buffer number of a selected buffer range

UpperBufferNumberBoundary_u08: Upper buffer number of a selected buffer range

(1-2) Return Values

<xxx>_ERROR on parameter failures or hardware timeout, otherwise <xxx>_OK.

(1-3) Functional Description

Using the selected CAN controller unit and channel, the function clears both the RDY and TRQ flags

of al l hardware message buffers within the range, which is given by and including

{LowerBufferNumberBoundary_u08 ... UpperBufferNumberBoundary_u08}.

RDY and TRQ are hardware semaphores, which always must be cleared for all used message buffers

for transmission, before stopping communication (transition to INIT mode) or before performing a

bus-off recovery.

Thus, the function must be used in every application, if a re-initialization or a bus-off recovery is

implemented. If the function is not used nevertheless, a hardware failure may result.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 100 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.8.8 <xxx>_TxAbort()

Implementations: (C), (D), (Ex), (E4), (F), (G).

(1) Implementations: (C), (D), (Ex), (E4)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

ChannelNumber_u08: Selected CAN Controller channel

Message: Pointer to structure of message to be aborted

Structure name is <xxx>_message, where <xxx> is in lower case.

(1-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(1-3) Functional Description

Using the selected CAN controller unit and channel, the function aborts the transmission of a

message from a dedicated resource. Confirmation of abortion is given by interrupt. The resource

selection is done by specifying the fields path and pathdetail. For path, the following options are

available:

<xxx>_PATH_MSGBOX: If pathdetail is set to <xxx>_PATHDETAIL_ANY, all messages in all

transmit buffers are aborted. This option can also be used to flush a

whole transmit queue. Otherwise, the dedicated transmit buffer

given in pathdetail is addressed for abortion.

<xxx>_PATH_COMFIFO: The value of pathdetail must not be set to

((Ex) only) <xxx>_PATHDETAIL_ANY. The related transmit buffer for the

((E4): not implemented) selected multi-purpose FIFO is addressed and its transmission is

aborted. The multi-purpose FIFO will then continue with its next

message to be transmitted.

<xxx>_PATH_TXQUEUE: This option is not yet available and may lead to malfunction if used.

(2) Implementations: (F), (G)

(2-1) Parameters

UnitNumber_u08: Selected CAN Controller

Message: Pointer to structure of message to be aborted

Structure name is <xxx>_tx, where <xxx> is in lower case.

(2-2) Return Values

<xxx>_ERROR on parameter failures, otherwise <xxx>_OK.

(2-3) Functional Description

Using the selected CAN controller unit, the function aborts the transmission of a message from a

dedicated resource. Confirmation of abortion is given by interrupt. The resource selection is done by

specifying the fields path and pathdetail. For path, the following options are available:

<xxx>_PATH_MSGBOX: If pathdetail is set to <xxx>_PATHDETAIL_ANY, all messages in all

transmit buffers are aborted. Otherwise, the dedicated transmit buffer

given in pathdetail is addressed for abortion.

<xxx>_PATH_FIFOQUEUE: The value of pathdetail is ignored. The front-most buffer of the

transmit FIFO is addressed and its transmission is aborted.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 101 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.8.9 <xxx>_CheckAbortStatus()

Implementations: (B).

(1) Implementations: (B)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

MachineNumber_u08: Selected CAN Controller channel

BufferNumber_u08: Selected message buffer number to be checked

StatusFlag_pu08: Transmit abortion status of the selected buffer returned by reference

(1-2) Return Values

<xxx>_ERROR on parameter failures or when in reset or sleep modes, if the abortion status is yet

unclear, or if no transmit abortion was requested on the selected buffer. Otherwise <xxx>_OK.

(1-3) Functional Description

Using the selected CAN controller unit and channel, the function checks both the TRQ and TCP flags

of a dedicated hardware message buffer.

If a transmission abortion was already initiated for the selected message buffer beforehand, by using

the <xxx>_SendMessage() function, the status of the abortion process is returned by the

StatusFlag_pu08:

<xxx>_TXDONE: The message transmission could not be aborted and was successfully

sent out.

<xxx>_TXABORTED: The message transmission was successfully aborted.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 102 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.3.9 Diagnosis and Self Test

5.3.9.1 <xxx>_IntCANBusActivate()

Implementations: (D), (Ex), (E4).

(1) Implementations: (D), (Ex), (E4)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

(1-2) Return Values

<xxx>_ERROR on parameter failures or when in any other mode than global halt. Otherwise

<xxx>_OK. Global halt mode can be activated by using the <xxx>_Stop() function, with argument

<xxx>_GLOBAL as channel number and mode <xxx>_OPMODE_HALT.

(1-3) Functional Description

Using the selected CAN controller unit, all of its channels are getting internally connected. At the

same time, the channels will not be available for external communication.

5.3.9.2 <xxx>_RAMTest()

Implementations: (C), (D), (Ex), (E4).

(1) Implementations: (C), (D), (Ex), (E4)

(1-1) Parameters

UnitNumber_u08: Selected CAN Controller

(1-2) Return Values

<xxx>_ERROR on parameter failures, on RAM check failure or when in any other mode than global

halt. Otherwise <xxx>_OK. Global halt mode can be activated by using the <xxx>_Stop() function,

with argument <xxx>_GLOBAL as channel number and mode <xxx>_OPMODE_HALT.

(1-3) Functional Description

Using the selected CAN controller unit, its local RAM storage is checked page by page by clearing

status and walking-one test patterns.

During the test, any communication is not possible.

After executing this function, all channels, message storage and global settings of the CAN controller

need to be reinitialized (see configuration functions).

The amount of RAM pages and the amount of cells within the last page of the RAM depends on the

product (size of CAN controller RAM). Therefore, the following dedicated #define constants must be

set in the driver’s mapping definition (see 5.4 for details and file information):

#define <xxx>_RAMTEST_PAGES

#define <xxx>_RAMTEST_LASTPGENTRIES

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 103 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.4 Mapping of the Lower CAN Driver

5.4.1 Device Level

On device level, the type and amount of CAN controllers are defined. Depending on the implemented CAN

controller type, the following two entries in the file map_device.h are set:

#define <xxx>_MACROS (n) // Number of CAN controllers

#define <xxx>_TYPE (m) // Type of CAN controllers

Within the driver package, these lines are already filled in and do not require any change. For information, the

available CAN controller types are listed in the common resource file ree_macros.h, which is also included in

the driver packages.

5.4.2 CAN Controller IP Level

On IP level, device specific properties of the implemented CAN controller type(s) are defined in the files

map_*.h. The file name depends on the CAN controller type:

<xxx> is ... EE_AFCAN: map_afcan.h

EE_RSCAN: map_rscan.h

EE_RSCFD or RSCFD: map_rscfd.h

MCAN: map_mcan.h

MTTCAN: map_mttcan.h

Within the map_*.h files, the following subsection will explain the various settings, and how to adapt them to

individual needs. It is not recommended to change any other parameters of these files, which are not

documented below.

5.4.2.1 Base Addresses

It is not recommended to change the base addresses. These are defining how and where the CAN controller and

also some functional sub-parts are mapped within the device memory. The following entries can be found:

#define <xxx>_BASE

#define <xxx>_OFFSET_<...>

5.4.2.2 Device and Usage Adaptation

Several parameters exist, which may be altered by the user. Not all implementations are supporting every

parameter.

(1) <xxx>_FREQFACTOR

This entry defines the factor between the given system clock frequency OSCILLATOR_FREQUENCY and the

communication clock of the CAN controller. Typically, the factor is 1 for AFCAN and M(TT)CAN

implementations and 0.5 for RS-CAN(FD) implementations. If a PLL is enabled, its frequency should be

considered within the OSCILLATOR_FREQUENCY setting. The settings for OSCILLATOR_FREQUENCY

are located in the configuration file map_asmn_basic.h (for the serial monitor program) or map_tgmn.h (for

the graphics monitor program) respectively.

(2) <xxx>_MAXBAUDRATE

Defines the maximum selectable bit rate. This depends on the communication clock speed and (for some

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 104 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

implementation) on a minimum factor <xxx>_CLKMINFACTOR. The minimum factor may be required and is

an implicit property of the CAN controller. Changes on this entry may cause under-clocking of the CAN

controller and thus bit timings which are out of range.

