

PAC25140 Data Sheet

10S-20S Intelligent BMS with Integrated MCU and Cell Balancing

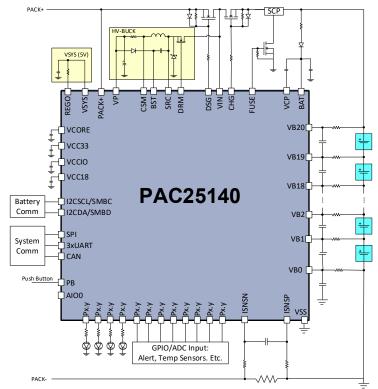
Product Overview

The Qorvo® PAC25140 is an Intelligent Battery Monitoring System (BMS) that can monitor 10-series to 20-series Li-lon, Li-Polymer and LiFePO4 battery packs.

The PAC25140 integrates a FLASH-programmable MCU, Power Management, Current/Voltage/Temperature Sense and drive circuits for charge/discharge FETs and protection fuses. It can communicate using UART, SPI I2C/SMBus or CAN 2.0B serial interfaces. The PAC25140 provides access to multiple analog and digital peripherals required to manage today's high cell count battery packs.

The PAC25140 contains an Arm[®] Cortex[®]-M4F running at 150 MHz with 128kB of FLASH and 32KB of SRAM. It has access to several different analog and digital peripherals that are intended to be used for the fuel gauging algorithm and system telemetry reporting.

The PAC25140 provides a low power hibernate mode of less than 3µA, enabling long storage time with wakeup from push button, timer, or charger detection.


The device integrates a single-supply 145V-buck DC/DC controller reducing thermal issues and generating a system rail. The system rail supports a 5V-LDO output up to 225mA, a 3.3V-LDO output up to 90mA for running additional system peripherals. An integrated charge pump supports the charge and discharge FET drivers. Internal FETs for each cell input for cell balancing current of 50mA.

The device also integrates a programmable-gain differential amplifier and 16-bit Sigma-Delta ADC for wide range of current sensing as well as a 16-bit Sigma-Delta ADC for cell voltage sensing and an analog MUX connected to a 12-bit SAR ADC for safety checks on internal nodes and additional voltage and temperature sense inputs to ensure safe system operation.

The PAC25140 is packaged in an 10x10mm, 68-pin QFN package for compact, high cell count battery-monitoring applications.

APPLICATIONS

Battery Powered Garden Tools, Lawn mowers Backup Power Supplies Renewable Energy Storage EBike Battery Packs Warehouse Robots EMobility

PAC25140 Data Sheet

10S-20S Intelligent BMS with Integrated MCU and Cell Balancing

Key Features

MCU

- 150MHz Arm® Cortex®-M4F
 - o 128kB FLASH
 - 32kB SRAM with SECDED ECC
 - o 1kB INFO FLASH for general use
 - Floating Point Unit
 - o 32-bit hardware divider
 - Single-cycle 32-bit x 32-bit hardware multiplier
 - o DSP Instructions and Saturation Arithmetic Support
 - o 32 interrupts, 8 priority levels
 - 8-region Memory Protection Unit (MPU)
 - Wake-up Interrupt Controller (WIC) allowing powersaving sleep modes

Debug

- Single Wire Debug I/F (SWD)
- o JTAG programming interface
- Embedded Trace Macrocell (ETM) for in-system debugging at real-time without breakpoints
- Sleep/Deep Sleep & Clock-gating for low-power operation

MCU ADC

- 12-bit resolution
- 2.5MSPS
- Programmable Dynamic Triggering and Sampling Engine (DTSE)

Timing Generators

- Four 16-bit PWM timers with up to 32 PWM/CC blocks
- 24-bit SysTick count-down timer
- 2 x 24-bit General-purpose count-down timers with interrupt
- 2 x Windowed Watch-dog Timer (WWDT) running off independent clock
- Real-time Clock (RTC)
- Wake-up timer for ultra-low power hibernate mode

10

- 3.3V Digital I/O or Analog Input for ADC
- 24 general-purpose IO with flexible interrupt controller
- Configurable weak pull-up or pull-down
- Configurable drive-strength (6mA to 25mA)
- Flexible peripheral MUX allowing each IO pin to be configured with one of up to 8 peripheral functions

Communication Peripherals

- 3 x USART (Either SPI or UART)
 - SPI Master/Slave up to 25 MHz
 - UART up to 1Mbps
- I2C/SMBus Master/Slave
- CAN 2.0B Controller

Miscellaneous

- 4-Level User-Configurable Code Protection
- CRC Engine
- 96-bit Unique ID

Power Manager

- Up to 145V supply input Buck DC/DC Controller
 - o OC, OV and UV protection
- High-Voltage Charge Pump
- 5V/250mA system regulator
- Integrated LDOs for analog, IO, and core supplies
- Power and temperature monitor, warning, and fault detection
- Low-Power Operation
 - 3µA total hibernate mode
 - Push Button, PACK+/Charger Detect, and Timer wakeup modes

Configurable Analog Front-End (CAFE™)

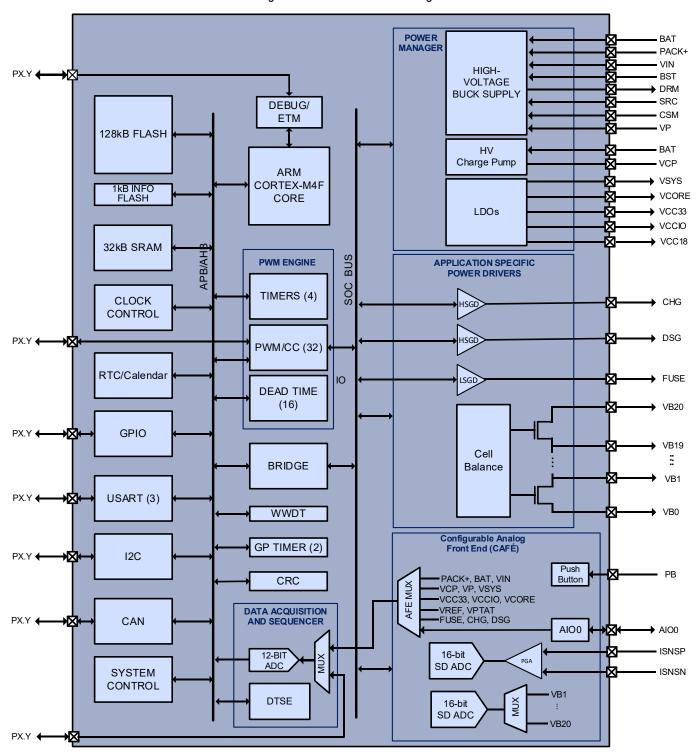
- Programmable-Gain Differential amplifier and 16-bit Sigma-Delta ADC for battery pack current sense
- 16-bit Sigma-Delta ADC for voltage sense
- Integrated ADC references
- Programmable over-current shutdown
- Power supply monitoring via ADC
- Low-speed independent clock source

Application Specific Power Drivers (ASPD™)

- Integrated high-side gate drivers for external CHG and DSG
- Integrated low-side gate driver for pack FUSE blow FET

Integrated Cell Balancing

Cell balancing for up to 20 cells


Packaging

- QFN 10x10mm 68-pin package, 0.5mm pitch
- Exposed pad for thermal management
- $T_A = -40^{\circ}C \text{ to } 105^{\circ}C$

Functional Block Diagram

Figure 1 Architectural Block Diagram

Ordering Information

Orderable Part Number	UNIT QUANITY	MCU	FLASH	SRAM	CELL COUNT	GPIO	PACKAGE
PAC25140SR	100-unit short reel	150MHz ARM	128kB	32kB	10 to 20	24	QFN 10x10mm 68-pin
PAC25140-T	3000-unit reel	Cortex M4F	IZORD	OZNE	10 10 20	21	QUIVIONIONI OO PIII

Table of Contents

Product Overview	ĺ
APPLICATIONS	1
Key Features	2
Functional Block Diagram	3
Table of Contents	Ę
Table of Figures	9
Table of Tables	10
Absolute Maximum Ratings	11
Recommended Operating Conditions	11
Power Manager	12
Features	12
Block Diagram	12
Functional Description	13
High-Voltage Buck (HV-BUCK)	13
High-Voltage Charge Pump (HVCP)	13
HV-BUCK Restart Handling	13
Linear Regulators	14
Power Manager Circuit Connections	14
HV-BUCK and LDO Power-up Sequence	14
HVCP Power-up Sequence	16
Hibernate Mode	16
Power Monitoring	16
Temperature Monitoring	16
Voltage References	16
Electrical Characteristics	17
HV-BUCK Electrical Characteristics	17
HVCP Electrical Characteristics	18
Linear Regulators Electrical Characteristics	18
Power Monitor Electrical Characteristics	19
Configurable Analog Front-End (CAFE)	20
Features	20
Block Diagram	2′
Functional Description	22
Current Sensing	22
Over-Current Protection	22
Voltage Sensing	22

AFE MUX	23
Temperature Monitoring and Protection	23
PACK+ Charger Detection	24
PACK+ Load/Short Detection	24
Push-Button (PB) Input	25
AlO0 – Analog Input Output	26
Electrical Characteristics	27
Differential Amplifier (DA) Electrical Characteristics	27
Current Sense ADC Electrical Characteristics	27
Cell Voltage ADC Electrical Characteristics	28
(1) After ADC Calibration	28
TA = -40°C to 105°C unless otherwise specified	28
Push-Button Electrical Characteristics	28
Temperature Protection Electrical Characteristics	29
12-bit ADC With Dynamic Triggering and Sampling Engine (DTSE)	30
Block Diagram	30
Functional Description	30
ADC	30
ADC Conversion Timing	30
Dynamic Triggering and Sample Engine	32
EMUX Control	32
Electrical Characteristics	33
Application Specific Power Drivers (ASPD)	34
Gate Drivers	34
Features	34
Block Diagram	34
Functional Description	34
Electrical Characteristics	35
Integrated Cell Balancing	36
Features	36
Electrical Characteristics	37
Battery AFE Windowed Watchdog Timer (WWDT)	38
Wake-up Timer	38
MCU Memory System	39
Features	39
Block Diagram	39
Functional Description	39

	Program FLASH	40
	INFO FLASH	40
	SRAM	40
	Code Protection	41
	Electrical Characteristics	42
M	CU Clock Control System (CCS)	43
	Features	43
	Block Diagram	43
	Functional Description	44
	Clock Sources	44
	Ring Oscillator	44
	Reference Clock	44
	External Clock Input	44
	PLL	44
	Clock Tree	44
	FRCLK	44
	SCLK	44
	PCLK	45
	ACLK	45
	HCLK	45
	Electrical Characteristics	46
M	CU Core Arm® CORTEX®-M4F	47
	Features	47
	Block Diagram	47
	Functional Description	47
	Application Typical Current Consumption	49
	Electrical Characteristics	50
M	CU IO Controller	51
	Features	51
	System Block Diagram	51
	Functional Description	52
	IO Controller	52
	GPIO Current Injection	52
	Peripheral MUX	53
	Electrical Characteristics	54
M	CU Communication Interfaces	55
	Features	55

System Block Diagram	55
Functional Description	55
I ² C Controller	56
USART	56
USART SPI Mode	56
USART UART Mode	56
CAN	57
Dynamic Characteristics	58
Serial Interface	58
I2C Dynamic Characteristics	59
I2C Timing Diagram	60
MCU PWM Timers	61
Features	61
PWM Timers System Block Diagram	63
Functional Description	64
MCU General Purpose Timers	65
Features	65
System Block Diagram	65
Functional Description	66
Real-time Clock with Calendar (RTC)	66
MCU Windowed Watchdog Timer (WWDT)	66
GP Timer (GPT)	66
Cyclic Redundancy Check (CRC)	67
Features	67
System Block Diagram	67
Functional Description	67
Application Block Diagrams	68
Pin Configuration and Description	71
Mechanical Information	74
Package Marking	75
Handling Precautions	75
Solderability	75
REVISION HISTORY	76
Contact Information	76
Important Notice	76

Table of Figures

Figure 1 Architectural Block Diagram	3
Figure 2 Power Manager Block Diagram	12
Figure 3 Power Manager Circuit Connections	14
Figure 4 HV-BUCK and LDO Power-up Sequence	15
Figure 5 HVCP Power-up Sequence	16
Figure 6 CAFE Block Diagram	21
Figure 7 PACK+ Charger Detection	24
Figure 8 PACK+ Load/Short Detection	24
Figure 9 Push-Button (PB) Input	25
Figure 10 AlO0 Analog Input Output	26
Figure 11 12-bit MCU ADC Block Diagram	30
Figure 12 ADC Conversion Timing Diagram (standard)	31
Figure 13 ADC Conversion Timing Diagram (enhanced)	31
Figure 14 ASPD Block Diagram	34
Figure 15 High Side Gate Drivers	35
Figure 16 Cell Balancing	36
Figure 17 WWDT System Block Diagrams	38
Figure 18 WWDT Operation	38
Figure 19 Memory System Block Diagram	39
Figure 20 CCS Block Diagram	43
Figure 21 Arm® Cortex®-M4F Microcontroller Core Block Diagram	47
Figure 22 IO Controller System Block Diagram	51
Figure 23 Serial Interfaces System Block Diagram	55
Figure 24 I2C Timing Diagram	60
Figure 25 PWM Timers System Block Diagram	63
Figure 26 General-Purpose Timers System Block Diagrams	65
Figure 27 CRC System Block Diagram	67
Figure 28 PAC25140 Application Block Diagram for 20s	68
Figure 29 PAC25140 Unused Cell connection for 16s	69
Figure 20 Dip Diagram Tap Vious	71