(3) <xxx>_FREQFACTORPLLBP and <xxx>_MAXBAUDRATEPLLBP

These entries are defining the clock frequency factor and maximum bit rates in case of direct oscillator clock

usage for communication. The direct oscillator clock is an optional clock which can be selected upon global

configuration of the RS-CAN and RS-CANFD controllers. An adjustment of the clock factor may be required

depending on the chosen oscillator frequency.

(4) <xxx>_SHUTDOWNTIMEOUT

The value indicates the amount of idling loops, while waiting on hardware reactions. This timeout supervision

is mostly used when starting or shutting down, or when accessing common resources within a CAN controller,

which are protected by semaphore mechanisms. Depending on the speed of the CPU, it may be required to

adjust the value.

(5) <xxx>_VERBOSE

Activates debugging messages on the console or monitor serial interface, if set to one. This setting is not used

by the driver, but most of all the application examples.

(6) <xxx>_PORT ...

Used to set the port I/O properties of the CAN controller and all of its channels. Redirection to dedicated pins

and ports is done by setting these constants. See 5.3.4.1 <xxx>_PortEnable() for details.

(7) <xxx>_INT_BUNDLINGHOOK

If a CAN controller provides internal bundling of interrupt sources, so that less resources are required by the

interrupt controller, then this variable is set to an additional support function, which is device specific and

decodes the bundled interrupts. The variable can be used to insert additional interrupt execution.

(8) <xxx>_INT ...

Used to associate interrupt sources of a CAN controller with interrupt controller registers, which are used to

enable or disable an interrupt. See 5.3.5.5 <xxx>_CreateInterrupt() for details.

(9) <xxx>_INTCLEAR

Constant to write into interrupt controller registers, if an interrupt shall be disabled. See the CPU core manual

for proper values.

(10) <xxx>_INTENABLEDEFAULT

Constant to write into interrupt controller registers, if an interrupt shall be enabled. Not used by the lower

driver by itself, but by application examples. See the CPU core manual for proper values.

(11) <xxx>_RAMTEST_PAGES and <xxx>_RAMTEST_LASTPGENTRIES

Amount of pages of the local RAM of the CAN controller. Used for RAM testing functions. See 5.3.9.2

<xxx>_RAMTest() for details.

5.4.2.3 Memory Vectors

In the last section of the map*.h file, the base addresses are applied to structures and arrays, in order to provide

register access to the hardware for the low level driver.

These static struct <xxx>_... entries are specific for each CAN controller type and must not be altered by the

user. Configuration and tailoring of the specific implementation to the device is done here, too (i.e., amount of

channels, number of units).

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 105 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.5 Applications Based on the Lower CAN Driver

5.5.1 Serial Monitor Program

The serial monitor program is allowing the interactive execution of the application examples, as described in

chapter 5.5.3 Communication Application Examples, by commands from a TTY terminal. If supplied with the

software package, the monitor program resides in the files asmn*.c.

Depending on implemented serial interfaces and the user’s preference, the command console can be executed

using certain resources. Within the file map_asmn_basic.h, the command console is directed to a resource by

the setting of ASMN_UARTINTERFACE. The following UART types are compatible with the application

examples (availability depends on the device):

V850 series:

UARTA_STANDARD, UARTC_STANDARD, UARTD_STANDARD, UARTE_STANDARD

78K0R, RL78 series:

UARTF_STANDARD

RH850 series:

RLIN3_STANDARD

All series with debug system only (using the debugger terminal console):

DEBUG_INTERNAL

5.5.1.1 Using the Debugger Console

If the debugger terminal console shall be used, besides the setting above, the following settings shall be made in

the configuration file map_asmn.h:

#define ASMN_MENUCOM (0)

#define ASMN_UARTTRANSFEROK (true)

#define ASMN_UARTERROR (false)

#define ASMN_MENUCOM_EXE1 (0x0D)

#define ASMN_MENUCOM_EXE2 (0x0A)

#define ASMN_MENUCOM_BUFLEN (4)

#define ASMN_UARTMODECRLF (1)

#define ASMN_UARTMODECR (0)

#define ASMN_UARTMODEFORCELF

#define ASMN_UARTSENDSTRING ASMN_SendString

#define ASMN_UARTSENDBYTE ASMN_SendByte

#define ASMN_UARTRECEIVEBYTE ASMN_ReceiveByte

#define ASMN_UARTRECEIVEINT ASMN_ReceiveInteger

#define ASMN_UARTRECEIVELONG ASMN_ReceiveULong

#define ASMN_UARTRECEIVEFLOAT ASMN_ReceiveFloat

This will redirect all UART communication functions to internal functions of the monitor program.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 106 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.5.1.2 Using a Serial Interface

Depending on the serial interface specified in map_asmn_basic.h, the corresponding low level driver of the

interface and its device specific mappings have to be added to the project.

A map*.h file also belongs to the low level driver of the serial interface. This file has to be configured similarly

like the mapping file of the low level CAN driver. Here, the appropriate port and interrupt associations have to

be set, so that it fits with the hardware environment. As an example, for a serial interface called RLIN3, the

mapping file map_rlin3.h needs to be configured properly. See the mapping of the CAN driver in 5.4 Mapping

of the Lower CAN Driver section to have a generic overview.

In addition, the file map_asmn.h contains the serial interface parameters.

#define ASMN_MENUCOM RLIN3_0 Serial Unit (here: RLIN30)

#define ASMN_MENUCOM_ILEVEL 0 Interrupt Level

#define ASMN_MENUCOM_BAUD 9600L Bit rate

#define ASMN_MENUCOM_PARITY RLIN3_PARITY_NONE Parity setting

#define ASMN_MENUCOM_CHLEN RLIN3_CHARLEN_8BITS Bits per frame

#define ASMN_MENUCOM_STOP RLIN3_ONESTOPBIT Stop bits per frame

#define ASMN_MENUCOM_DIR RLIN3_DIR_LSBFIRST Bit ordering

#define ASMN_MENUCOM_EXE1 0x0D First code for <return>

#define ASMN_MENUCOM_EXE2 0x0A Alternative code

#define ASMN_MENUCOM_BUFLEN 4 Command buffer size

The monitor calls to initiate the user interface dialogue are mapped to the low level driver functions of the used

serial interface. This is done with the set of ASMN_UART... definitions. When changing the console, the new

driver functions can be entered here.

5.5.2 Graphics Monitor Program

For dedicated hardware of Renesas product series on certain application boards made by Renesas, where a

graphics display with touchscreen can be installed, there is a graphics monitor program available for

demonstration purposes.

The graphics monitor program is allowing the interactive execution of the application examples, as described in

chapter 5.5.3 Communication Application Examples, by commands from a touchscreen. If supplied with the

software package, the monitor program resides in the files tgmn*.c.

Within the file map_tgmn.h, the graphics monitor program is configured regarding its underlying graphics

display routines. It includes libraries from zlib and libpng, which are licensed under the premises of the Open

Source Initiative and Free Software Foundation. Corresponding disclaimers and license text can be found in

5.5.2.1 Public Licenses of Graphics Routines.

The graphics monitor program requires an additional hardware dependent support package, which is located in

the files “bsp_tgmn.*”, where settings of physical connections and required additional resources (timer) are

defined.

Using the structures in the files “tgmn_<xxx>_tgmnif.h”, the application example functions are called by

vectors and parameters gathered from the graphical user interface.

Using the timer activated in the hardware dependent support package, the touchscreen is checked for any input

events of the GUI, and any pending GUI updates are executed.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 107 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.5.2.1 Public Licenses of Graphics Routines

(1) zlib

Copyright (c) 1995~2017 Jean-Loup Gailly, Mark Adler

This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held

liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications, and to

alter it and redistribute it freely, subject to the following restrictions:

(1-1) The origin of this software must not be misrepresented; you must not claim that you wrote the

original software. If you use this software in a product, an acknowledgment in the product

documentation would be appreciated but is not required.

(1-2) Altered source versions must be plainly marked as such, and must not be misrepresented as being the

original software.

(1-3) This notice may not be removed or altered from any source distribution.

(2) libpng

Copyright (c) 1996~2017 Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson et al.

This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held

liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications, and to

alter it and redistribute it freely, subject to the following restrictions:

(2-1) The origin of this software must not be misrepresented; you must not claim that you wrote the

original software. If you use this software in a product, an acknowledgment in the product

documentation would be appreciated but is not required.

(2-2) Altered source versions must be plainly marked as such, and must not be misrepresented as being the

original software.