Table of Tables

Table 1 HV-BUCK Electrical Characteristics	17
Table 2 HVCP Electrical Characteristics	18
Table 3 Linear Regulators Electrical Characteristics	18
Table 4 Power Monitor Electrical Characteristics	19
Table 5 DA Electrical Characteristics	27
Table 6 Current Sense ADC Electrical Characteristics	27
Table 7 Cell Voltage ADC Electrical Characteristics	28
Table 8 Cell Voltage Measurement Accuracy Electrical Characteristics	28
Table 9 Push-Button Electrical Characteristics.	28
Table 10 Temperature Protection Electrical Characteristics	29
Table 11 ADC and DTSE Electrical Characteristics	33
Table 12 ASPD Electrical Characteristics	35
Table 13 Cell Balancing Electrical Characteristics	37
Table 14 Code Protection Level Description	41
Table 15 Memory System Electrical Characteristics	42
Table 16 Clock Control System Electrical Characteristics	46
Table 17 PAC25140 Application Typical Current Consumption	49
Table 18 Microcontroller Electrical Characteristics	50
Table 19 Peripheral MUX settings	53
Table 20 IO Controller Electrical Characteristics	54
Table 21 Serial Interface Dynamic Characteristics	58
Table 22 I2C Dynamic Characteristics	59
Table 23 Thermal Characteristics	70
Table 24 Pin Descriptions	72

Absolute Maximum Ratings

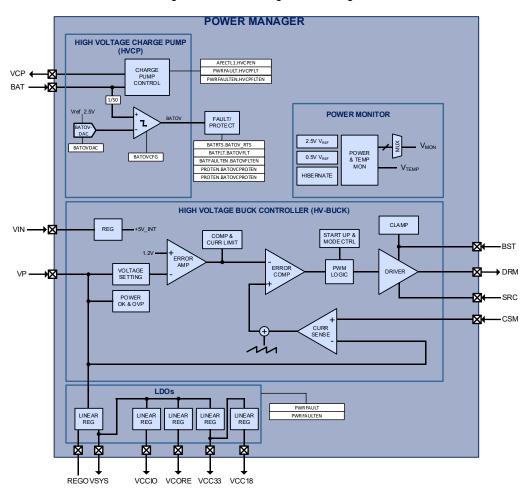
Symbol	Value	Unit
Power Manager	·	
VCP to BAT	-0.3 to 14	V
VIN, BAT, PACK+ to VSS	-0.3 to 145	V
BST to VSS	-0.3 to 145	V
BST to SRC	-0.3 to 20	V
SRC to VSS	-5 to VIN + 15	V
DRM to SRC	-0.3 to 20	V
VP to VSS	-0.3 to 14	V
CSM to VP	-0.3 to 0.3	V
VSYS to VSS	-0.3 to 6	V
REGO to VSS	-0.3 to VP + 0.3	V
VCC33, VCCIO to VSS	-0.3 to 4.1	V
VCORE to VSS	-0.3 to 1.44	V
VCC18 to VSS	-0.3 to 2.5	V
Signal Manager		
ISNSP, ISNSN to VSS	-0.3 to +0.3	V
Cell Balancing		
VB[n] to VSS	(n+1) * 6.9	V
VB[n+1] to VB[n]	-0.3 to 10	V
Driver Manager		
CHG, DSG to VSS	-0.3 to 145	V
CHG to BAT	-0.3 to 14	V
DSG to PACK+	-0.3 to 14	V
FUSE to VSS	-0.3 to 14	V
10		
PDx, PEx, PFx, PGx, to VSS	-0.3 to VCCIO + 0.3	V
AIO0, PB to VSS	-0.3 to Vsys + 0.3	V
I _{Pxy} pin injection current	7.5	mA
∑l _{Pxy} sum of all pin injection current	25	mA
Temperature		
Та	-40 to 125	°C
Тѕтс	-55 to 150	°C
Electro-static Discharge (ESD)		
Human Body Model (HBM)	1	kV
Charge Device Model (CDM)	500	V
· · ·		

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units
PACK+	Charger Input Voltage	18		100	V
BAT	Battery Stack Voltage	18		100	V

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.


Power Manager

Features

- 145V Single Supply High-Voltage Buck (HV-BUCK) DC/DC controller
- High-Voltage Charge Pump
- 5V/250mA VSYS regulator for system supply
- VCC33 LDO for 3.3V analog supply
- VCCIO LDO for 3.3V IO supply
- VCC18 LDO for 1.8V Flash internal supply
- VCORE LDO for 1.2V core supply
- High-accuracy 2.5V voltage reference for MCU ADC (VREF)
- High-accuracy 0.5V voltage reference for Current Sense ADC
- Power and temperature monitoring, warning, and fault detection
- Extremely low hibernate mode I_Q of 3µA Typical at VIN=80V

Block Diagram

Figure 2 Power Manager Block Diagram

No portion of this document may be reproduced or reused in any form without Qorvo's prior written consent

www.qorvo.com

Functional Description

The Power Manager is optimized to efficiently provide "all-in-one" power management required by the PAC25140 and associated application circuitry. It incorporates a 145V input High-Voltage Buck DC/DC (HV-BUCK) and High-Voltage Charge Pump (HVCP) to generate the supplies for the integrated gate drivers and other sub-regulators.

The VSYS LDO generates a 5V/250mA system supply that is used to power the IC and the other LDOs. VSYS is used to supply the VCC33, VCCIO and VCORE, which are used to generate a 3.3V analog, 3.3V IO and 1.2V digital core supply. VCC18 is used for Flash memory supply and is generated from the VCC33. VCORE and VCC18 should not have any external loads.

The power manager also handles system functions including internal reference generation, timers, hibernate mode management, and power and temperature monitoring.

High-Voltage Buck (HV-BUCK)

The PAC25140 contains a High-Voltage Buck Controller for a Buck DC/DC (HV-BUCK). The HV-BUCK controller drives an external power MOSFET for pulse-width modulation switching of an inductor for power conversion. VIN is the HV-BUCK supply controller input. The DRM output drives the gate of the N-CH MOSFET between the VIN on state and VSS off state at proper duty cycle and switching frequency to ensure that the main supply voltage VP is regulated. The gate of the high-side power MOSFET is connected to the DRM pin and the source of the high-side power MOSFET is connected to SRC.

The VP regulation voltage is set to a fixed ~12V. When VP is lower than the target regulation voltage, the internal feedback control circuitry causes the inductor current to increase to raise VP. Conversely, when VP is higher than the regulation voltage, the feedback loop control causes the inductor current to decrease to lower VP. The feedback loop is internally stabilized. The output current capability of the switching supply is determined by the external current sense resistor. The inductor current signal is sensed differentially between the CSM pin and VP and has a peak current limit threshold of 0.2V.

High-Voltage Charge Pump (HVCP)

The High-Voltage Charge Pump (HVCP) is used as the high-side gate drive supply for the external CHG and DSG FET gate drivers. The charge pump output is VCP and charges to BAT $+ \sim 9V$ when enabled.

The BAT Over Voltage DAC, BATOVDAC and comparator can be used to monitor the BAT voltage, and trigger faults and protection mechanisms.

HV-BUCK Restart Handling

The HV-BUCK has a safety re-start mechanism that protects the device and external components in case of a DC/DC failure. This mechanism samples VIN and VP when the HV-BUCK is re-started and may insert a delay before it allows the power supply to be restarted, in case of some type of short or damage with the power supply components on the PCB.

If the DC/DC has been disabled due to VIN falling below VuvloF;VIN, VIN is sampled and as soon as VIN > VuvloR;VIN, then the DC/DC will immediately re-start.

If VIN is > VIN UVLO falling (VUVLOF;VIN) but VP < VP UVLO falling (VUVLOF;VP) then the DC/DC is disabled and a 350ms delay is inserted. After this delay, the DC/DC is re-started.

Linear Regulators

The PAC25140 includes three linear regulators:

- VSYS
- VCC33
- VCCIO

The system supply regulator (VSYS) is a medium-voltage regulator that is supplied by VP (output of HV-BUCK) and sources up to 250mA at REGO until VSYS, externally coupled to REGO, reaches 5V. This allows a properly rated external resistor to be connected from REGO to VSYS to close the current loop and offload power dissipation between VP and VSYS. The VSYS regulator supplies the VCC33, VCCIO and VCORE sub-regulators.

The VCC33 regulator generates a 3.3V analog supply for the ADC and GPIO on the MCU. The VCORE regulator generates a dedicated 1.2V digital logic supply for the MCU. The VCCIO regulator generates a dedicated 3.3V supply for the GPIO on the MCU.

Once all LDOs are above their respective power good thresholds, then the MCU is released from reset and begins executing instructions.

The VCC18 is generated from the VCC3 by the MCU for the flash.

Each of the LDOs must be bypassed externally to ground. See the electrical characteristics below for details on the recommended component values for each of the bypass capacitors.

Power Manager Circuit Connections

Figure 3 below shows the typical circuit connections for the HV-BUCK on the PAC25140.

Figure 3 Power Manager Circuit Connections

HV-BUCK and LDO Power-up Sequence

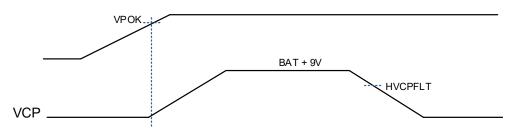

The HV-BUCK and LDOs follow a typical power-up sequence as shown in Figure 4 below.

No portion of this document may be reproduced or reused in any form without Qorvo's prior written consent

www.qorvo.com

Figure 4 HV-BUCK and LDO Power-up Sequence

A typical sequence begins with voltage being applied on VIN. Once VIN reaches 18V, the HV-BUCK is enabled, and VP begins to rise. When VP reaches 10V, after 4ms the VSYS regulator is enabled. When VSYS reaches its power good threshold of 4.5V, after 0.5ms VCCIO begins to rise. After 0.5ms, VCC33 begins to rise and after another 1ms, and then VCC18 and VCORE begins to rise.


After VCORE rises plus 0.5ms, the power good thresholds of all LDOs checked. If they are all OK, then there is a 1ms delay and the MCU is released from reset. At this point, the MCU will begin executing instructions.

HVCP Power-up Sequence

The HVCP follows a typical power-up sequence as shown in Figure 5 below.

Figure 5 HVCP Power-up Sequence

The HVCP is enabled and disabled under firmware control in the PAC25140 when it is needed to drive the gates on the CHG and DSG FETs.

Hibernate Mode

The PAC25140 contains a very low-power mode that may be used to minimize power consumption from the battery when the battery monitor is not operating. Hibernate mode allows the device to enter an ultra-low-power mode where only critical circuitry is enabled. In this mode, only a minimal amount of current is used by VIN, and most of the Power Manager and all internal regulators are shut down to eliminate power drain from the output supplies. The user may enter hibernate mode by writing a register in the AFE.

Hibernate mode may be exited by three user selectable options:

- 1) Push Button: by an active push-button input on the PB pin that is polarity selectable
- 2) PACK+ Charger Detect: by a PACK+ voltage selectable to 5V or 20V
- 3) Wakeup Timer: by the hibernate wakeup timer.

Power Monitoring

Whenever any of the VSYS, VCC33, VCCIO or VCORE power supplies falls below their respective power good threshold voltages, a fault event is detected and the MCU is reset. The MCU stays in the reset state until VSYS, VCC33, VCCIO, VCC18 and VCORE supply rails are all good again and the reset time has expired.

Power monitoring signals are provided onto the AFE MUX in the AFE for conversion by the 12-bit MCU ADC. The AFE MUX can select from the power monitoring signals: PACK+ * 0.02, BAT * 0.02, VIN * 0.02, VCORE, 0.4 * VCC33, 0.4 * VCCIO, 0.4 * VSYS, or VPTAT (temperature).

Temperature Monitoring

The device has monitoring for three junction temperatures. The MCU firmware can select whether to receive an interrupt when the device reaches any of the temperatures. Two temperatures, 120°C and 140°C, are warnings. A fault occurs when the junction temperature reaches 155°C and the MCU will be reset. The fault status bits are persistent during reset and can be read by the MCU upon re-initialization to determine the cause of the temperature fault reset.

Voltage References

There are two high-precision voltage references in the PAC25140: 2.5V and 0.5V.

The 2.5V high-precision reference is used by the MCU ADC (12-bit SAR), Voltage Sense ADC (16-bit Sigma-Delta) and AFE comparators. The 0.5V high-precision voltage reference is used by the Current Sense ADC (16-bit Sigma-Delta) and AFE comparators.

Electrical Characteristics

The Electrical Characteristics for the Power Manager are shown below.

HV-BUCK Electrical Characteristics

Table 1 HV-BUCK Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I _{HIB;VIN}	VIN hibernate mode supply current	Hibernate mode active, VIN = 80V		3		μA
Vuvlor;vin	VIN UVLO rising threshold			18		V
V _{UVLOF;VIN}	VIN UVLO falling threshold			16		V
V _{REF;VP}	VP output regulation voltage		-5%	12	5%	V
K POKR;VP	VP power OK threshold	VP rising		91		%
K POKF;VP	VF power OK threshold	VP falling		87		%
k ovpr;vp	VP OV protection threshold	VP rising, blanking = 10μs		130		%
tonmin;drm	DRM minimum on time		90	200	300	ns
toffmin;drm	DRM minimum off time		390	600	1150	ns
V _{UVLOR;VP}	VP UVLO rising			10		V
V _{UVLOF;VP}	VP UVLO falling			8		V
V _{CSM;ILIM}	CSM current limit threshold		-12%	0.2	12%	V
F _{S;DRM}	DRM switching frequency	Relative to switching frequency setting	-5		5	%
I _{SOURCE;DRM}	DRM output high source current			100		mA
Isink;drm	DRM output low sink current			200		mA
	HV-BUCK inductor value			100		μΗ
I _{DSG;HVBUCK}	Discharge current			10		mA
V _{VIN}	HV-BUCK input voltage range		0	•	145	V
Vsrc;vss	SRC to ground range		-10	•	VIN + 10	V
Vsrc;vin	SRC to VIN range			•	10	V
V _{BST;VSS}	BST to ground range				145	V

VIN = 80V and TA = -40°C to 105°C unless otherwise specified

HVCP Electrical Characteristics

Table 2 HVCP Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I _{OP;VCP}	VCP operating output current	Steady state; No external load				μΑ
V _{OP;VCP}	VCP operating voltage range	18V < BAT < 84V		BAT + 9		V
CVCP	VCP capacitor value			0.47		μF
V _{UVLOR;CP}	Charge pump UVLO rising	Blanking = 100µs		BAT + 6		V
V _{UVLOF;CP}	Charge pump UVLO falling			BAT + 5		V

BAT = 80V and TA = -40°C to 105°C unless otherwise specified

Linear Regulators Electrical Characteristics

Table 3 Linear Regulators Electrical Characteristics

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
V _{SYS}	VSYS output voltage	Total load up to 250mA		4.85	5.0	5.15	V
V _{CCIO}	VCCIO output voltage	Load = 10mA VCCIO fr	om regulator	3.152	3.3	3.398	V
V _{CC33}	VCC33 output voltage	Load = 10mA			3.3		V
V _{CORE}	VCC18 output voltage	External Load not allowed			1.8		V
V_{CORE}	VCORE output voltage				1.2		V
I _{LIM;VSYS}	VSYS regulator current limit			225	260		mA
I _{LIM;VCCIO}	VCCIO regulator current limit			95	130		mA
I _{LIM;VCC33}	VCC33 regulator current limit			40	57		mA
I _{LIM;VCORE}	VCORE regulator current limit			40	57		mA
k _{SCFB}	Short-circuit fold back				50		%
V _{DO;VSYS}	VSYS dropout voltage	VP = 12V, I _{VSYS} = 100mA			350	680	mV
V _{UVLO;VSYS}	VSYS UVLO threshold	VSYS rising, hysteresis = ().2V	3.5	3.95	4.4	V
k _{POK;VCCIO}	VCCIO power OK threshold	VCCIO rising, hysteresis =	10%	79	85	91	%
k _{POK;VCC33}	VCC33 power OK threshold	VCC33 rising, hysteresis =	10%	79	85	91	%
k _{POK;VCORE}	VCORE power OK threshold	VCORE rising, hysteresis =	= 10%	79	85	91	%
C _{VSYS}	VSYS bypass capacitor value				4.7	10	μF
C _{VCC33}	VCC33 bypass capacitor value				2.2	10	μF
C _{VCC18}	VCC18 bypass capacitor value				2.2	4.7	μF
C _{VCORE}	VCORE bypass capacitor value				2.2	10	μF
C _{VCCIO}	VCCIO bypass capacitor value				2.2	10	μF

VIN = 80V and TA = -40°C to 105°C unless otherwise specified

Power Monitor Electrical Characteristics

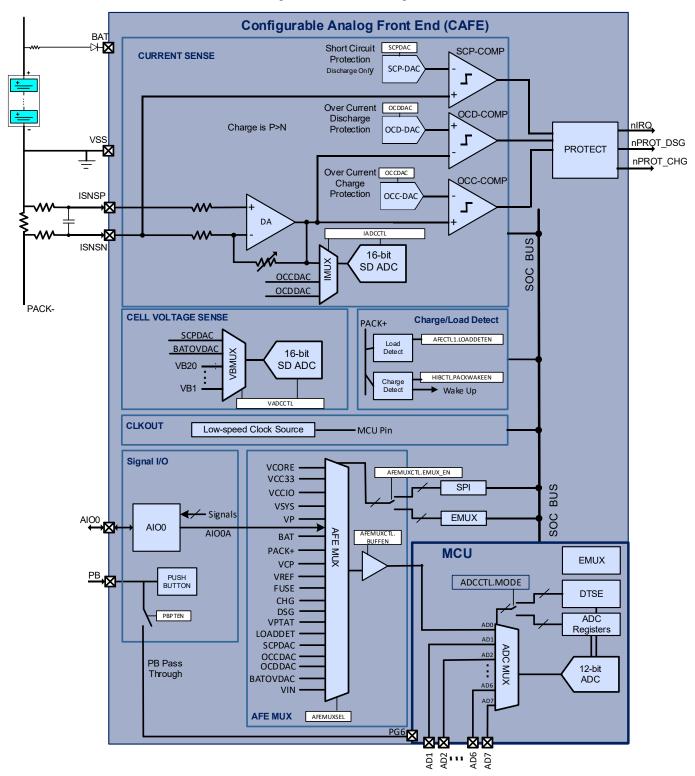
Table 4 Power Monitor Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
	Deference Voltage (2.5)()	T _A = 25°C	-0.5%	2.5	0.5%	V
V _{REF;25}	Reference Voltage (2.5V)	TA = -40°C to 105°C		2.5		V
	Reference Voltage (0.5V)	T _A = 25°C	-0.5%	0.5	0.5%	V
$V_{REF;05}$		TA = -40°C to 105°C		0.5		V
	Power Monitoring Voltage coefficient ⁽¹⁾	PACK+, BAT, VIN, VCP, CHG, DSG		0.02		V/V
l.		VCORE		1		V/V
K _{MON}		VSYS, VCCIO, VCC33	0.36	0.4	0.43	V/V
		VP, FUSE	0.09	0.1	0.11	V/V

VP = 12V and TA = -40°C to 105°C unless otherwise specified

⁽¹⁾ The Power Monitoring Voltage Coefficient is the scale factor used to multiply the corresponding voltage to achieve the ADC input voltage range.

Configurable Analog Front-End (CAFE)


Features

- 16-bit Sigma-Delta ADC for current sense
- Current Sense Differential Programmable-Gain Amplifier
- Three comparators with DACs for programmable references for configurable OC warning or fault handling
- 16-bit Sigma-Delta ADC for Voltage and Temperature sense
- Sampling of up to 20 cell voltages and internal power supplies
- Temperature warning and fault protection
- Push-Button (PB) input for exiting hibernate mode
- Analog input/output gain amplifier with ADC Input or signal output selection
- Charge detection and Load detection

Block Diagram

Figure 6 CAFE Block Diagram

Functional Description

The PAC25140 contains a Configurable Analog Front-End (CAFE™). The CAFE can be used to sense battery pack current using an integrated Differential Amplifier and 16-bit Sigma-Delta ADC. The CAFE can configure two independent DACs to set two comparator thresholds for two levels of programmable over-current detection for the battery pack.

The CAFE can also sense voltage and temperature internally through a MUX which contains inputs for each of the cell balance channels as well as the internal power supply rails from the power manager.

Current Sensing

The PAC25140 contains circuitry for battery pack current sense. The positive terminal (ISNSP) and negative terminal (ISNSN) are connected to each side of an external sense resistor. The ISNSP pin is connected to the positive terminal of a differential amplifier (DA) and the ISNSN pin is connected to the negative terminal of the amplifier. The differential amplifier has a programmable gain up to x128. This amplifier has a common-mode range of -0.3V to 0.5V. Using the gain stage allows a smaller current sense resistor, however, more noise will be introduced into the measurements.

The differential amplifier output is available for sampling from the 16-bit Current ADC.

To ensure accurate ADC conversion of the differential amplifier's output signal VISENSE * DAGAIN must remain within a voltage range of +/-0.5V. The current sense voltage VISENSE can be calculated using the following equation:

VISENSE = (ADCRESULT * ADCGAIN + ADCOFFSET)/ DAGAIN

Where:

V_{ISENSE} is the voltage across the ISNSP and ISNSN pins.

ADCRESULT is the 16-bit ADC result in counts

ADC_{GAIN} is 1.25V/216 counts = $19.073 \mu V/count$

ADCOFFSET is -0.625V

DAGAIN is the selected differential amplifier gain

A theoretical ADC full scale reading of 0xFFFF equals 0.625V, a half scale reading of 0x8000 equals 0V, and 0x0000 = -0.625V.

To achieve the best accuracy, a calibration step should be performed after final assembly.

Over-Current Protection

There are three analog protection comparators that may be used for over-current protection: one for short circuit protection (SCP-COMP), one for over-current discharge protection (OCD-COMP) and one for over-current charge protection (OCC-COMP). Each of the comparators has a DAC that may be used to set the comparator reference.

When one of the comparators trips, the device will send a signal to the driver manager and can be programmed in various ways to disable the CHG/DSG FETs, as well as interrupt the MCU via an IRQ signal.

Voltage Sensing

The PAC25140 also contains a 16-bit Sigma-Delta ADC that may be used for voltage sensing for the individual cells. There is a MUX that selects each of the individual cell balance nodes (VB1 to VB20) so that they may be sampled by the 16-bit ADC.

The SOC bus is used for the MUX select as well as the ADC operation and fetching of the 16-bit result from the MCU.

AFE MUX

The CAFE also contains the AFE MUX that can be used to sample the internal power supply rails on the device, internal die temperature, and other signals. This will provide internal cross checking for references and key signals for Functional Safety (FUSA).

The AFE MUX select can be controlled from the SOC bus or via the EMUX. The output of the AFE MUX is connected to the 12-bit ADC on the MCU so it may be sampled by the auto-sequencer.

The MUX channels or scaled values (see Users Guide) that are available are:

- VCORE 1.2V Core Logic LDO
- VCC33 3.3V Analog LDO
- VCCIO 3.3V Digital I/O LDO
- VSYS 5V System Supply
- VP DC/DC Output
- AIO0A AIO0 Analog Output
- BAT Battery Stack Input
- PACK+ Charger Supply Input
- VCP Charge Pump Output
- VREF 2.5V Voltage reference
- FUSE FUSE output
- CHG CHG FET gate driver signal
- DSG DSG FET gate driver signal
- VPTAT Internal Temperature Sensor
- LOADDET Load monitoring signal
- SCPDAC Short Circuit Protection DAC output
- OCCDAC Over Current Charge DAC output
- OCDDAC Over Current Discharge DAC output
- VIN Main Input Supply Voltage

Temperature Monitoring and Protection

The PAC25140 has an integrated temperature sensor that is used for die temperature warnings and faults and can also be sampled by the MCU ADC through the AFE MUX using the VPTAT MUX channel.

This value has a compensation coefficient available in INFO FLASH that can be used to obtain an accurate temperature. The parameter VT300K will be stored in INFO FLASH and will indicate the compensation factor.

The die temperature in degrees Kelvin can then be calculated by the following formula:

TKELVIN = 300 * (VPTAT + 0.075) / (VT300K + 0.075)

The PAC25140 contains two warning thresholds and one fault threshold:

Warn 1: 120°C
 Warn 2: 140°C
 Fault: 155°C

If the internal temperature (VPTAT) rises above the Warn 1 threshold, the device will indicate this through a latched register bit. The user may enable a mask-able interrupt to the MCU to announce this condition.

If the internal temperature (VPTAT) rises above the Warn 2 threshold, the device will indicate this through a separate latched register bit. The user may enable an interrupt to the MCU to announce this condition. This will be the same interrupt as the Warn 1 threshold.

If the internal temperature (VPTAT) rises above the Fault threshold, the Charge pump, DC/DC and gate drivers will be disabled. The device will indicate this through a latched register bit. There is not interrupt for this condition. When the device falls below the hysteresis value, then the DC/DC will be re-enabled.

The temperature hysteresis level for all three thresholds is 10°C.

PACK+ Charger Detection

When properly configured the Pack+ Charger Detection can be used to exit hibernate mode. The threshold is selectable, and when PACK+ crosses it a wake up event occurs. To prevent PACK+ from floating a $10k\Omega$ can be enabled to pull PACK+ low.

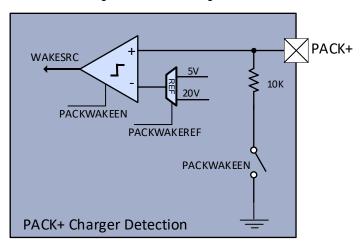


Figure 7 PACK+ Charger Detection

PACK+ Load/Short Detection

When properly configured the load detection can be used for load or shorted load event detection. This requires firmware to move the state of the system into the proper configuration. Either a load or a shorted load can be detected. This detection is disabled during hibernate mode.

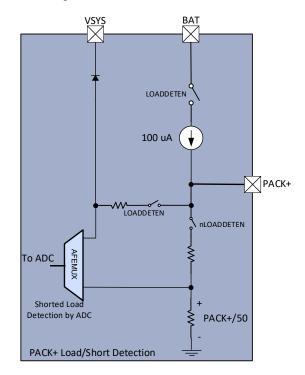


Figure 8 PACK+ Load/Short Detection

Push-Button (PB) Input

The PAC25140 contains a push-button input pin (PB) and a push-button module (see Figure 9 below). A push-button pass through to the MCU can be enabled so that the MCU can read the state of the digital PB pin directly on the PG6 GPIO. PG6 can also be configured as a UART RX input. In this case, an external UART TX signal can be used to wakeup the device, and then send UART transmissions to the MCU after the MCU comes out of reset and has been initialized.

The push-button module can be used to wake-up the device from hibernate, interrupt the MCU, or reset the device. The push-button polarity can be set to active high or active low using the polarity setting.

The push-button module can be configured so that an active PB will wake up the PAC25140 from hibernate mode.

When enabled, the push-button may also be used as a hardware reset when held active for longer than 8s during normal operation. Once the push-button is enabled, the polarity setting will determine whether the PB input will be pulled up to 3V with a $50k\Omega$ resistor or pulled down to GND with a $300k\Omega$ resistor. There is also a programmable de-glitch time that may be configured to 1, 4, 8, or 32ms.