(2-3) This notice may not be removed or altered from any source distribution.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 108 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.5.3 Communication Application Examples

The application examples of the CAN driver reside in the files *_a.c with API *_a.h. The functions are called

by the monitor program - so that the parameters can be entered via the terminal console.

Even though for some CAN controllers there may be more examples, the minimum equipment for a multi-

channel CAN controller is a basic testing function, namely <xxx>_BasicTest().

If a CAN controller implementation only provides one channel, then the basic testing is split into 2 parts,

<xxx>_BasicTest_Rx() and <xxx>_BasicTest_Tx(). For these, another external CAN node is required as

transmitter or receiver station.

In the following, the major focus is on the description of the basic testing application.

5.5.3.1 General Approach

The following steps are performed in sequence in order to perform a basic test:

• Configuration

• Definition of configuration (global and used channels)

• Set up of required structures and data (messages - their configuration and storage)

• Initialization of I/O Ports

• Configuration loading and interrupt assignment

• Message buffer or filter initialization

• Activation of operation mode

• Execution of communication function

• Recognition of interrupts

• Reading controller status

• Retrieving messages on reception

• Setting up messages and subsequent transmission

• Shutdown of the CAN controller

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 109 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.5.3.2 Basic Communication with AFCAN

This refers to implementations (A) and (B).

The functionality of this application is implemented in the function <xxx>_BasicTest(). The function is using

two different CAN controllers and channels, and includes an option to run for several passes without re-

initializing.

Figure 5.1 AFCAN Basic Communication Application Example

Basic Test

Calculate Prescaler and Bit Timing settings

Enable Ports

Initialize all CAN Memory

Set Global Configuration (Clock)

Activate Global Operation

Define Interrupt Vectors

Set Channel Configuration (Bit Timing)

Activate CAN Controller Interrupts

Set up Transmit and

Receive Message Buffers

Send Message

Check for Bus Idle

(Transmission is completed)

Check for RX and TX Interrupts

Check for Error Free Reception

in expected Receive Buffer

Check Receive Buffer Contents

Factor between Communication Clock and desired Bitrate

determines the settings, with following optimizing strategies:

ÿ Macro Prescaler as low as possible

ÿ As many Time Quanta per bit as possible

ÿ Bit rate Prescaler to be chosen accordingly

ÿ Sampling Point to be positioned between 75% and 85%

(determines segments 1 and 2)

ÿ As much Synchronization Jump Width as possible

Repeat?

Yes

Shutdown and Stop Operation

Set Operation Mode

(Integrate on CAN Bus)

No

In
it

ia
li

za
ti

o
n

 a
n

d
 C

o
n

fi
g

u
ra

ti
o

n

<xxx>_PortEnable()

<xxx>_Reset()

<xxx>_SetGlobalConfiguration()

<xxx>_Start(… <xxx>_OPMODE_INIT)

<xxx>_CreateInterrupt()

<xxx>_SetMachineConfiguration()

<xxx>_SetInterrupt()

<xxx>_SetSendMessage()

<xxx>_SetReceiveMessage()

<xxx>_Start(… <xxx>_OPMODE_OPER)

<xxx>_SendMessage()

<xxx>_GetStatus(… <xxx>_STATUS_TRANSMIT)

<xxx>_GetStatus(… <xxx>_STATUS_VALID)

<xxx>_GetStatus(… <xxx>_STATUS_LASTRECEIVE)

<xxx>_ReceiveMessage()

<xxx>_Start(… <xxx>_OPMODE_INIT)

<xxx>_Reset()

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 110 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.5.3.3 Basic Communication with RS-CANLite

This refers to implementation (C).

The functionality of this application is implemented in the functions <xxx>_BasicTest_Tx() and

<xxx>_BasicTest_Rx().

Figure 5.2 RS-CANLite Basic Communication Application Example

Basic Test TX/RX

Enable Ports

Set Global Configuration

Activate Global Operation

Set Channel Configuration (Bit Timing)

Calculate Prescaler and Bit Timing settings

Send Message

Wait for TX Interrupt

Define Interrupt Vectors

Shutdown and Stop Operation

Set Operation Mode

(Integrate on CAN Bus)

TX

Receive Message

Define Filter Rules

Message received?

YES

NO

RX

RX
TX

<xxx>_PortEnable()

<xxx>_SetGlobalConfiguration()

<xxx>_Start(… <xxx>_OPMODE_RESET)

<xxx>_CreateInterrupt()

<xxx>_SetChannelConfiguration()

<xxx>_Start(… <xxx>_OPMODE_OPER)

<xxx>_SendMessage()

<xxx>_Stop(… <xxx>_OPMODE_RESET)

In
it

ia
li

za
ti

o
n

 a
n

d
 C

o
n

fi
g

u
ra

ti
o

n

<xxx>_ReceiveMessage()

<xxx>_SetAFLEntry()

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 111 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.5.3.4 Basic Communication with RS-CAN(-FD)

This refers to implementations (D), (Ex), (E4).

The functionality of this application is implemented in the function <xxx>_BasicTest(). The function is using

two different CAN controllers and channels.

Figure 5.3 RS-CAN(FD) Basic Communication Application Example

Basic Test

Enable Ports

Set Global Configuration

Activate Global Operation

Set Channel Configuration (Bit Timing)

Calculate Prescaler and Bit Timing settings

Send Message

Wait for TX Interrupt

Define Interrupt Vectors

Shutdown and Stop Operation

Receive Message

Define Filter Rules

Message received?

NO

Verify received Message

<xxx>_PortEnable()

<xxx>_SetGlobalConfiguration()

<xxx>_Start(… <xxx>_OPMODE_RESET)

<xxx>_CreateInterrupt()

<xxx>_SetChannelConfiguration()

<xxx>_Start(… <xxx>_OPMODE_OPER)

<xxx>_SendMessage()

<xxx>_Stop(… <xxx>_OPMODE_RESET)

In
it

ia
li

za
ti

o
n

 a
n

d
 C

o
n

fi
g

u
ra

ti
o

n

<xxx>_SetAFLEntry()

<xxx>_ReceiveMessage()

Set Operation Mode

(Integrate on CAN Bus)

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 112 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.5.3.5 Self Test with RS-CAN(FD)

This refers to implementations (D), (Ex), (E4).

The functionality of this application is implemented in the function <xxx>_BasicSelfTest(). The function is

using two different CAN controllers and channels.

Figure 5.4 RS-CAN(FD) Self Test Application Example

Basic SelfTest

Set Global Configuration

Activate Global Operation

Set Channel Configuration (Bit Timing)

Calculate Prescaler and Bit Timing settings

Send Message

Wait for TX Interrupt

Define Interrupt Vectors

Shutdown and Stop Operation

Receive Message

Define Filter Rules

Message received?

NO

Verify received Message

<xxx>_SetGlobalConfiguration()

<xxx>_Start(… <xxx>_OPMODE_RESET)

<xxx>_CreateInterrupt()

<xxx>_SetChannelConfiguration()

<xxx>_Stop(… <xxx>_OPMODE_HALT)

<xxx>_IntCANBusActivate()

<xxx>_SendMessage()

<xxx>_Stop(… <xxx>_OPMODE_RESET)

In
it

ia
li

za
ti

o
n

 a
n

d
 C

o
n

fi
g

u
ra

ti
o

n

<xxx>_SetAFLEntry()

<xxx>_ReceiveMessage()

Activate internal

Communication Test Mode

<xxx>_Start(… <xxx>_OPMODE_OPER)Set Operation Mode

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 113 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.5.3.6 Internal Self Test with RS-CAN(FD, -Lite)

This refers to implementations (C), (D), (Ex), (E4).

The functionality of this application is implemented in the function <xxx>_BasicIntSelfTest(). The function is

using one single CAN controllers or channel. It allows a simple hardware test which can efficiently applied to a

single channel, i.e., for functional safety applications.

Figure 5.5 RS-CAN (FD, -Lite) Internal Self-Test Example

Internal SelfTest

Set Global Configuration

Activate Global Operation

Set Channel Configuration (Bit Timing)

Calculate Prescaler and Bit Timing settings

Send Message

Wait for TX Interrupt

with Timeout

Define Interrupt Vectors

Shutdown and Stop Operation

Receive Message

Define Filter Rules

TIMEOUT

Poll for Message Reception

with Timeout
TIMEOUT

Self Test FAILedSelf Test PASSed

<xxx>_SetGlobalConfiguration()

<xxx>_Start(… <xxx>_OPMODE_RESET)

<xxx>_CreateInterrupt()

<xxx>_SetChannelConfiguration()

<xxx>_SendMessage()

<xxx>_Stop(… <xxx>_OPMODE_RESET)

In
it

ia
li

za
ti

o
n

 a
n

d
 C

o
n

fi
g

u
ra

ti
o

n

<xxx>_SetAFLEntry()

<xxx>_ReceiveMessage()

<xxx>_Start(… <xxx>_OPMODE_STEST)Set Operation Mode

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 114 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.5.3.7 Basic Communication with M_(TT)CAN

This refers to implementation (F), (G).