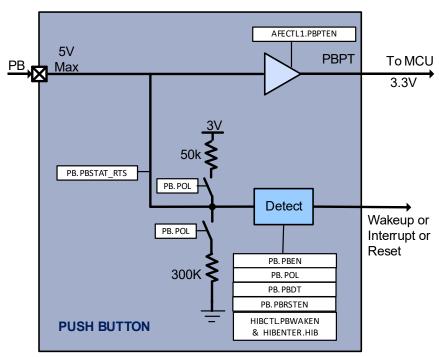
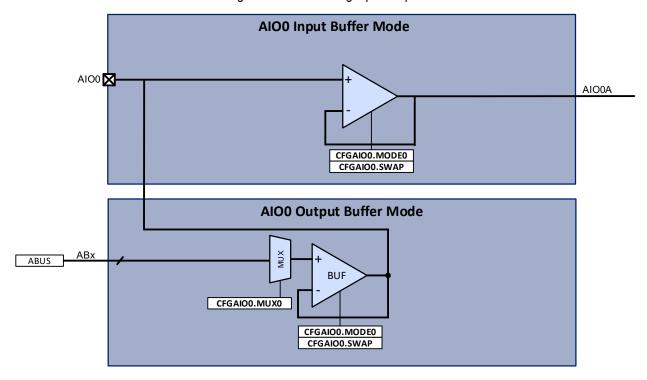


Figure 9 Push-Button (PB) Input



AIO0 - Analog Input Output

The PAC25140 has an AlO0 module and pin that includes a buffer for analog I/O (see Figure 10 below). The AlO0 pin can be configured as an input where the output of the buffer, AlO0A, is routed to the AFE Mux for input to the MCU ADC. Or, the AlO0 pin can be configured to output internal signals of the AFE. The following signals are available for output on the AlO0 pin:

- VREF 2.5V Voltage Reference
- AFEMUXOUT AFE Mux Output to the MCU ADC
- IMUXOUT Current Mux Output to the Current ADC
- VBMUXOUT Battery Cell Voltage Mux Output to the Voltage ADC

Figure 10 AIO0 Analog Input Output

Electrical Characteristics

The Electrical Characteristics for the CAFE are shown below.

Differential Amplifier (DA) Electrical Characteristics

Table 5 DA Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{ICMR;DA}	Input common mode range		-0.3		0.5	V
V _{OLR;DA}	Output linear range		0.1		VSYS - 0.1	V
I _{CC;DA}	Operating supply current			150		μА
Vos;da	Input offset voltage	Gain = 8x	-8		8	mV
KCMRR;DA	Common mode rejection ratio		50	80		dB
	Slew rate	Gain = 8x	5			V/μs
RINDIF;DA	Differential input impedance			80		kΩ
t _{ST;DA}	Settling time	To 1% of final value			TBD	ns
		Gain = 1x		1		
		Gain = 2x		2		
		Gain = 4x		4		
Avzi:da	Amplifier gain ⁽¹⁾	Gain = 8x, V _{DAxP} =V _{DAxN} =0V, T _A = 25°C	-2	8	2	%
, WZI,DA		Gain = 16x		16		
		Gain = 32x		32		
		Gain = 64x		64		
		Gain = 128x		128		

⁽¹⁾ For proper ADC conversion and Over-Current protection, VISENSE * DAGAIN must be within +/- 0.5V

TA = -40°C to 105°C unless otherwise specified

Current Sense ADC Electrical Characteristics

Table 6 Current Sense ADC Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
tadconv;adc16	ADC conversion time			1.5		ms
	ADC resolution			16		bits
	ADC effective resolution		15			bits
	ADC differential non-linearity (DNL)			+/- 0.5		LSB
	ADC integral non-linearity (INL)			+/- 6	+/- 20	LSB
	ADC offset error	Ta=25°C , DiffAmp Gain =1 after calibration		130		μV
	ADC gain error	Ta=25°C DiffAmp Gain =1 after calibration		1.25		%FS

TA = -40°C to 105°C unless otherwise specified

Cell Voltage ADC Electrical Characteristics

Table 7 Cell Voltage ADC Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
t _{ADCONV;ADC16}	ADC conversion time	f _{ADCLK} = 16MHz		5		ms
	ADC resolution			16		bits
	ADC effective resolution		14			bits
	ADC differential non-linearity (DNL)			+/- 0.3		LSB
	ADC integral non-linearity (INL)			+/- 4		LSB
	ADC offset error	Ta=25°C after calibration		3		LSB
	ADC gain error	Ta=25°C after calibration		0.82		%FS

TA = -40°C to 105°C unless otherwise specified

Cell Voltage Measurement Accuracy Electrical Characteristics

Table 8 Cell Voltage Measurement Accuracy Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
		3.2V <= Vcell <= 4.2V;	-10		10	
		1.8V <= Vcell <= 4.7V;	-20		20	mV
		$T_A = 25^{\circ}C;^{(1)}$				
	Cell voltage measurement accuracy (1)	3.2V <= Vcell <= 4.2V;	-15		15	
Vcell;acc		1.8V <= Vcell <= 4.7V;	-30		30	mV
		$T_A = 0^{\circ}C \text{ to } 85^{\circ}C;^{(1)}$				
		3.2V <= Vcell <= 4.2V;	-30		30	
		1.8V <= Vcell <= 4.7V;	-60		60	mV
		TA = -40°C to 105°C; ⁽¹⁾				

(1) After ADC Calibration

TA = -40°C to 105°C unless otherwise specified

Push-Button Electrical Characteristics

Table 9 Push-Button Electrical Characteristics

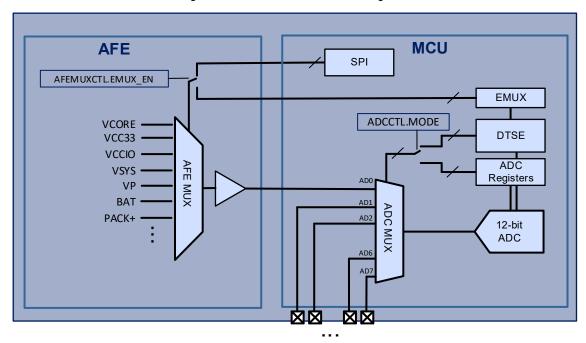
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
$V_{I,PBTN}$	Input voltage range		0		5	V
V _{IH,PBTN}	High-level input voltage		2.0			V
V _{IL,PBTN}	Low-level input voltage				1.4	V
R _{PU;PBTN}	Pull-up resistance	To 3V, push-button enabled PB.POL = Active Low		50		kΩ
R _{PD;PBTN}	Pull-down resistance	To GND, push-button enabled PB.PBPOL = Active high		300		kΩ

TA = -40°C to 105°C unless otherwise specified

Temperature Protection Electrical Characteristics

Table 10 Temperature Protection Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
T _{WARN1}	Temperature warning 1 threshold			120		°C
Twarn1;HYS	Temperature warning 1 hysteresis			10		°C
Twarn1;Blank	Temperature warning 1 blanking			10		μs
Twarn2	Temperature warning 2 threshold			140		°C
Twarn2;HYS	Temperature warning 2 hysteresis			10		°C
Twarn2;blank	Temperature warning 2 blanking			10		μs
T _{FAULT}	Temperature fault threshold			155		°C
T _{FAULT;HYS}	Temperature fault hysteresis			10		°C
T _{FAULT} ;BLANK	Temperature fault blanking			10		μs


TA = -40°C to 105°C unless otherwise specified

12-bit ADC With Dynamic Triggering and Sampling Engine (DTSE)

Block Diagram

Figure 11 12-bit MCU ADC Block Diagram

Functional Description

ADC

The analog-to-digital converter (ADC) is a 12-bit successive approximation register (SAR) ADC with 400ns conversion time and up to 2.5 MSPS capability. The integrated analog multiplexer allows selection from up to 8 direct ADx inputs, and additional analog inputs signals from the Configurable Analog Front End (CAFÉ).

The ADC contains a power down mode, and the user may configure the ADC to interrupt the MCU for the completion of a conversion when in manual mode. The ADC may be configured for either repeating or non-repeating conversions or conversion sequences.

ADC Conversion Timing

The ADC supports two modes for individual conversions: standard and enhanced. The timing diagrams for each of these modes is shown in figure 12 and 13.

Figure 12 ADC Conversion Timing Diagram (standard)

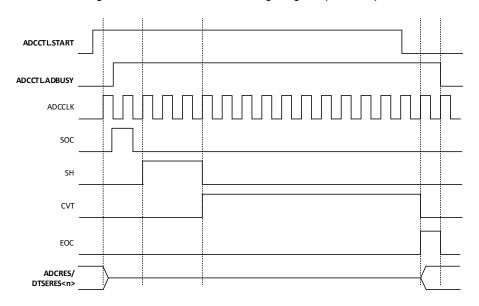
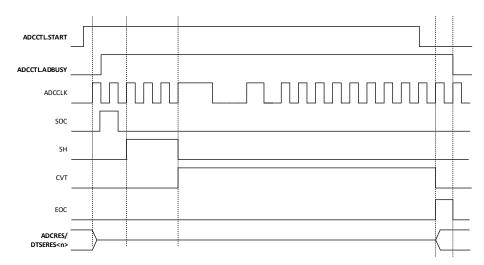



Figure 13 ADC Conversion Timing Diagram (enhanced)

Dynamic Triggering and Sample Engine

The Dynamic Triggering and Sample Engine (DTSE) is a highly configurable automatic sequencer that allows the user to configure automatic sampling of their application-specific analog signals without any interaction from the micro-controller core. The DTSE also contains a pseudo-DMA engine that copies each of up to 24 conversion results to dedicated memory space and can interrupt the MCU when complete.

The DTSE has up to 32 input triggers, from PWM Timers A, B, C and D for either the rising, falling or rising and falling PWM edges. The user may also force any trigger sequence by writing a register via firmware. The user can configure the DTSE to chain from 1 to 24 conversions to any PWM trigger.

The DTSE has a flexible interrupt structure that allows up to 24 interrupts to be configured at the completion of any individual conversion. The user may configure one of four different IRQ signals when generating an interrupt during sequence conversions. The IRQ may be generated at the end of a conversion sequence, or at the end of a series of conversions. The user may select one of four IRQs for conversions, and each may be assigned a different interrupt priority.

Each of the 24 conversions has dedicated results registers, so that the pseudo-DMA engine has dedicated storage for each of the conversion results.

EMUX Control

A dedicated low latency interface controllable by the DTSE or register control allows changing the ADC pre-multiplexer and asserting/deasserting the S/H circuit in the Configurable Analog Front-End (CAFE), allowing back-to-back conversions of multiple analog inputs without microcontroller interaction.

For more information on the ADC and DTSE, see the PAC55XX Family User Guide.

Electrical Characteristics

Table 11 ADC and DTSE Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
ADC						
fadclk	ADC conversion clock input				40	MHz
tadconv	ADC conversion time	f _{ADCLK} = 40MHz			400	ns
		Enhanced accuracy mode disabled				
		16 ADC Clocks per conversion				
		f _{ADCLK} = 40MHz			500	ns
		Enhanced accuracy mode enabled				
		20 ADC Clocks per conversion				
tadcsh	ADC sample and hold time	fadcclk = 40MHz			75	ns
					3	ADCCLKs
CADCIC	ADC input capacitance	ADC Mux Input		1		pF
	ADC resolution			12		bits
	ADC effective resolution		10.5			bits
	ADC differential non-linearity	F _{ADCCLK} = 25MHz		±0.5		LSB
	(DNL)	F _{ADCCLK} = 40MHz		±0.75		LSB
	ADC integral non-linearity (INL)	F _{ADCCLK} = 25MHz		±0.5		LSB
		F _{ADCCLK} = 40MHz		±0.75		LSB
	ADC offset error ¹			5		LSB
	ADC gain error ¹			0.5		%
Reference	e Voltage					
V _{REFADC}	ADC reference voltage input			2.5		V
EMUX CIO	ock Speed		·	·		
femuxclk	EMUX engine clock input			· · · · · ·	50	MHz

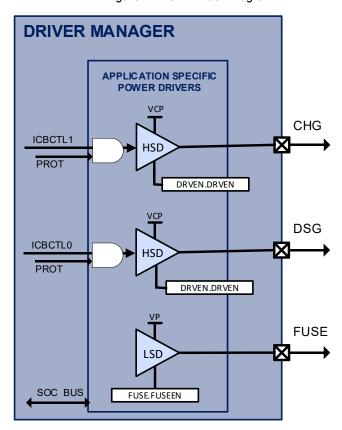
 V_P = 12V, V_{SYS} = 5V and T_A = -40°C to 125°C unless otherwise specified

No portion of this document may be reproduced or reused in any form without Qorvo's prior written consent

Rev. 1.0.0 27 February 2023

¹ ADC offset and gain parameters are calculated post-calibration when using the ADCOFF and ADCGAIN calibration parameters from INFO2 FLASH

Application Specific Power Drivers (ASPD)


Gate Drivers

Features

- High-Side gate drivers for CHG and DSG FET
- Low-side gate driver for external FUSE

Block Diagram

Figure 14 ASPD Block Diagram

Functional Description

The Application Specific Power DriversTM (ASPD) module drives the gate of the external CHG and DSG FETs and external protection fuse FET for the battery pack.

The CHG and DSG FET gates are driven from the CHG and DSG pins. The gate drive voltage for the CHG and DSG FETs is VCP (BAT + 9V). Source Follower Mode can be selected for lower current operations and not require enabling the charge pump. In this mode, CHG drive is off and DSG is on with a pull up to BAT. The mode is control by the DRVMODE control bits (see Users Guide)

The FUSE output is a low-side switch supplied by VP which is intended for driving the gate on an external FET which is typically used to below an external fuse in series with PACK+ and the battery stack. The FUSE could support another low-side driver need such as driving an LED.

The ASPD can be configured such that the high-side gate driver over-current, under-voltage and over-voltage turn off the FETs for protection.

Electrical Characteristics

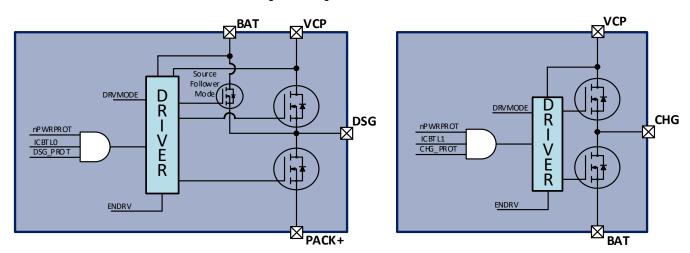

The Electrical Characteristics for the ASPD are shown below.

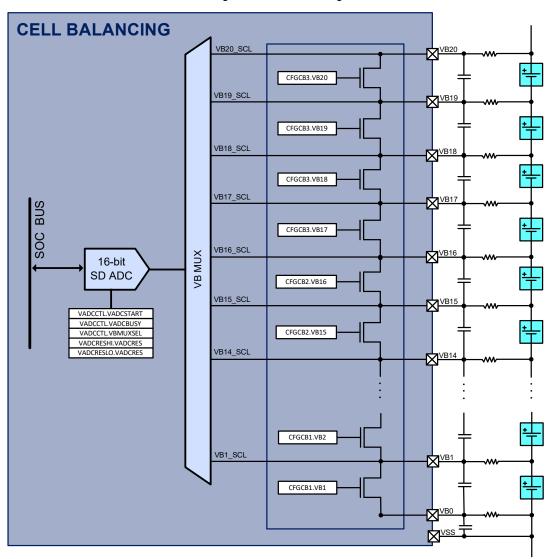
Table 12 ASPD Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
V _{FETON}	CHG or DSG FET On with respect to BAT	CHG/DSG C _L = 20 nF		9		V
Vchgfetoff	CHG FET Off (with respect to BAT)	CHG/DSG C _L = 20 nF			0.3	V
VDSGFETOFF	DSG FET Off (with respect to PACK+)	CHG/DSG C _L = 20 nF			0.3	V
Vsrcflwr	DSG on voltage (with respect to BAT)	CHG/DSG C _L = 20 nF		0		V
t _{FETrise}	CHG or DSG rise time 0.3V to 5V (with respect to BAT)	CHG/DSG $C_L = 20$ nF, $R_{GATE} = 100 \Omega$		25	50	μs
tchgfetfall	CHG FET fall time to BAT + 0.3V	CHG/DSG $C_L = 20 \text{ nF},$ $R_{GATE} = 100 \Omega$		50	75	μs
t _{DSGFETfall}	DSG FET fall time to PACK+ + 0.3V	CHG/DSG C_L = 20 nF, R_{GATE} = 100 Ω		5	25	μs
V _{FUSE}	FUSE Voltage	C _L = 1nF Assumes valid VIN		Vp		V
t _{FUSErise}	FUSE rise time	C _L = 1nF Time to 90% of V _{FUSE}		0.5		μs
RFUSEdriver	FUSE driver output resistance			400		Ω

TA = -40°C to 105°C unless otherwise specified

Figure 15 High Side Gate Drivers

Integrated Cell Balancing


The PAC25140 contains integrated cell balancing FETs for up to 20 cells.

Features

- FETs for each cell to allow discharge of individual cells
- Voltage ADC for sensing the voltage of each cell

Block Diagram

Figure 16 Cell Balancing

The integrated cell balancing contains FETs for up to 20 battery cells. Cell balancing can be performed through firmware programming. Each of the battery cell voltages from the VB[1..20] pins are available for sampling from the 16-bit ADC.

Adjacent cells should not be balanced at the same time. In the event that too many cells are being balanced at the same time and Thermal protection occurs, then the cell balancing will be shut down first.

Electrical Characteristics

The Electrical Characteristics for the Cell Balancing are shown below.

Table 13 Cell Balancing Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
	Number of cells		10		20	cells
V _{VB}	Cell voltage range		1.8	3.6	4.7	V
I _{VB}	Cell balance output current	V _{VB} = 4.2V		50		mA
RDS(ON);CB	Cell balance FET R _{DS(ON)}	1.8V <= Vcell <= 4.7V		25		Ω
	External cell balance resistors		20	30		Ω

TA = -40°C to 105°C unless otherwise specified

Battery AFE Windowed Watchdog Timer (WWDT)

This section describes the requirements for the BMS AFE Windowed Watchdog Timer (WWDT) module.

The SOC Bus Windowed Watchdog Timer must be accessed over the SOC Bridge I/F and can be used to reset the entire device if not reset at periodic intervals.

Wake-up Timer

The wake-up timer can be used for very low power hibernate and sleep modes to wake up the device periodically. It can be configured to be 125ms, 250ms, 500ms, 1s, 2s, 4, or 8s.

This AFE WWDT provides greater flexibility than previous AFE WDTs such that customers have a better chance of matching the WDT time to their system requirements. Using the AFE WWDT will provide a more complete device reset than the digital WDT.

The Windowing feature gives better robustness against rogue software that might be in a loop resetting the WDT continuously.

To comply with safety requirements, the WWDT shall be clocked from the 32 kHz Oscillator and not the 4 MHz CLKREF.

When the WWDT issues a reset, a Flag bit shall be set in the AFE reset status register indicating the WWDT caused the reset. Register bits shall be reset or retained per the Reset column in the Register Map (see Users Guide)

A key benefit of the AFE WWDT is that it will reset the MCU and also the majority of the battery AFE.

Figure 17 WWDT System Block Diagrams

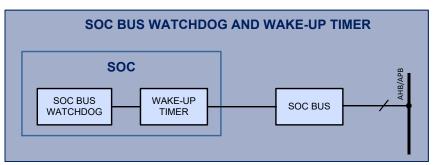
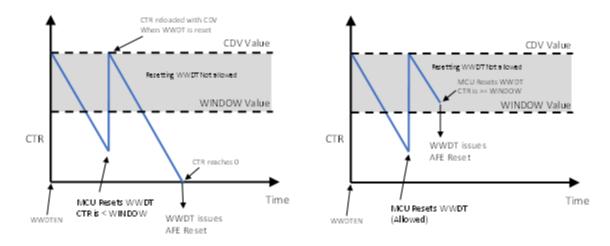
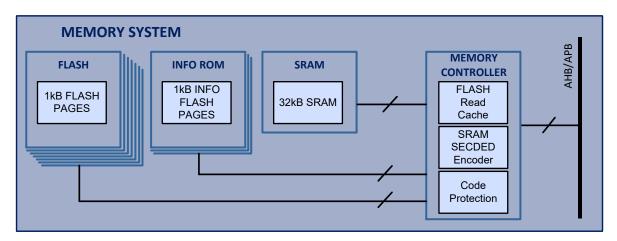



Figure 18 WWDT Operation

Normal MCU Resetting of the WWDT and CTR reaches 0

MCU Resets WWDT when CTR is > WINDOW value

No portion of this document may be reproduced or reused in any form without Qorvo's prior written consent


MCU Memory System

Features

- 128kB Embedded FLASH
 - ◆ 30,000 program/erase cycles
 - 10 years data retention
 - FLASH look-ahead buffer for optimizing access
- 1kB INFO-1 Embedded FLASH
- 1kB INFO-2 Embedded FLASH
 - Device ID, Unique ID, trim and manufacturing data
- 1kB INFO-3 Embedded FLASH
 - User data storage, configuration, or parameter storage
 - Data or code
- 32kB SRAM
 - 150MHz access for code or data
 - SECDED for read/write operations
- User-configurable code protection

Block Diagram

Figure 19 Memory System Block Diagram

Functional Description

The PAC25140 has multiple banks of embedded FLASH memory, SRAM memory as well as peripheral control registers that are program-accessible in a flat memory map.

No portion of this document may be reproduced or reused in any form without Qorvo's prior written consent

Program FLASH

The PAC25140 Memory Controller provides access to 128 1kB pages of main program FLASH for a total of 128kB of FLASH through the system AHB bus. Each page may be individually erased or written while the MCU is executing instructions from SRAM.

The PAC25140 Memory Controller provides a FLASH read buffer that optimizes access from the MCU to the FLASH memory. This look ahead buffer monitors the program execution and fetches instructions from FLASH before they are needed to optimize access to this memory.

INFO FLASH

The PAC25140 Memory Controller provides access to the INFO-1, INFO-2 and INFO-3 FLASH memories, which are each a single 1kB page for a total of 3kB of memory.

INFO-1 and INFO-2 are read-only memories that contains device-specific information such as the device ID, a unique ID, trimming and calibration data that may be used by programs executing on the PAC25140.

INFO-3 is available to the user for data or program storage.

SRAM

The PAC25140 Memory Controller provides access to the 32kB SRAM for non-persistent data storage. The SRAM memory supports word (4B), half-word (2B) and byte addresses.

The PAC25140 Memory Controller can read or write data from RAM up to 150MHz. This can be a benefit for time-critical applications. This memory can also be used for program execution when modifying the contents of FLASH, INFO-1 or INFO-2 FLASH.

The PAC25140 Memory Controller also has an SECDED encoder, capable of detecting and correcting single-bit errors, and detecting double-bit errors. The user may read the status of the encoder, to see if a single-bit error has occurred. The user may also enable an interrupt upon detection of single-bit errors. Dual-bit errors can be configured to generate an interrupt in the PAC25140.²

For more information on the PAC25140 Memory Controller, see the PAC55XX Family User Guide.

No portion of this document may be reproduced or reused in any form without Qorvo's prior written consent

² Note that when writing half-word or single bytes to SRAM, the memory controller must perform a read-modify write to memory to perform the SECDED calculation. These operations will take more than one clock cycle to perform for this reason.

Code Protection

The PAC25140 allows user configurable code protection, to secure code from being read from the device.

There are four levels of code protection available as shown in the table below.

Table 14 Code Protection Level Description

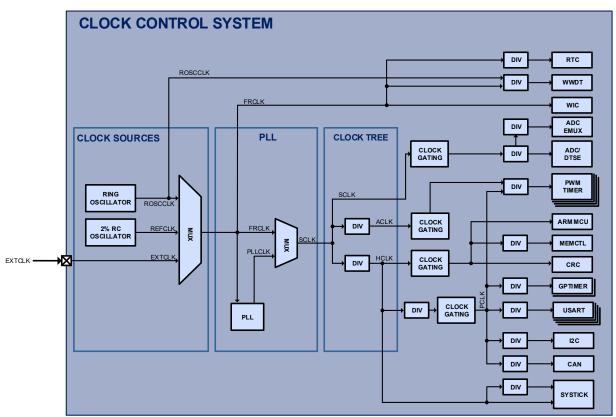
LEVEL	NAME	FEATURES
0	UNLOCKED	No restrictions
1	RW PROTECTION	 SWD/JTAG enabled Programmable protection of up to 128 regions of FLASH User-specified Read or Write protection per region
2	SWD DISABLED	 SWD/JTAG disabled Programmable protection of up to 128 regions of FLASH User-specified Read or Write protection per region
3	SWD/JTAG PERMANENTLY DISABLED	 SWD/JTAG disabled Programmable protection of up to 128 regions of FLASH User-specified Read or Write protection per region No recovery

Electrical Characteristics

Table 15 Memory System Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Embedded FL	_ASH					
tread;flash	FLASH read time		40			ns
twrite;flash	FLASH write time		30			μs
t _{PERASE;FLASH}	FLASH page erase time				2	ms
tmerase;flash	FLASH full erase time				10	ms
N _{PERASE;} FLASH	FLASH program/erase cycles		30k			cycles
t _{DR;FLASH}	FLASH data retention		10			years
SRAM						
tacc;sram	SRAM access cycle time	HCLK = 150MHz; Word (32-bits), aligned	6.67			ns
		HCLK = 150MHz; Half-word (16-bits), byte (8-bits), aligned	6.67			ns

TA = -40°C to 125°C unless otherwise specified.


MCU Clock Control System (CCS)

Features

- 20MHz Ring Oscillator
- High accuracy 1.25% trimmed 4MHz RC oscillator
- External Clock Input for External Clocks up to 20MHz
- PLL with 1MHz to 50MHz input, 62.5MHz to 300MHz output
- Clock dividers for all system clocks
- Clock gating for power conservation during low-power operation

Block Diagram

Figure 20 CCS Block Diagram

Functional Description

The Clock Control System (CCS) controls the clock system and clock gating for the PAC25140. There are three independent clock sources: the Ring Oscillator, Reference Clock and External Clock Input.

Clock Sources

Ring Oscillator

The Ring Oscillator (ROSC) is an integrated 20MHz clock oscillator that is the default system clock and is available by default when the PAC25140 comes out of reset. The output of the ROSC is the **ROSCCLK** clock. The **ROSCLK** may be selected as the **FRCLK** clock and may supply the WWDT, for applications that need an independent clock source or need to continue to be clocked when the system is in a low-power mode.

The ROSC may be disabled by the user by a configuration register.

Reference Clock

The Reference Clock (*REFCLK*) is an integrated 1.25% trimmed 4MHz RC clock. This clock is suitable for many applications. This clock may be selected as the *FRCLK* and can be used as the input to the PLL and is used to derive the clock for the MMPM.

External Clock Input

The External Clock Input (EXTCLK) is a clock input available through the digital peripheral MUX, and allows the drive the clock system by a 50% duty cycle clock of up to 20MHz. This clock may be selected as FRCLK and can be used as the input the PLL (as long as the accuracy is better than +/- 2%).

PLL

The PAC25140 contains a Phase Lock Loop (PLL) that can generate very high clock frequencies up to 300MHz for the peripherals and timers in the device. The input to the PLL is the *FRCLK* and must be from the *EXTCLK* or *REFCLK* clock sources

The input to the PLL must be between 1MHz – 50MHz and the output can be configured to be from 62.5MHz to 300MHz. The user can configure the PLL to generate the desired clock output based on a set of configuration registers in the CCS. The output of the PLL is the **PLLCLK** clock. The user may configure a MUX to generate the SCLK clock from **PLLCLK** or from **FRCLK**.

In addition to configuring the PLL output frequency, the PLL may be enabled, disabled and bypassed through a set of configuration registers in the CCS.