The functionality of this application is implemented in the function <xxx>_BasicTest(). The function is using

two different CAN controllers.

Figure 5.6 M_(TT)CAN Basic Communication Application Example

Basic Test

Enable Ports

Set Configuration

Send Message

Wait for TX and RX Interrupts

Define Interrupt Vectors

Shutdown and Stop Operation

Receive Message

Message received?

NO

Verify received Message

Select CAN Controller Interrupts

Define Filter Rules

Resource BUSY?

NO

YES

<xxx>_PortEnable()

<xxx>_SetConfiguration()

<xxx>_CreateInterrupt()

<xxx>_Start(… <xxx>_OPMODE_CLASSIC)

<xxx>_SendMessage()

<xxx>_Stop(… <xxx>_OPMODE_INIT)

In
it

ia
li

za
ti

o
n

 a
n

d
 C

o
n

fi
g

u
ra

ti
o

n

<xxx>_SetStdFilterEntry()

<xxx>_ReceiveMessage()

Set Operation Mode

(Integrate on CAN Bus)

<xxx>_SetInterrupt()

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 115 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

5.5.3.8 Software-Gateway with M_(TT)CAN

This refers to implementation (F), (G).

The functionality of this application is implemented in the function <xxx>_Gateway(). The function is using at

least two (or more) different CAN controllers. All standard identifier messages are copied from the received

channel to all others. An exit condition is set by reception of any message having an extended identifier.

Figure 5.7 M_(TT)CAN Soft-Gateway Application Example

Software Gateway

Enable Ports

Set Configuration

Send Message

à Send Status

Define Interrupt Vectors

Shutdown and Stop Operation

Receive Standard ID Message

à Receive Status

RX Interrupt

occurred?

Copy Message in Transmit Soft-Buffer

Select CAN Controller Interrupts

Define Filter Rules

Send Status:

<xxx>_FAULT_BUSY?

TX Interrupt

occurred?

Get Event List Index

Get Message TX Timestamp

Shift TX Event List

Check Event List Emptiness

Event List

Empty?

Check for Extended ID

Message

Receive Message Path is

<xxx>_PATH_FIFOQUEUE

Receive Message Path is

<xxx>_PATH_MSGBOX

Receive Status:

<xxx>_FAULT_NONE?

New Extended ID

Message received?

NO

YES

YES

NO

YES

YES

NO

YES

NO

YES

NO NO

<xxx>_PortEnable()

<xxx>_SetConfiguration()

<xxx>_CreateInterrupt(… <xxx>_INT_LINE0)

<xxx>_CreateInterrupt(… <xxx>_INT_LINE1)

<xxx>_Start(… <xxx>_OPMODE_CLASSIC)

<xxx>_SendMessage()

<xxx>_Stop(… <xxx>_OPMODE_INIT)

In
it

ia
li

za
ti

o
n

 a
n

d
 C

o
n

fi
g

u
ra

ti
o

n

o
f

a
ll

 C
h

a
n

n
e

ls

<xxx>_SetStdFilterEntry() // for GW Messages

<xxx>_SetExtFilterEntry() // for Exit Messages

<xxx>_ReceiveMessage()

Set Operation Mode

(Integrate on CAN Bus)

<xxx>_SetInterrupt(… <xxx>_CINT_TC)

<xxx>_SetInterrupt(… <xxx>_CINT_RF0N)

<xxx>_GetStatus(…

<xxx>_STATUS_TGPT)

<xxx>_GetStatus(…

<xxx>_STATUS_TXTS)

<xxx>_GetStatus(…

<xxx>_STATUS_

NEWTXHISTORY)

<xxx>_GetStatus(…

<xxx>_STATUS_THPM)

<xxx>_ReceiveMessage()

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 116 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 117 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

6. Frequently Asked Questions

6.1 CAN Conformance and Licensing

6.1.1 CAN Conformance Policy of Renesas

CAN Conformance Certificates according to ISO 16845 are applied commonly to several products, if all of the

following conditions are true:

(1) Microcontroller devices (MCU) are belonging to the same family

(Example: RH850/D1x family, x can be replaced by the letter of the family member).

(2) Microcontroller devices (MCU) are having the same manufacturing technology for the CAN IP

(Example: same lambda-size of softmacro synthesis mapping, but different flash memory technology)

(3) Microcontroller devices (MCU) are containing the same CAN controller IP type and version

(Example: CAN IP type “RS-CAN” version 1.0)

6.1.2 CAN Conformance Test Specification

For any device which is released before 2015, the applied CAN Conformance Test Specification is ISO

16845:2004. After 2015, CAN Conformance Test Specification ISO 16845:2015 is applied.

6.1.3 Certification on ISO 17025

The test system of C&S, which Renesas is using and licensing, is according to ISO 17025. However: the

Renesas test location is not directly touched by ISO 17025 - see the statements of ISO.

6.1.4 Proving of the CAN(-FD) License of Renesas CAN Controllers

Renesas has purchased a license from BOSCH. The license number is: L-107980. This license is valid for both

CAN classic and FD applications. More information on this issue can be directly asked from BOSCH.

6.1.5 Extended Identifiers and SAE J1939

RS-CANFD, RS-CAN, RCAN, FCN, DCN, AFCAN and DAFCAN Macros are supporting SAE J1939,

because of usage of Extended ID. The DCAN controller is not supporting extended identifiers.

6.1.6 Remote Frames

Remote frames are supported by all Renesas CAN controller types.

6.2 Transceiver Issues

6.2.1 Necessity of a CAN Transceiver

There are many ways to communicate the serial data of CAN. It is a requirement of the CAN controller, that it

must be able to “see itself” sending, so there must be a functional feedback between the TX and RX lines. Such

can be achieved simply by shorting these lines.

However, to match the requested physical layer of an ISO specification (i.e., 11898-2), the CAN transceiver is

mandatory. Renesas devices are mostly not including a CAN transceiver.

6.2.2 Only SOF bit can be seen on the CAN bus

This happens, if the CAN transceiver is not operating as expected, and does not read back on its RX output,

what it has got for sending to its TX input from the CAN controller. Check that always RX==TX, if TX=0. If

this is not the case, either the transceiver is switched off, not powered, or broken.

6.2.3 Usage of the SPLIT Terminal

The SPLIT terminal of the transceiver can be connected to the middle of 60+60 OHMs, which is the bus

termination resistor. If this is not convenient, leave SPLIT open.

SPLIT stabilizes the bus against common-mode voltage steps on partly powered networks, thus reducing EME.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 118 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

6.3 Bit Timing and Clock Jitter

6.3.1 Calculating total Bit Timing Deviation with Jitter

The PLL Jitter is not accumulative for tolerance, because it is a random function. It adds once as an absolute

value in worst case. For this reason, the long-term jitter of the used PLL is required for this calculation. The

jitter measurement period should match the bit length of the used bit rate.

6.3.2 Usage of a PLL as a Clock Source for CAN

The quality of the PLL of Renesas devices regarding jitter and stability of the clock is generally good enough to

allow the usage of the PLL as a clock source for the CAN controllers. All experiences up to now have never

shown up any problem.

Even for GMLAN, it is not forbidden to use a PLL as communication clock source.

However, if a ceramic resonator is attached to the oscillator instead of a quartz, the deviation of the resonator in

conjunction with the jitter may lead to a violation of the timing requirements. Therefore, we recommend the

usage of the oscillator clock directly, if a resonator is used instead of a quartz.

6.3.3 Sporadically shortened or lengthened Bits by one or several TQ

Soft synchronization is shortening or lengthening the bits during frame transmission.

In the arbitration and acknowledge phase, where two or several participants are synchronizing with each other,

the effect can be seen on the bus.

Therefore, this is a normal behavior, which is according to the CAN specification.

6.3.4 Drive Strength of Microcontroller I/O Port for CAN

The drive strength of the I/O port of the microcontroller does have an influence on the CAN bus bit timing

accuracy. To ensure the Bit Timing quality, the Port Drive Strength should be at its maximum value, if the CAN

Baudrate is higher than 200 kbit/s.

6.3.5 Bit Sampling Methods

After first hard synchronization on SOF, all bits of a classical CAN frame are handled equally, with a

sampling at the sampling point and using soft synchronization by SJW.

While the CAN Transfer Layer (TL) used in AFCAN, FCN, RCAN, RS-CAN and RS-CANFD samples only

once, the TL used in FCAN and DCAN samples three times, using a majority decision.

6.3.6 Resynchronization after a recessive to dominant edge in the SOF bit

Renesas CAN controllers are not performing a resynchronization, if a recessive to dominant edge occurs in the

SOF bit before the sample point. This is according to ISO 11898-1.

6.3.7 Resynchronization outside of the SJW Range

Re-synchronization is performed on recessive to dominant edges even if they occur outside of the maximum

SJW range. Since the maximum SJW is not sufficient in this case, the synchronization range is limited to SJW.

This functionality is according to the CAN protocol, ISO 11898-1.

6.3.8 Information Processing Time (IPT)

Frominternal processing speed, the IPT of AFCAN, FCN, RCAN, RS-CAN and RS-CANFD is zero.

However, as the minimum setting for the TSEG2 segment of the bit timing is 1, the effective IPT is equal to 1,

and cannot be reduced further.

6.3.9 Port Initialization to avoid Spikes on the CAN bus

The following sequence is recommended: First Port Mode Control (select peripheral for the port - PMC and

PFC(E)) to assign the CAN controller, then Port Mode (input or output mode - PM) to activate the output. If the

port is a wired-x function with the value of the port register P, this register has to be initialized also to its non-

penetrating value, before setting PM.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 119 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

6.3.10 Bit Timing on CAN-FD Setting Recommendations

In order to achieve proper and safe communication with CAN-FD, some rules should be followed, which are

also based on recommendations of CiA (CAN in Automation).

(1) Keep exactly the same sampling point for all nodes within your network.

This is valid for both arbitration and data phase bit timing settings.

(2) In order to achieve the previous recommendation, use the same oscillator clock speeds for all nodes.

It is recommended to use only the dedicated clock speeds of 20 MHz, 40 MHz or 80 MHz as

communication clock source for the CAN-FD controller.

(3) Set the sampling point and the secondary sampling point positions to their optimum position regarding

phase reserve for arbitration and data phase bit timing. Details are given in the CAN in Automation (CiA)

publications 601.1 to 601.4.

(4) For the best start, set the SJW setting to its allowed maximum for your bit timing settings.

This allows the nodes to synchronize with widest range and get more tolerant against phase shiftings by

that.

(5) Do not use a speed ratio larger than 10 between data and arbitration phase bit rates.

Higher ratios are causing that the transitions between arbitration and data phases (and vice versa) are

getting more critical regarding proper sampling of the bits at the speed transition points.

As typical example of failure, see the following figure, where the first recommendation from above was not

followed. It is obvious, that in this case, the bit rate switch (BRS) will fail, even though the CAN-FD protocol

without BRS would work fine.

Figure 6.1 BRS Misinterpretation due to different Sampling Point Positions

The different sampling point of the arbitration bit rate causes, that the bit BRS is not sampled correctly, because

at BRS, the bit rate switches to the data bit rate just at the sampling point.

This situation shows, that frames without bit rate switch (BRS) are received correctly by node 2, but as soon as

a bit rate switch happens, node 2 runs out of synchronization and will destroy the frame.

While considering the facts as above, the following is allowed nevertheless:

• When only classical CAN frames are used in CAN-FD operation modes, it is recommended to set the bit

timing parameters of arbitration and data phases such, that they result in the same bit rate, even if the data bit

rate would never be used in this case.

Therefore, the data bit timing register should be set with values, that result in the same bit rate as defined with

the arbitration bit timing register settings. Due to different resolution of values, a different combination of

parameters (i.e., prescaler, data bit time) is allowed.

• It is recommended to have the same value for both data bit rate prescaler and arbitration bit rate prescaler,

because this avoids synchronization problems between CAN nodes. According to ISO 11898-1, this is not

mandatory, however. As written above, identical sample point positions are sufficient. A different resolution

of TQ per bit between CAN-FD nodes is a less critical issue, but may become significant in extreme non-

linear network structures, where the range of synchronization needs to be fully usable with equal resolution.

BRS

(fail)

IDE EDL res

IDE

(sampled OK)

EDL

(sampled OK)

res

(sampled OK)

BRS

SOF

(sampled OK)

ID

(sampled OK)

DLC3 DLC2 DLC1 DLC0ESIIDSOF

Arbitration SP = 50%

TX Node 1

RX Node 2

Arbitration SP = 80%

Data SP = 80%

TSEG1

(Arb)
TSEG2

(Data)

TSEG1

(Arb)
TSEG2

(Arb)

Out of Synchronization

BRS not recognized

Misaligned SP

Position

At BRS, the bit rate

changes at the SP

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 120 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

6.4 Operation Modes and Initialization

6.4.1 Delay when entering Initialization / Halt Mode

The delay to set INIT or HALT mode depends on Reception/Transmission of messages, while the Transfer

Layer is running. The initialization or HALT mode can only be reached, while no more transmission is triggered

and the CAN bus is in intermission state.

6.4.2 Interrupting Bus Off Processing by Software (AFCAN)

Interrupting the recovery by switching back to INIT mode and again to any operational mode restarts the

recovery with full length. This can lead to an endless situation, if the software always interrupts the recovery.

The recovery procedure is not applicable, if a regular start of the system is performed, without any bus-off

condition in advance.

6.4.3 Integration State

When setting the operation mode to start communication, a CAN controller always enters “integration state”

first. In this state, according to ISO 11898-1, it has to wait for 11 subsequent recessive bits, until it may start any

reception or transmission. It is not required for the user to wait until integration state has left; transmissions may

already be triggered within integration state, even though they will be delayed.

Due to the condition of ISO 11898-1, on a 100% bus load condition, the integration state may take an endless

time.

RS-CAN and RS-CANFD controllers are allowing to check the integration state. The integration state has been

successfully passed, if the COMSTS flag is set. In order to check the transition to the operation mode, a check

of COMSTS is not helpful, instead the CRSTSTS flag of the CAN channel can be checked.

6.4.4 Allowed Options in Operation Modes (RS-CAN, RS-CANFD)

RS-CAN and RS-CANFD controllers do have global and channel based operation modes. Certain actions of

software are either allowed or forbidden regarding these modes. The following table is providing an overview.

Table 6.1 Allowances in Operation Modesa

a. “√” indicates the allowance in the corresponding operation mode. Several marked modes within a mode class (global /

channel) are indicating an ‘or’ condition. Global mode and channel mode combinations are always ‘and’ conditions.

Examples: Changing an AFL rule is allowed in either global mode, if the channel mode is not set to operation mode. In

global HALT mode, only RESET and HALT modes of a channel are possible.

Software Action
Global Mode Channel Mode

RESET HALT OPERATION RESET HALT OPERATION

Set Channel Modes

√ √
√ √ √

√ √ √ √
Define AFL rule memory

(RNC settings)
√ √

Define/change AFL rule √ √ √ √ √
Configure THL, FIFO or TX

Queue (depth, interrupt mode,

operation mode, TX buffer link)

√ √

Enable THL, FIFO or TX Queue √ √ √ √
Enable/disable FIFO or TX

Queue interrupt
√ √ √ √ √ √

FIFO data read/write, shifting √ √ √ √ √
TX Queue data write/shift

TX Buffer trigger
√ √ √

Receive / Transmit messages √ √
Bus Off recovery √ √
Perform RAM Test √ √ √

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 121 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

6.5 Power Save Modes

6.5.1 Re-Initialization when in Power Save Mode (AFCAN, FCN)

The re-initialization is only possible, if the power save mode is canceled first.

The correct sequence is:

(1) Clear SLEEP and STOP mode,

(2) Set INIT mode,

(3) (Optionally) perform a soft reset.

If the sequence fails (supervise by a timeout of at least 2 CAN frames in length, perform a forced soft reset:

(4) Set EFSD,

(5) Clear GOM.

(6) Set GOM.

6.5.2 Unconditional Wake-Up by any CAN Bus Event

The SLEEP mode is left automatically, if any dominant edge on the CAN bus is detected.