Clock Tree

The following are the system clocks available in the clock tree. See the section below to see which clocks are available for each of the digital peripherals in the system.

FRCLK

The free-running clock (*FRCLK*) is generated from one of the four clock sources (*ROSCCLK*, *EXTCLK* or *REFCLK*). This clock may be used by the WWDT and the RTC, for configurations that turn off all other system clocks during low power operation.

The FRCLK or PLLCLK is selected via a MUX and the output becomes SCLK.

SCLK

The System Clock (**SCLK**) generates two system clocks: **ACLK** and **HCLK**. Each of these system clocks has their own 3b clock divider and is described below.

No portion of this document may be reproduced or reused in any form without Qorvo's prior written consent

PCLK

The Peripheral Clock (*PCLK*) is used by most of the digital peripherals in the PAC25140. This clock has a 3b clock divider and also has clock gating support, which allows this clock output to be disabled before the system is put into the Arm® Cortex®-M4's deep sleep mode to conserve energy.

As shown above, most of the peripherals that use **PCLK** also have their own clock dividers so that this clock can be further divided down to meet the application's needs.

ACLK

The Auxiliary Clock (*ACLK*) may be optionally used by the PWM timer block in the PAC25140 in order to generate a very fast clock for PWM output to generate the best possible accuracy and edge generation.

This clock has a 3b clock divider and also has clock gating support, which disables this clock output when the system is put into the Arm[®] Cortex[®]-M4's deep sleep mode to conserve energy.

As shown above, the ACLK is an optional input for just the PWM timer block in the PAC25140.

HCLK

The AHB Clock (*HCLK*) is used by the Arm[®] Cortex[®]-M4 MCU and Memory Controller peripheral. This clock has a 3b divider and also has clock gating support, which allows this clock output to be disabled before the system is put into the Arm[®] Cortex[®]-M4's deep sleep mode to conserve energy.

HCLK supplies PCLK with its clock source.

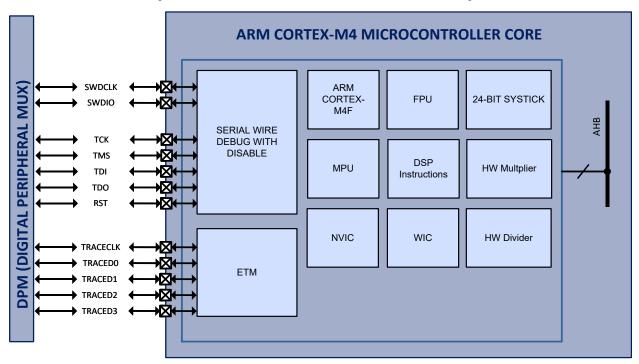
Electrical Characteristics

The Electrical Characteristics for the Clock Control System module are shown below.

Table 16 Clock Control System Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Clock Tree (FRC	CLK, FCLK, HCLK, PCLK, ACLK)					
f _{FRCLK}	Free-running clock frequency				25	
f _{SCLK}	System clock frequency				300	MHz
f _{PCLK}	Peripheral clock frequency	After divider			150	IVITIZ
faclk	Auxilliary clock frequency	After divider			300	
f _{HCLK}	High-speed clock frequency	After divider			150	
Internal Oscillat	ors					
f _{ROSCCLK}	Ring oscillator frequency			20		MHz
f _{TRIM;REFCLK}	Trimmed RC oscillator frequency	TA = 25°C	-1.25%	4	1.25%	MHz
		TA = -40°C to 105°C	2.25%	4	2%	
f _{JITTER;REFCLK}	Trimmed RC oscillator clock jitter	TA = -40°C to 85°C		0.5		%
PLL						
f _{IN;PLL}	PLL input frequency range		1		50	MHz
fout;pll	PLL output frequency range		62.6		300	MHz
tsettle;pll	PLL settling time	T _A = 25°C, PLL settled			15	μs
		T _A = 25°C, PLLLOCK = 1		200	500	μs
	DI L maried litter	RMS		25		ps
tjitter;pll	PLL period jitter	Peak to peak			100	ps
	PLL duty cycle		40	50	60	%
External Clock I	nput					
f extclk	External Clock Input Frequency				20	MHz
	External Clock Input Duty Cycle		40		60	%
VIH;EXTCLK	External Clock Input high-level input voltage		2.1			V
VIL;EXTCLK	External Clock Input low-level input voltage				0.825	V

(T_A = -40°C to 125°C unless otherwise specified.)


MCU Core Arm® CORTEX®-M4F

Features

- Arm® Cortex®-M4F core
- SWD or JTAG Debug
- SWD/JTAG code security
- Embedded Trace Module (ETM) for instruction tracing
- Memory Protection Unit (MPU)
- Nested Vectored Interrupt Controller (NVIC) with 29 user interrupts and 8 levels of priority
- Floating Point Unit (FPU)
- Wakeup Interrupt Controller (WIC)
- 24-bit SysTick Count-down Timer
- Hardware Multiply and Divide Instructions

Block Diagram

Figure 21 Arm® Cortex®-M4F Microcontroller Core Block Diagram

Functional Description

The Arm® Cortex®-M4F microcontroller core is configured for little endian operation and includes hardware support for multiplication and division, DSP instructions as well as an IEEE754 single-precision Floating Point Unit (FPU).

No portion of this document may be reproduced or reused in any form without Qorvo's prior written consent

The MCU also contains an 8-region Memory Protection Unit (MPU), as well as a Nested Vector Interrupt Controller (NVIC) that supports 29 user interrupts with 8 levels of priority. There is a 24-bit SysTick count-down timer.

The Arm® Cortex®-M4F supports sleep and deep sleep modes for low power operation. In sleep mode, the Arm® Cortex®-M4F is disabled. In deep sleep mode, the MCU as well as many peripherals are disabled. The Wakeup Interrupt Controller (WIC) can wake up the MCU when in deep sleep mode by using any GPIO interrupt, the Real-Time Clock (RTC) or Windowed Watchdog Timer (WWDT). The PAC25140 also supports clock gating to reduce power during deep sleep operation.

The debugger supports 4 breakpoint and 2 watch-point unit comparators using the SWD or JTAG protocols. The debug serial interfaces may be disabled to prevent memory access to the firmware during customer production.

For more information on the detailed operation of the Microcontroller Core in the PAC25140, see the PAC55XX Family User Guide.

Application Typical Current Consumption

The MCU clock configuration and peripheral configuration have a large influence on the amount of load that the power supplies in the PAC25140 will have.

The table below shows a few popular configurations and what the typical power consumption will be on the VSYS and VCORE power supplies in the PAC25140.

Table 17 PAC25140 Application Typical Current Consumption

CLOCK CONFIGURATION	MCU PERIPHERALS	MCU STATE	l _{vsys}	Ivcore	Ічссзз	Ivccio
CLKREF = 4MHz PLL Disabled ACLK=HCLK=PCLK=SCLK=MCLK = 16MHz ROSCCLK Enabled FRCLK MUX = ROSCCLK	All peripherals disabled	Halted	9.5mA	2.3mA	n/a	0.5mA
CLKREF = 4MHz PLLCLK = 30MHz ACLK=HCLK=PCLK=SCLK= 16MHz MCLK = 30MHz ROSCCLK Enabled FRCLK MUX = CLKREF	All peripherals disabled	Halted	10.5mA	3.5mA	n/a	3mA
CLKREF = 4MHz PLLCLK = 150MHz ACLK=HCLK=PCLK=SCLK= 150MHz MCLK = 30MHz ROSCCLK Enabled FRCLK MUX = CLKREF	All peripherals disabled	Halted	20mA	13.5mA	n/a	3mA
CLKREF = 4MHz PLLCLK = 300MHz ACLK=HCLK=PCLK=SCLK= 150MHz MCLK = 30MHz ROSCCLK Enabled FRCLK MUX = CLKREF	All peripherals disabled	Halted	22mA	15mA	n/a	3mA
CLKREF = 4MHz PLLCLK = 300MHz ACLK=HCLK=PCLK=SCLK= 150MHz MCLK = 30MHz ROSCCLK Enabled FRCLK MUX = CLKREF ADCCLK = 40MHz	ADC enabled (repeated conversions)	Halted	36mA	16mA	13.5mA	3.5mA
CLKREF = 4MHz PLLCLK = 300MHz ACLK=HCLK=PCLK=SCLK= 150MHz MCLK = 30MHz ROSCCLK Enabled FRCLK MUX = CLKREF	Timer A enabled; TAPWM[7:0] enabled; Fs = 100kHz; 50% duty cycle	Halted	22mA	15mA	n/a	3.5mA

Electrical Characteristics

Table 18 Microcontroller Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
f _{HCLK}	MCU Clock				50	MHz
I _{Q:VCORE}	V _{CORE} quiescent current	Arm® Cortex®-M4F Sleep/Deep Sleep Modes			2	mA
2,12212		Device Hibernate Mode			0	mA
I _{o:vsys}	V _{SYS} quiescent current	Arm® Cortex®-M4F Sleep/Deep Sleep Modes			8	mA
α, το το	·	Device Hibernate Mode			15	μΑ
I _{Q:VCCIO}	VCCIO quiescent current	Arm [®] Cortex [®] -M4F Sleep/Deep Sleep Modes			0.15	mA
- 4, 70010	· ·	Device Hibernate Mode			0	mA
I _{Q:VCC33}	VCC33 quiescent current	Arm [®] Cortex [®] -M4F Sleep/Deep Sleep Modes			0.4	mA
- 4, 7 0000	·	Device Hibernate Mode			0	mA

 $(T_A = -40$ °C to 125°C unless otherwise specified)

MCU IO Controller

Features

- 3.3V Input/Output, 4.6V input tolerant
- Push-Pull Output, Open-Drain Output or High-Impedance Input for each IO
- Configurable Pull-up and Pull-down for each IO (60k)
- Configurable Drive Strength for each IO (up to 24mA)
- Analog Input for some IOs
- Edge-sensitive or level-sensitive interrupts
- Rising edge, falling edge or both edge interrupts
- Peripheral MUX allowing up to 8 peripheral selections for each IO
- Configurable De-bouncing Circuit for each IO

System Block Diagram

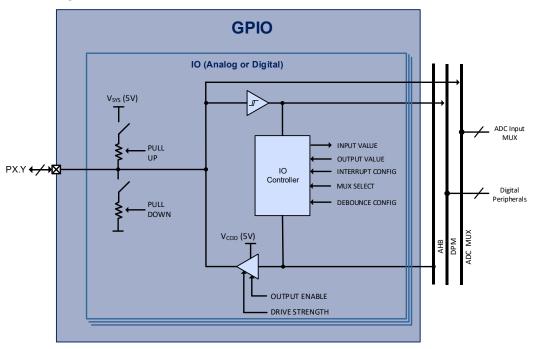


Figure 22 IO Controller System Block Diagram

Functional Description

IO Controller

The PAC25140 IO cells can be used for digital input/output and analog input for the ADC. All IOs are supplied by the V_{CCIO} (3.3V) power supply.

Each IO can be configured for digital push-pull output, open-drain output or high-impedance input. Each IO also has a configurable 60k weak pull-up or weak pull-down that can be enabled.

NOTE: Configuring both pull-up and pull-down at the same time may cause device damage and should be avoided.

Each IO has a configurable de-bouncing filter that can be enabled or disabled, to help filter out noise.

All IO have interrupt capability. Each pin can be configured for either level or edge sensitive interrupts, and can select between rising edge, falling edge and both edges for interrupts. Each pin has a separate interrupt enable and interrupt flag.

Some of the IO on the PAC25140 can be configured as an analog input to the ADC.

GPIO Current Injection

Under normal operation, there should not be current injected into the GPIOs on the device due to the GPIO voltage below ground or above the GPIO supply (VCCIO). Current will be injected into the GPIO when the GPIO pin voltage is less than -0.3V or when greater than GPIO supply + 0.3V.

In order provide a robust solution when this situation occurs, the PAC25140 family of products allows a small amount of injected current into the GPIO pins, to avoid excessive leakage or device damage.

For information on the GPIO current injection thresholds, see the absolute maximum parameters for this device.

Sustained operation with the GPIO pin voltage greater than the GPIO supply or when the GPIO pin voltage is less than -0.3V may result in reduced lifetime of the device. GPIO current injection should only be a temporary condition.

Peripheral MUX

The Peripheral MUX (DPM) allows the IO controller to select one of up to four peripheral functions for each IO pin. Note that if the pin is configured for analog input, the peripheral MUX is bypassed.

The Peripheral MUX for the PAC25140 is shown below.