This mode is only supported by DCAN, AFCAN, and FCN controllers.

RCAN, RS-CAN and RS-CANFD controllers are not supporting this kind of wake-up detection. The available

STOP mode does not wake up upon CAN bus activity. Here, an additional port-edge detection interrupt is

required to perform unconditional wake-up.

6.5.3 Selective Wake-Up by a dedicated Identifier

This can only be performed, if the CAN controller is left in an operational mode (communication mode or

receive-only mode), so that is can monitor the CAN bus and watch the incoming messages. Power saving

modes (SLEEP, STOP) of the CAN controller are not suitable for this application.

6.5.4 Receive and Transmit Interrupts in SLEEP Mode

When entering SLEEP mode of DCAN, AFCAN, and FCN, receive and transmit interrupts may still occur. To

deal with this, look for the following Software Requirements:

(1) Check INTS Register while waiting for the CAN hardware acknowledging (read back) of SLEEP Mode.

(2) On entering Rx or Tx interrupt routines, check the MBON flag to verify that the CAN controller is not in

SLEEP mode, before accessing history lists or message buffers.

6.5.5 Dominant blocked CAN bus while in SLEEP Mode

Applicable on DCAN, (D)AFCAN, FCN and DCN only. There are two different cases.

(1) The CAN controller was in Initialization Mode (offline), during the CAN bus was blocked on dominant

level.

In this case, the CAN controller will enter the Sleep Mode, but a wake up by a CAN bus event (falling

edge) will happen only, if the dominant bus blocking is released and at least 11 recessive bits have been

detected on the CAN bus, before the next falling edge (SOF) appears.

The reason for this is, that the CAN controller first must have the opportunity to synchronize on the bus,

before the Sleep Mode can be processed completely. For the initial synchronization process, 11 recessive

bits are required on the bus, if the CAN controller synchronizes from offline to online operation.

(2) The CAN controller was in operation (online), during the CAN bus was blocked on dominant level.

In this case, the Sleep Mode cannot be entered.

6.5.6 Preconditions for DAFCAN and DCN to enter a Power Save Mode

To enter Sleep/Stop Modes, both parts of DAFCAN/DCN must be put into this mode, i.e., the DIAG

channel and the RXONLY channel.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 122 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

6.6 Transmission

6.6.1 Transmit Abortion in general

It is not possible under normal circumstances, to abort the transmission of a message, where the transmission is

already started and the transmission is already advanced such, that the arbitration has already taken place.

Abortion of a message in this state is also not allowed from CAN protocol side (ISO 11898-1).

However, after each loss of arbitration, abortion is possible.

By exception, abort of transmission is also possible by forcing a shutdown of the CAN Controller. This will

result in a violation of the CAN protocol (ISO 11898-1) and therefore cause a CAN bus error. After such a

shutdown, the CAN controller must be re-initialized completely, to resume operation.

6.6.2 Transmit Abortion in (D)AFCAN, FCN, DCN

Transmission Abort is performed by clearing the TRQ Flag of an affected message buffer by software.

The abortion will be successful immediately, if the buffer is not yet being sent (waiting to be transmitted).

The abortion will be successful, if the sending has already started, but the arbitration of the sent frame is lost.

The abortion will take place right after this.

The abortion will be successful, if the sending has already started, but during transmission, a bus error occurs.

The abortion will take place right after this.

The abortion will be successful, if the sending has already started, but the frame is not acknowledged.

The abortion will take place right after the negative acknowledge.

In all other cases, the abortion will be unsuccessful.

6.6.3 Transmission Confirmation with FIFO in RS-CAN, RS-CANFD

Mechanisms to provide confirmation of successful transmission with Common FIFO Buffers of RS-CAN and

RS-CANFD:

• Checking the transmit history list (THL) by polling

This method is limited by the size of the THL. If the FIFO is sending more messages than the THL can store,

the THL will overflow. This method will work, if the FIFO size is limited to the THL size, if no other

transmissions are performed apart from the FIFO, if the THL is polled as soon as the FIFO has become empty,

and if the FIFO gets refilled earliest after that.

• Checking the transmit history list (THL) by interrupt

It is required to enable the FIFO interrupt such, that the interrupt occurs on every successful transmission. This

method allows the combination of several FIFO units and conventional transmit buffers, too. The capability to

monitor each transmission success has the drawback that is will cause a certain interrupt load to the CPU.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 123 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

6.7 Reception

6.7.1 Mixed Reception of Extended and Standard Frames in one Message Box

Masking of IDE is not possible in DCAN, (D)AFCAN, FCN and DCN.

Masking of IDE is possible in FCAN, RCAN, RS-CAN and RS-CANFD.

6.7.2 Masking (DCAN, FCAN, (D)AFCAN, FCN, DCN, RCAN)

These CAN controllers are supporting the ID masking principle.

Masks are checked sequentially for any incoming message. If the first matching mask and ID does not find a

free message buffer, the message is rejected. Other masks are not checked again, if one mask has matched

already, even though at this match, no free buffer should have been available.

6.7.3 Filtering (RS-CAN, RS-CANFD)

Instead of masking, these CAN controllers are using filtering lists (AFL) in the reception processing.

6.7.3.1 No Priority of Reception among Channels

If there are several channels, which are receiving messages into the same RX-FIFO, there is no priority among

them. There is a priority among AFL rules (first rule is checked first), but if several incoming messages from

different channels have identical reception targets by independent rules, then there is no given priority.

A central engine is scanning all channels in a loop, and if a channel has set a reception indication, it is served

and its message gets processed. Therefore, the result about which channel receives first is random, depending

on the current state of the central engine.

Of course, one could now ask: ‘what amount of time must I be in advance for a message on a channel, to be sure

that I'm the first to be received?’. But at the same time, let’s keep in mind that CAN is not a synchronous

protocol; so you would never know exactly when your message gets sent or received.

Except for TTCAN, there is no specification for that. But even for TTCAN, the specification is valid for one

channel only, not for several channels at a time.

6.7.3.2 Masking the IDE Flag (Extended Frames) and ID Comparison

RS-CAN and RS-CANFD controllers are able to mask the IDE flag of incoming messages within an AFL rule.

In order to do this, the GAFLIDEM flag has to be used.

Refining the descriptions in the manuals, the function of GAFLIDEM and GAFLIDM is as follows:

(1) GAFLIDEM within the AFL rule is set (1):

The rule applies only to messages, where IDE matches the setting of GAFLIDE.

(2) GAFLIDEM within the AFL rule is not set (0):

The rule applies to messages, where IDE is either set or not set (standard and extended messages).

In any case, depending on the received IDE of a message, the ID of the message is compared with GAFLID of

the AFL rules.

• If IDE of the message is set, all bits of the ID are compared with GAFLID, where corresponding GAFLIDM

flags are set.

• If IDE of the message is not set, the bits of the ID are compared with the lowest 11 bits of GAFLID, where

corresponding GAFLIDM flags are set.

If a rule excludes an incoming message, because GAFLIDEM is set and IDE of the incoming message is not

matching with GAFLIDE, then the rule is skipped and not applied.

6.7.3.3 Order of Reception Rules, Rule Count (RNC)

If the CAN controller unit has several channels, then for each channel the reception rules have to be defined.

Within the AFL rules list, the rules must be ordered such, that all rules of channel 0 are entered first (on the first

page), followed then by the rules of channel 1, channel 2 and so on. It is mandatory that no gaps between the

rules are left, and the amount of rules as specified with the RNCn register is matching the amount of rules for

that channel n. All rules are ordered with highest priority first for and within each channel.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 124 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

6.8 Message Storage

6.8.1 Buffers (Mailboxes): FCAN, (D)AFCAN, FCN, DCN

6.8.1.1 Effect of the RDY Flag

If RDY is cleared, no message can be stored in the buffer; and no message can be sent from the buffer. CPU

access to the buffer remains active, however.

6.8.1.2 Multi-Buffer Receive Blocks (MBRB) and Overwriting (OWS)

MBRBstill works, if OWS of a buffer is set, but as soon as all buffers of the MBRB are filled (DN=1), the first

buffer of the MBRB will be overwritten. Other buffers of the MBRB can never be overwritten, because always

the first one is used. The flag MOW indicates the overwriting, but it is not used as a qualifier to select other

buffers for overwriting.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 125 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

6.9 History Lists: (D)AFCAN, FCN, DCN

6.9.1 Handling after Overflow

After an overflow, the history list function is suspended, but old entries of the history list can be read and the

associated message buffers can be processed.

However, there may be more message buffers, that need processing. If in case of reception, if the OWS flag of

unprocessed message buffers is set, they will not be blocked for new reception, and processing of them can be

omitted. If there are receive message buffers, where OWS is not set, the application must scan all these message

buffers and clear the DN flag, in order to avoid blocking of these. After all this processing has been completed,

the overflow flag of the history list shall be cleared, and all entries of the history list shall be read out, in order

to re-establish the history list functionality.

6.9.2 Overwriting (OWS) Enable and Receive History List

Even if a buffer is overwritten, because its OWS Flag is set, this event is also stored in the receive history list.

This is very important to know; it is not possible to leave a buffer with OWS set unattended, because

its reception events could cause the RHL to overflow, if they are not handled.

In FCNand DCN, the “no history” flag (NH) can be used to suppress RHL entries of buffers; here, its usage in

combination with OWS is recommendable.

6.9.3 Lost Receptions by wrong handling of RHL Registers

Lost message receptions at high CAN bus load can be caused by double reading the history list content within

the receive processing loop, hereby discarding history list entries accidentally.

The correct processing is to read the history list only once per processing a message buffer.

To do so, read the history list register into a temporary variable, and use the temporary variable for further

processing of the value, instead of reading the history list register again.

By every reading of the history list register, the history list pointer (and entry) is moved and updated.

Therefore, when reading the history list a second time while processing one message buffer, the entry of the

next message buffer is already taken away from the list. Such processing causes that there will remain

unprocessed message buffers, which then can remain blocked for further reception. This, however, can result in

lost message receptions for the upper layers of the application software.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 126 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

6.10 Peripheral Bus Access

6.10.1 32-Bit Accesses

At (D)AFCAN not allowed in general, but by exception CnMDATA registers on longword-aligned addresses

can be accessed in 32-bit accesses.

RS-CAN, RS-CANFD, FCAN, FCN and DCN controllers have dedicated registers for 32-bit access size.

RCAN and DCAN are not supporting 32-bit accesses.

6.10.2 Minimum Peripheral Bus Clock Speed

The RS-CAN and RS-CANFD controllers are supporting separate clock specifications for register access

(“peripheral bus clock”) and communication.

In order to have proper processing of reception and transmission, the peripheral bus clock shall be at least

double in speed as the communication clock. If this is not followed, sporadic losses of received frames or failed

transmissions may occur.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 127 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

6.11 Interrupts

6.11.1 Lost Interrupts in (D)AFCAN, FCN, DCN when disabling by CxIE or
CnMCTRLm.IE

 CxIE and CnMCTRLm.IE are not storing pending interrupts, while the interrupt controller of the device (using

the interrupt controller registers) does it. Therefore, to avoid lost interrupts on temporarily disabled interrupt,

always use the interrupt controller registers of the interrupt controller; not the CAN controller registers CxIE or

CnMCTRLm.IE.

6.11.2 Conditions in (D)AFCAN, FCN and DCN regarding CINTSx and CIEx

Precondition: MCTRLm.IE is set.

• If CIEx is not set, while CINTSx is set by an interrupt condition, no interrupt is forwarded to the interrupt

controller.

• If CIEx is set, after CINTSx is already set, no interrupt is forwarded to the interrupt controller.

Only if CIEx is set, and after or during this, CINTSx is set by an interrupt condition, an interrupt is forwarded

to the interrupt controller.

6.11.3 Missing Receive Interrupts ((D)AFCAN, FCN, DCN)

Thereare several reasons for this, however three most often seen are the following, which are not so easy to

detect and described here therefore.

(1) Blocked Message Boxes

A blocking of further interrupts can occur, if message boxes are no longer available to receive messages,

because they are already holding messages. This happens, if the CPU is not clearing the DN flag and

overwrite mode for a message box is not enabled.

(2) Blocked Message Boxes in conjunction with AUTOSAR functionality

Regarding AUTOSAR functionality, there is a potential danger to get blocked message boxes, whenever a

double mode change of the CAN controller is requested. Whenever the CAN controller has to go to

initialization mode, a last reception may occur, which sets DN of a message box. However, the re-

transition to an operation mode also clears the Receive History List.

Like this, a following interrupt routine would be unable to find this message box, so that it remains

blocked. The workaround is, that whenever initialization mode is reached, all DN flags of all receive

message boxes must be cleared.

(3) Not enabled interrupt in CAN controller interrupt enable register

If the interrupt enable register (CxIE1) is not set, while a RX interrupt occurs, this interrupt gets lost. If, as

a consequence, the corresponding message buffer DN flag is not cleared by the CPU, there will be no more

further interrupts for this message box.

6.11.4 Suppression of Receive Interrupts for Remote Frames ((D)AFCAN)

Remote frames are received in enabled TX Buffers (RDY set), where the ID matches the ID of the remote

frame. If the ID values of the remote frames are known, which shall be suppressed, declare dedicated TX

buffers for them, and disable the IE flag for them. The buffers shall be used from #0 upwards, so that the

transmit buffer for sending messages has a higher buffer number than those used to discard the remote frames.

Like this, it cannot happen that in the sending buffer the remote frames are received, because accidentally, the

ID to send matches one of the remote frames.

If the ID values of the remote frames are unknown and random, there is no real clue to avoid Rx interrupts from

those. At any time, a declared Tx Buffer could match the ID of the remote frames, and then be used the

receive the remote frame, causing a Rx interrupt. One could disable the Tx Buffers by clearing RDY, as soon as

the transmission is completed, to avoid the storage of remote frames in them. But still, a short time frame may

be left open, where a remote frame could jump in.

CAN Controller

R01AN2535ED0203 Rev. 02.03 Page 128 of 132

May 2019

Usage:

Applications and Frequently Asked Questions

6.11.5 Interrupt Handling in RL78 RS-CANLite Implementations

The interrupt controller in RL78 is triggered by edges of interrupt indications of peripherals, and so for RS-

CANLite, too. On the other hand, the interrupt sources of RS-CANLite are level based.

For this reason, when handling RS-CANLite interrupts in RL78, all interrupt sources within RS-CANLite,

which are sharing the same interrupt flag of RL78 must be handled and cleared, as soon as the interrupt is

executed by RL78.

As an overview, the following interrupt sources of RS-CANLite are grouped in RL78:

Note: As an example, in order to get another channel 0 transmission interrupt, in the associated interrupt routine of

the channel 0 transmission interrupt source, all TMTRF flags of all TX message buffers need to be checked and

cleared, if set; further, the CFTXIF flag of the common TX FIFO needs to be checked and cleared, if set; and

finally, the THLIF flag of the transmit history list needs to be checked and cleared, if set.

Flags of other channels need not to be handled cleared, as these are covered by separate interrupt sources.

Table 6.2 Shared RL78 Interrupt Sources of RS-CANLite

Interrupt Source Shared Interrupt Events Interrupt Event Flags to Clear

Global RX FIFO Reception Receive FIFO m RFIF in the RFSTSm register

Global Error DLC Error DEF in the GERFL register

Message Lost Error RFMLT in the RFSTSm registers

CFMLT in the CFSTSk registers

THL Entry Lost Error THLELT in the THLSTS register

Channel n Transmission Transmission Complete TMTRF set to 00B in all TX Message

Buffers of Channel nTransmission Aborted

FIFO Transmission CFTXIF in the CFnSTSk registers

Transmission History (THL) THLIF in the THLnSTS register

Channel n FIFO Reception Receive FIFO n, k CFRXIF in the CFnSTSk registers

Channel n Error Bus Error BEF in the CnERFL register

Error Warning Level EWF in the CnERFL register

Error Passive Level EPF in the CnERFL register

Bus Off Entry BOEF in the CnERFL register

Bus Off Recovery BORF in the CnERFL register

Overload Flag OVLF in the CnERFL register

Bus Lock BLF in the CnERFL register

Arbitration Lost ALF in the CnERFL register

Page 129 of 132

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

• http://www.renesas.com/contact/

Revision History CAN Controller Application Note

Page 130 of 132

Rev. Date
Description

Chapter Summary

01.00 January 2015 — First Edition issued

01.01 February 2015 Index, 3, 4 Index added, FAQ extended, Pretended Networking Chapter added

02.00 July 2016 1, 2, 3, 5

3

4

New content added

Moved to chapter 4

Moved to chapter 6

02.01 August 2017 6

all

Topics added

Considering RS-CANFD V2 and V3 versions

02.02 Feb 2019 1

5

6

all

Memory layout of RS-CANFD V2 and V3 corrected.