Table 19 Peripheral MUX settings

PERIPHERAL MUX SETTINGS									
PIN	S0	S1	S2	S 3	S4	S5	S6	S7	ADC CH
PD0	GPIOD0	TBPWM0	TCPWM0	TDQEPIDX		USCSCLK	CANTXD	EMUXD	AD4
PD1	GPIOD1	TBPWM1	TCPWM1	TDQEPPHA		USCSS	CANRXD	EMUXC	AD3
PD2	GPIOD2	TBPWM2	TCPWM2	TDQEPPHB		USCMOSI			AD2
PD3	GPIOD3	TBPWM3	TCPWM3			USCMISO	FRCLK	TRACED3	AD1
PD4	GPIOD4	TBPWM4	TCPWM4	TDQEPIDX	TBQEPIDX	USDSCLK	TRACED3	USDMOSI	
PD5	GPIOD5	TBPWM5	TCPWM5	TDQEPPHA	TBQEPPHA	USDSS	CANRXD	USDMISO	
PE0	GPIOE0	TCPWM4	TDPWM0	TAQEPIDX	TBQEPIDX	USCCLK	12CSCL	EMUXC	
PE1	GPIOE1	TCPWM5	TDPWM1	TAQEPPHA	TBQEPPHA	USCSS	I2CSDA	EMUXD	
PE2	GPIOE2	TCPWM6	TDPWM2	TAQEPPHB	TBQEPPHB	USCMOSI	CANRXD	EXTCLK	
PE3	GPIOE3	TCPWM7	TDPWM3	FRCLK		USCMISO	CANTXD		
PF0	GPIOF0	TCPWM0	TDPWM0	TCK/SWDCL	TBQEPIDX	USBSCLK	TRACED2	TRACECLK	
PF1	GPIOF1	TCPWM1	TDPWM1	TMS/SWDIO	TBQEPPHA	USBSS	TRACED1	TRACED0	
PF2	GPIOF2	TCPWM2	TDPWM2	TDI	TBQEPPHB	USBMOSI	TRACED0	TRACED1	
PF3	GPIOF3	TCPWM3	TDPWM3	TDO	FRCLK	USBMISO	TRACECLK	TRACED2	
PF4	GPIOF4	TCPWM4	TDPWM4		TCQEPIDX	USDSCLK	TRACED3	EMUXC	AD4
PF5	GPIOF5	TCPWM5	TDPWM5		TCQEPPHA	USDSS		EMUXD	AD5
PF6	GPIOF6	TCPWM6	TDPWM6		TCQEPPHB	USDMOSI	CANRXD	I2CSCL	AD6
PF7	GPIOF7	TCPWM7	TDPWM7			USDMISO	CANTXD	I2CSDA	AD7
PG0	GPIOG0	TCPWM0	TDPWM0	EMUXC		USDSCLK	TRACECLK	TCQEPIDX	
PG1	GPIOG1	TCPWM1	TDPWM1	EMUXD		USDSS	TRACED0	TCQEPPHA	
PG2	GPIOG2	TCPWM2	TDPWM2	FRCLK		USDMOSI	TRACED1	TCQEPPHB	
PG3	GPIOG3	TCPWM3	TDPWM3			USDMISO	TRACED2		

Electrical Characteristics

The Electrical Characteristics for the IO Controller are shown below.

Table 20 IO Controller Electrical Characteristics

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
VIH	High-level input voltage			2.1			V
VIL	Low-level input voltage					0.825	V
			DS = 6mA	6			
			DS = 8mA	8			
		DS	DS = 11mA	11			
la.	Low-level output sink current	V _{OL} = 0.4V	DS = 14mA	14			mΛ
loL	(Limited by Ivsys and Ivccio)	VOL - 0.4V	DS = 17mA	17			mA
			DS = 20mA	20			
			DS = 22mA	22			
			DS = 25mA	25			
			DS = 6mA			-6	
			DS = 8mA			-8	
		DS = 11mA	-11				
	High-level output source current	\ \ \ - 2.4\\	DS = 14mA			-14	A
I _{OH}	(Limited by Ivsys and Ivccio)	V _{OH} = 2.4V	V _{OH} = 2.4V DS = 17mA		-17	mA	
			DS = 20mA			-20	
			DS = 22mA			-22	
			DS = 25mA			-25	
I _{IL}	Input leakage current			-2		0.95	μΑ
R _{PU}	Weak pull-up resistance	When pull-up	enabled	45	60	100	kΩ
R _{PD}	Weak pull-down resistance	When pull-dov	vn enabled	45	60	115	kΩ
IINJ;GPIO	GPIO pin current injection	V _{GPIO} < -0.3V (-15		15	mA
ΣI _{INJ;GPIO}	Sum of all GPIO pin current injection	V _{GPIO} < -0.3V (-40		40	mA

TA = -40°C to 105°C unless otherwise specified

MCU Communication Interfaces

Features

- USART (UART or SPI master/slave)
- I2C master/slave
- CAN 2.0B controller

System Block Diagram

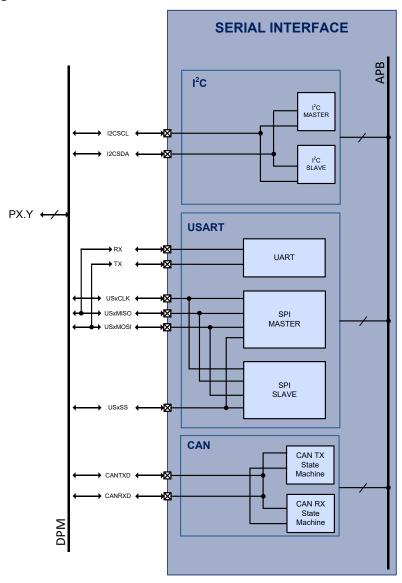


Figure 23 Serial Interfaces System Block Diagram

Functional Description

The PAC25140 has three types of serial interfaces: I^2C , USART (SPI/UART) and CAN. The PAC25140 has one I^2C controller, one CAN controller and up to 3 USARTs.

No portion of this document may be reproduced or reused in any form without Qorvo's prior written consent

I²C Controller

The PAC25140 contains one I²C controller. This is a configurable APB peripheral and the clock input is PCLK. This peripheral has an input clock divider that can be used to generate various master clock frequencies. The I²C controller can support various modes of operation:

- I²C master operation
 - Standard (100kHz), full-speed (400kHz), fast (1MHz) or high-speed modes (3.4MHz)
 - Single and multi-master
 - Synchronization (multi-master)
 - Arbitration (multi-master)
 - 7-bit or 10-bit slave addressing
- I²C slave operation
 - Standard (100kHz), full-speed (400kHz), fast (1MHz) or high-speed modes (3.4MHz)
 - Clock stretching
 - 7-bit or 10-bit slave addressing

The I²C peripheral may operate either by polling or can be configured to be interrupt driven for both receive and transmit operations.

USART

The PAC25140 contains up to 3 Universal Synchronous Receive Transmit (USART) peripherals. Each USART is a configurable APB bus client and input clock is PCLK. These peripherals have a configurable clock divider that can be used to produce various frequencies for the UART or SPI master peripheral.

The number of these peripherals depends on the peripheral MUX configuration. See the IO Controller section on information on how to configure the peripheral MUX with the USART peripheral.

The USART peripheral supports two main modes: SPI mode and UART mode.

USART SPI Mode

- Master or slave mode operation
- 8-bit, 16-bit or 32-bit word transfers
- Configurable clock polarity (active high or active low)
- Configurable data phase (setup/sample or sample/setup)
- Interrupts and status flags for RX and TX operations
- Support for up to 25MHz SPI clock

USART UART Mode

- 8-bit data
- Programmable data bit rate
- Maximum baud rate of 1Mbaud
- RX and TX FIFOs
- Configurable stop bits (1 or 2)
- Configurable parity: even, odd, none
 - Mark/space support for 9-bit addressing protocols
- Interrupt and status flags for RX and TX operations

CAN

The PAC25140 contains one Controller Area Network (CAN) peripheral. The CAN peripheral is a configurable APB bus client and input clock is PCLK. This peripheral has a configurable clock divider that can be used to produce various frequencies for the CAN peripheral.

- CAN 2.0B support
- 1Mb/s data rate
- 64-byte receive FIFO
- 16-byte transmit buffer
- Standard and extended frame support
- Arbitration
- Overload frame generated on FIFO overflow
- Normal and Listen Only modes supported
- Interrupt and status flags for RX and TX operations

Dynamic Characteristics

The Dynamic Characteristics for the Serial Interfaces on the PAC25140 are shown below.

Serial Interface

Table 21 Serial Interface Dynamic Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I2C						
	I ² C input clock frequency	Standard mode (100kHz)	2.8			MHz
		Full-speed mode (400kHz)	2.8			MHz
f _{I2CCLK}		Fast mode (1MHz)	6.14			MHz
		High-speed mode (3.4MHz)	20.88			MHz
USART (UART	「mode)					
f _{UARTCLK}	USART input clock frequency				f _{PCLK} /16	MHz
f _{UARTBAUD}	UART baud rate	f _{USARTCLK} = 7.1825MHz			1	Mbps
USART (SPI m	node)					
f	LICART input alogic fraguency	Master mode			50	MHz
f _{SPICLK}	USART input clock frequency	Slave mode			50	MHz
£	LICART CRI ala de fra muser au	Master mode			25	MHz
f _{USARTSPICLK}	USART SPI clock frequency	Slave mode			25	MHz
CAN						
f _{CANCLK}	CAN input clock frequency				50	MHz
f _{CANTX}	CAN transmit clock frequency				1	Mbps
f _{CANRX}	CAN receive clock frequency			•	1	Mbps

I2C Dynamic Characteristics

Table 22 I2C Dynamic Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
		Standard mode	0		100	kHz
f _{SCL}	SCL clock frequency	Full-speed mode	0		400	kHz
		Fast mode	0		1	MHz
		Standard mode	4.7			μs
t_{LOW}	SCL clock low	Full-speed mode	1.3			μs
		Fast mode	0.5			μs
		Standard mode	4.0			μs
t _{HIGH}	SCL clock high	Full-speed mode	0.6			μs
		Fast mode	0.26			μs
		Standard mode	4.0			μs
t _{HD;STA}	Hold time for a repeated START condition	Full-speed mode	0.6			μs
	Condition	Fast mode	0.26			μs
		Standard mode	4.7			μs
t _{SU;STA}	Set-up time for a repeated START condition	Full-speed mode	0.6			μs
	Condition	Fast mode	0.26			μs
		Standard mode	0		3.45	μs
t _{HD;DAT}	Data hold time	Full-speed mode	0		0.9	μs
		Fast mode	0			μs
		Standard mode	250			ns
t _{SU;DAT}	Data setup time	Full-speed mode	100			ns
		Fast mode	50			ns
		Standard mode	4.0			μs
t _{su;sto}	Set-up time for STOP condition	Full-speed mode	0.6			μs
		Fast mode	0.26			μs
		Standard mode	4.7			μs
t _{BUF}	Bus free time between a STOP and START condition	Full-speed mode	1.3			μs
	STATE SONGTON	Fast mode	0.5			μs
		Standard mode			1000	ns
t _r	Rise time for SDA and SCL	Full-speed mode	20		300	ns
		Fast mode			120	ns
		Standard mode			300	ns
t _f	Fall time for SDA and SCL	Full-speed mode			300	ns
		Fast mode			120	ns
	Conscitive load for some harding	Standard mode, full-speed mode			400	pF
C _b	Capacitive load for each bus line	Fast mode			550	pF

I2C Timing Diagram

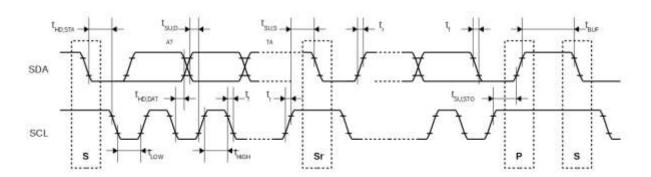


Figure 24 I2C Timing Diagram

MCU PWM Timers

Features

- Base timer features:
 - Configurable input clock source: PCLK or ACLK
 - Up to 300MHz input clock
 - 3-bit Input clock divider
 - Timer counting modes
 - o Up, up/down and asymmetric
 - Timer latch modes
 - Latch when counter = 0
 - Latch when counter = period
 - Latch when CCR value written
 - Latch all CCR values at same time
 - Base timer interrupts
 - Single shot or auto-reload
- CCR/PWM Timer
 - PWM output or capture input
 - CCR interrupt enable
 - CCR interrupt skips
 - SW force CCR interrupt
 - CCR interrupt type
 - o Rising, falling or both
 - CCR compare latch modes
 - Latch when counter = 0
 - Latch when counter = period
 - o Latch immediate
 - CCR capture latch modes
 - o Latch on rising edge
 - Latch on falling edge
 - Latch on both rising and falling edges
 - Invert CCR output
 - CCR phase delay for phase shifted drive topologies
 - ADC trigger outputs
 - PWM rising edge or falling edge
- Dead-time Generators (DTG)
 - DTG enabled
 - 12-bit rising edge delay
 - 12-bit falling edge delay
- QEP Decoder
 - QEP encoder enabled
 - Direction status
 - Configurable Interrupts:
 - Phase A rising edge
 - Phase B rising edge
 - Index event
 - Counter wrap

	PAC25140 Data Sheet Preview
 4 different counting modes for best resolution, range 	ge and speed performance

PWM Timers System Block Diagram

PWM TIMERS TIMER A PWM/CCR CAPTURE & [3:0] COMPARE TIMER A DEAD TIME 16-BIT **GENERATOR** CAPTURE & COMPARE тарна QEP **ENCODER** ТАРНВ PX.Y ← / **TIMER B PWM/CCR** CAPTURE & COMPARE TIMER B X **DEAD TIME** 16-BIT **GENERATOR CAPTURE &** COMPARE QEP **ENCODER TIMER C PWM/CCR CAPTURE &** TCPWM[3:0] COMPARE TIMER C **DEAD TIME** 16-BIT **GENERATOR CAPTURE &** COMPARE тсрна **OFP ENCODER** тсрнв TIMER D PWM/CCR **CAPTURE &** TDPWM[3:0] COMPARE TIMER D DEAD TIME 16-BIT **GENERATOR** TDPWM[7:4] CAPTURE & COMPARE QEP **ENCODER**

Figure 25 PWM Timers System Block Diagram

Functional Description

The PAC25140 contains four 16-bit timer units that may be used for PWM output and capture input. Each timer has a 16-bit time-base that may configure the counting style to up, up/down and up/down asymmetric modes. These modes can be used to support different drive topologies such as 120° trapezoidal and 180° sinusoidal.

Each base timer block may be clocked by either PCLK or ACLK. Configuring the timer to clock using ACLK allows higher PWM edge resolution by offering a clock that is up to 2X higher than the system clock. The base timer supports interrupts as well as single shot or auto-reload modes for maximum flexibility.

Each base timer has up to 8 CCR units that may be used for PWM output or capture input. When configured for PWM output, the user may configure a delay in order to support phase delay drive topologies. The CCR output may also be inverted in order to support full-bridge topologies.

The user may configure each CCR output rising or falling edge to interrupt the DTSE to begin a sequence of conversions.