Function <xxx>_GetStatus() modified for [E3] implementation (supporting TS).

RL78/F15 added as supported device family for the CAN sample software.

Topics added

Considering RS-CANFD V4 version

02.03 May 2019 1, 5 References for RH850/E2x devices corrected.

Page 131 of 132

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that

have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with

an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

LSI, an associated shoot-through current flows internally, and malfunctions occur due to the

false recognition of the pin state as an input signal become possible. Unused pins should be

handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of

pins are not guaranteed from the moment when power is supplied until the reset process is

completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset

function are not guaranteed from the moment when power is supplied until the power reaches

the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not

access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become

stable. When switching the clock signal during program execution, wait until the target clock signal

has stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock

signal. Moreover, when switching to a clock signal produced with an external resonator (or by

an external oscillator) while program execution is in progress, wait until the target clock signal is

stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of an MPU or MCU in the same group but having a different part number

may differ in terms of the internal memory capacity, layout pattern, and other factors, which can

affect the ranges of electrical characteristics, such as characteristic values, operating margins,

immunity to noise, and amount of radiated noise. When changing to a product with a different

part number, implement a system-evaluation test for the given product.

Page 132 of 132

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

�© 2014 Renesas Electronics Corporation. All rights reserved.

Colophon 4.0

	1. CAN Controller Evolution in Renesas Microcontroller Products
	1.1 Abstract
	1.2 Older CAN Controllers
	1.3 AFCAN CAN Controllers
	1.3.1 AFCAN Hardware Architecture and New Functional Features
	1.3.2 AFCAN Implementation Changes to Older CAN Controllers

	1.4 FCN CAN Controllers
	1.4.1 FCN Hardware Architecture and New Functional Features
	1.4.2 FCN Implementation Changes to AFCAN CAN Controllers

	1.5 RS-CAN CAN Controllers
	1.5.1 RS-CAN Hardware Architecture and New Functional Features
	1.5.2 RS-CAN Implementation Changes to FCN CAN Controllers
	1.5.3 Memory Layout of RS-CAN CAN Controllers

	1.6 RS-CANFD CAN Controllers
	1.6.1 Implementation Differences of RS-CANFD Controllers
	1.6.2 Memory Layout of RS-CANFD CAN Controllers
	1.6.3 Merging Transmit Buffers in RS-CANFD V2

	1.7 M_(TT)CAN Controllers

	2. Bus Transceivers and CAN Controller Operation Modes
	2.1 Abstract
	2.2 Overview
	2.3 CAN Bus without Transceivers
	2.4 CAN Transceiver / Controller Interface Distortions

	3. CAN Bus Errors and Recovery of CAN Controller
	3.1 Abstract
	3.2 Roles of CAN controllers
	3.3 Error situations of a CAN Transmitter
	3.3.1 No Acknowledge by another Station (Receiver)
	3.3.2 Transmission is not read back

	3.4 Error situations of a CAN Receiver
	3.4.1 Frame Form Errors
	3.4.2 Reaction on Error Frames of other Nodes
	3.4.3 Acknowledgment Errors

	3.5 Blocking situations for CAN controllers
	3.5.1 Permanently dominant blocked CAN bus
	3.5.2 Transceiver in wrong mode or defect

	3.6 Bus Off state: Recovery methods and conditions

	4. Emulation of Efficient Energy Management Concepts of CAN (EEM)
	4.1 Abstract
	4.2 Partial Networking
	4.2.1 Principle of Operation
	4.2.2 Requirements for Systems and CAN Controllers
	4.2.3 Application on Selective CAN-FD Usage

	4.3 Pretended Networking
	4.3.1 Principle of Operation
	4.3.2 Requirements for Systems and CAN Controllers

	4.4 EEM Concept Comparison
	4.5 Application Examples for Partial and Pretended Networking

	5. Sample Software Description
	5.1 Abstract
	5.2 Supported CAN Controller Hardware
	5.3 Lower Level CAN Driver Functionality
	5.3.1 Overview
	5.3.2 Environmental Initialization
	5.3.3 Used Types
	5.3.4 Port I/O Initialization
	5.3.5 CAN Controller Initialization and Configuration
	5.3.6 Reception / Filter Configuration
	5.3.7 Operation and Status
	5.3.8 Transmission and Reception
	5.3.9 Diagnosis and Self Test

	5.4 Mapping of the Lower CAN Driver
	5.4.1 Device Level
	5.4.2 CAN Controller IP Level

	5.5 Applications Based on the Lower CAN Driver
	5.5.1 Serial Monitor Program
	5.5.2 Graphics Monitor Program
	5.5.3 Communication Application Examples

	6. Frequently Asked Questions
	6.1 CAN Conformance and Licensing
	6.1.1 CAN Conformance Policy of Renesas
	6.1.2 CAN Conformance Test Specification
	6.1.3 Certification on ISO 17025
	6.1.4 Proving of the CAN(-FD) License of Renesas CAN Controllers
	6.1.5 Extended Identifiers and SAE J1939
	6.1.6 Remote Frames

	6.2 Transceiver Issues
	6.2.1 Necessity of a CAN Transceiver
	6.2.2 Only SOF bit can be seen on the CAN bus
	6.2.3 Usage of the SPLIT Terminal

	6.3 Bit Timing and Clock Jitter
	6.3.1 Calculating total Bit Timing Deviation with Jitter
	6.3.2 Usage of a PLL as a Clock Source for CAN
	6.3.3 Sporadically shortened or lengthened Bits by one or several TQ
	6.3.4 Drive Strength of Microcontroller I/O Port for CAN
	6.3.5 Bit Sampling Methods
	6.3.6 Resynchronization after a recessive to dominant edge in the SOF bit
	6.3.7 Resynchronization outside of the SJW Range
	6.3.8 Information Processing Time (IPT)
	6.3.9 Port Initialization to avoid Spikes on the CAN bus
	6.3.10 Bit Timing on CAN-FD Setting Recommendations

	6.4 Operation Modes and Initialization
	6.4.1 Delay when entering Initialization / Halt Mode
	6.4.2 Interrupting Bus Off Processing by Software (AFCAN)
	6.4.3 Integration State
	6.4.4 Allowed Options in Operation Modes (RS-CAN, RS-CANFD)

	6.5 Power Save Modes
	6.5.1 Re-Initialization when in Power Save Mode (AFCAN, FCN)
	6.5.2 Unconditional Wake-Up by any CAN Bus Event
	6.5.3 Selective Wake-Up by a dedicated Identifier
	6.5.4 Receive and Transmit Interrupts in SLEEP Mode
	6.5.5 Dominant blocked CAN bus while in SLEEP Mode
	6.5.6 Preconditions for DAFCAN and DCN to enter a Power Save Mode

	6.6 Transmission
	6.6.1 Transmit Abortion in general
	6.6.2 Transmit Abortion in (D)AFCAN, FCN, DCN
	6.6.3 Transmission Confirmation with FIFO in RS-CAN, RS-CANFD

	6.7 Reception
	6.7.1 Mixed Reception of Extended and Standard Frames in one Message Box
	6.7.2 Masking (DCAN, FCAN, (D)AFCAN, FCN, DCN, RCAN)
	6.7.3 Filtering (RS-CAN, RS-CANFD)

	6.8 Message Storage
	6.8.1 Buffers (Mailboxes): FCAN, (D)AFCAN, FCN, DCN

	6.9 History Lists: (D)AFCAN, FCN, DCN
	6.9.1 Handling after Overflow
	6.9.2 Overwriting (OWS) Enable and Receive History List
	6.9.3 Lost Receptions by wrong handling of RHL Registers

	6.10 Peripheral Bus Access
	6.10.1 32-Bit Accesses
	6.10.2 Minimum Peripheral Bus Clock Speed

	6.11 Interrupts
	6.11.1 Lost Interrupts in (D)AFCAN, FCN, DCN when disabling by CxIE or CnMCTRLm.IE
	6.11.2 Conditions in (D)AFCAN, FCN and DCN regarding CINTSx and CIEx
	6.11.3 Missing Receive Interrupts ((D)AFCAN, FCN, DCN)
	6.11.4 Suppression of Receive Interrupts for Remote Frames ((D)AFCAN)
	6.11.5 Interrupt Handling in RL78 RS-CANLite Implementations