MCU General Purpose Timers

Features

- SOC Bus Windowed Watchdog Timer
- Hibernate Wake-up Timer
- Real-Time Clock with Calendar and Alarm
- MCU Windowed Watchdog Timer (WWDT)
- 24-Bit General-purpose Timers

System Block Diagram

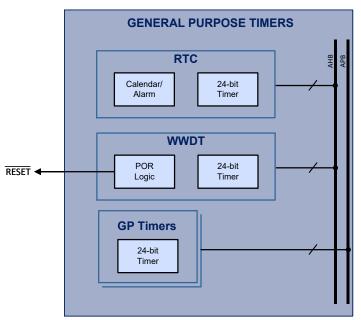


Figure 26 General-Purpose Timers System Block Diagrams

Rev. 1.0.0 27 February 2023 © 2023 Qorvo US, Inc.

Functional Description

Real-time Clock with Calendar (RTC)

The 24-bit real-time clock with calendar (RTC) is an AHB bus client and may also be used to measure long time periods and periodic wake up from sleep mode. It is reset if power is lost or hibernate mode.

The RTC uses FRCLK as its clock source and has a divider that can be configured up to a /65536 input clock divider. In order to count accurately, the input clock divider must be configured to generate a 1MHz clock to the RTC.

The RTC counts the time (seconds, minutes, hours, days) since enabled. It also allows the user to set a calendar date to set an alarm function that can be configured to generate an interrupt to the NVIC when it counts to that value.

MCU Windowed Watchdog Timer (WWDT)

The 16-bit windowed watchdog timer (WWDT) is an AHB bus client and can be used for long time period measurements or periodic wake up from sleep mode. Its primary use is to reset the MCU if it is not reset at a certain periodic interval.

The WWDT can be configured to use FRCLK or ROSCCLK as its clock source and has a divider that be configured up to a /65536 input clock divider.

The WWDT can be configured to allow only a small window when it is valid to reset the timer, to maximize application security and catch any stray code operating on the MCU.

The WWDT may be configured to enable an interrupt for the MCU, and the timer can be disabled when unused to save energy for low power operations.

GP Timer (GPT)

The PAC25140 contains two General Purpose (GP) Timers.

These timers are 24-bit timers and are both APB bus clients. These count-down timers use PCLK as their input clock and have a configurable divider of up to /32768. Each of the GPT can be configured to interrupt the MCU when they count down to 0.

Cyclic Redundancy Check (CRC)

Features

- 8-bit or 16-bit CRC
- User may select the polynomial through configuration:
 - CCITT CRC-16
 - IBM/ANSI CRC-16
 - Dallas/Maxim CRC-8
- Input data width: 8b or 32b
- Reflect input
- Reflect output
- Specify seed value

System Block Diagram

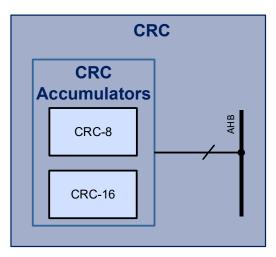


Figure 27 CRC System Block Diagram

Functional Description

The CRC peripheral can perform CRC calculation on data through registers from the MCU to accelerate the calculation or validation of a CRC for communications protocols or data integrity checks.

The CRC peripheral allows the calculation of both CRC-8 and CRC-16 on data. The CRC peripheral also allows the user to specify a seed value, select the data input to be 8b or 32b and to reflect the final output for firmware efficiency.

Application Block Diagrams

Figure 28 PAC25140 Application Block Diagram for 20s

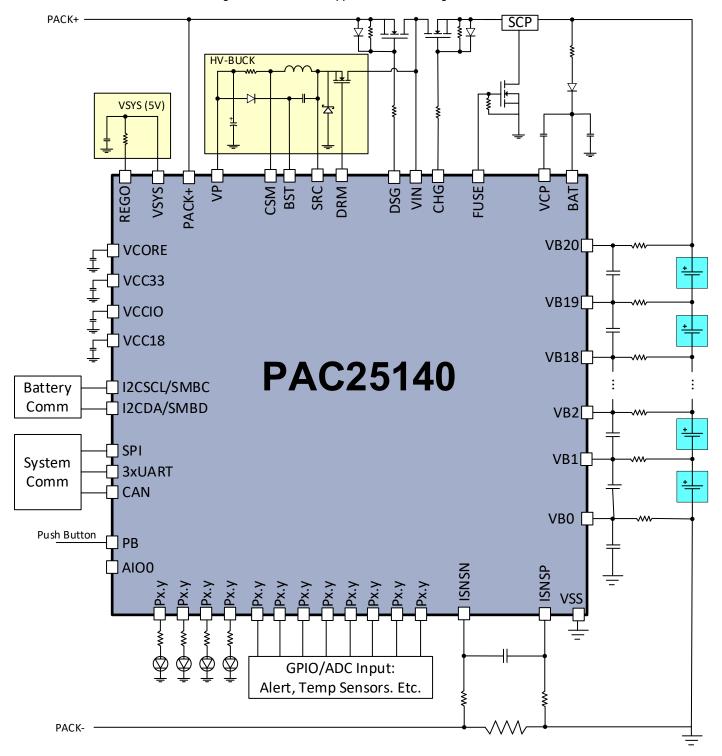
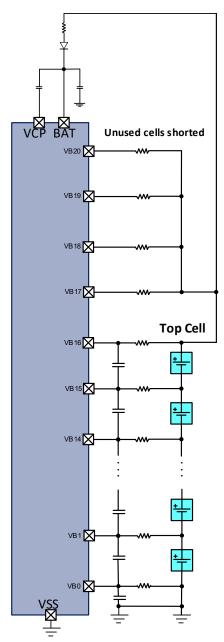



Figure 29 PAC25140 Unused Cell connection for 16s

The PAC25140 can monitor a 10-series to 20 series battery pack. In the actual application, the number of used cells may be less than 20 cells, in the figure above is a 16s example. When using less than 20 cells, the unused cells and corresponding VBx pins should be shorted together. The Top of the highest cell should be tied to the VBAT connection as shown.

Thermal Characteristics

Table 23 Thermal Characteristics

SYMBOL	PARAMETER	VALUE	UNIT
T _A	Operating ambient temperature range	-40 to 125	°C
TJ	Operating junction temperature range	-40 to 150	°C
T _{STG}	Storage temperature range	-55 to 150	°C
	Lead temperature (Soldering, 10 seconds)	300	°C
$\Theta_{\sf JC}$	Junction-to-case thermal resistance	2.897	°C/W
Θ_{JA}	Junction-to-ambient thermal resistance	23.36	°C/W

Pin Configuration and Description

Figure 30 Pin Diagram - Top View

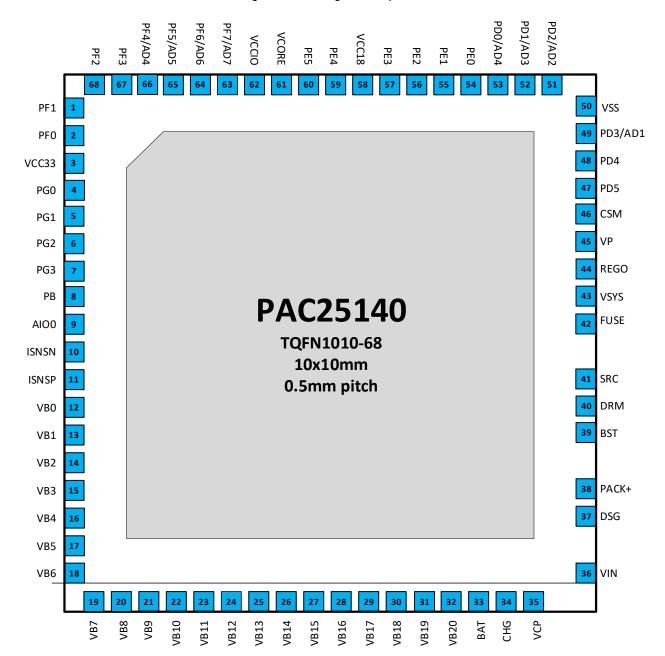
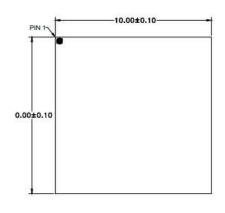
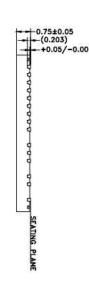
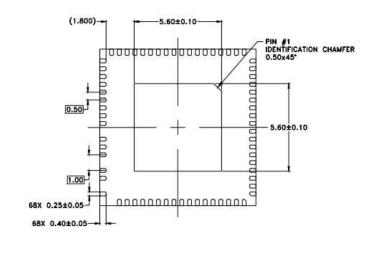


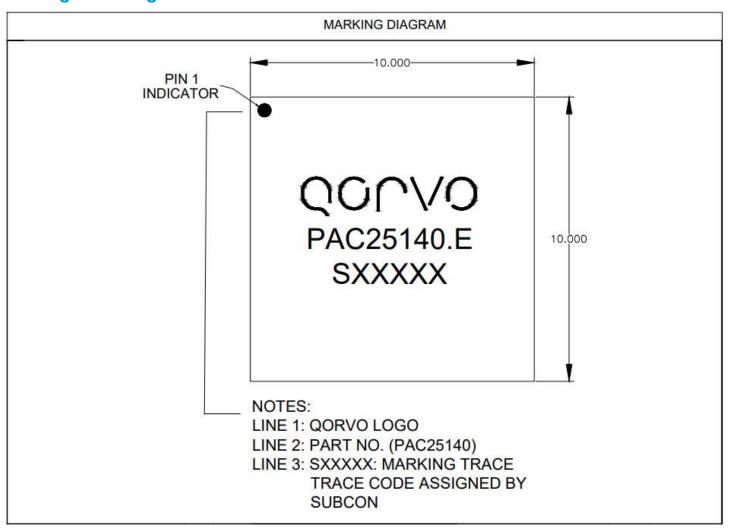
Table 24 Pin Descriptions


Pin Number	Label	Description		
1	PF1	IO port PF1		
2	PF0	IO port PF0		
3	VCC33	Internally generated 3.3V power supply. Connect to a 2.2µF or higher value ceramic capacitor from VCC33 to VSS		
4	PG0	IO port PG0		
5	PG1	IO port PG1		
6	PG2	IO port PG2		
7	PG3	IO port PG3		
8	PB	Push Button Sense Input		
9	AIO0	Analog I/O		
10	ISNSN	Current sense, negative terminal		
11	ISNSP	Current sense, positive terminal		
12	VB0	Sense voltage input for the bottom of the battery stack		
13	VB1	Sense voltage input for the 1 st cell in the battery stack		
14	VB2	Sense voltage input for the 2 nd cell in the battery stack		
15	VB3	Sense voltage input for the 3 rd cell in the battery stack		
16	VB4	Sense voltage input for the 4 th cell in the battery stack		
17	VB5	Sense voltage input for the 5 th cell in the battery stack		
18	VB6	Sense voltage input for the 6 th cell in the battery stack		
19	VB7	Sense voltage input for the 7 th cell in the battery stack		
20	VB8	Sense voltage input for the 8 th cell in the battery stack		
21	VB9	Sense voltage input for the 9 th cell in the battery stack		
22	VB10	Sense voltage input for the 10 th cell in the battery stack		
23	VB11	Sense voltage input for the 11 th cell in the battery stack		
24	VB12	Sense voltage input for the 12 th cell in the battery stack		
25	VB13	Sense voltage input for the 13 th cell in the battery stack		
26	VB14	Sense voltage input for the 14 th cell in the battery stack		
27	VB15	Sense voltage input for the 15 th cell in the battery stack		
28	VB16	Sense voltage input for the 16 th cell in the battery stack		
29	VB17	Sense voltage input for the 17 th cell in the battery stack		
30	VB18	Sense voltage input for the 18 th cell in the battery stack		
31	VB19	Sense voltage input for the 19 th cell in the battery stack		
32	VB20	Sense voltage input for the 20 th cell in the battery stack		
33	BAT	Battery Stack Voltage, Connect to the top of the battery stack.		
34	CHG	Charge FET gate drive output		
35	VCP	High-Voltage Charge Pump output. Connect a 0.47µF VP rated capacitor between VCP and VIN close to the device.		
36	VIN	High-Voltage Buck Regulator supply controller input, Connect a 1μF or higher value ceramic capacitor, or a 0.1μF ceramic capacitor in parallel with a 10μF or higher electrolytic capacitor from VM to VSS. This pin requires good capacitive bypass to VSS, so the ceramic capacitor must have a trace less than 10mm from the pin.		
37	DSG	Discharge FET gate drive output		
38	PACK+	Charger Voltage, Connect to the positive terminal of the battery charger supply.		
39	BST	High-Voltage Buck Regulator bootstrap input, Connect a 2.2µF or higher value ceramic capacitor from BST to SRC with a shorter than 10mm trace from the pin.		




Pin Number	Label	Description		
40	DRM	High-Voltage Buck Regulator Switching supply driver output, Connect to the base or gate of the external N-channel MOSFET.		
41	SRC	High-Voltage Buck Regulator Source, Connect to the source of the high-side power MOSFET of the high-voltage buck regulator.		
42	FUSE	FUSE/Low Side FET gate drive output		
43	VSYS	5V System power supply, Connect to a $6.8\mu F$ (20%) or higher ceramic capacitor from V_{SYS} to V_{SS} .		
44	REGO	VSYS regulator output		
45	VP	Main power supply. Provides power to the power drivers as well as voltage feedback path for the switching supply. Connect a properly sized supply bypass capacitor in parallel with a 10μ F ceramic capacitor in parallel with a 100μ F aluminum capacitor from VP to VSS for voltage loop stabilization. If the switching frequency of the HV-BUCK is >= $200k$ Hz, then the 100μ F aluminum capacitor can be replaced with 47μ F, but the efficiency will be worse. This pin requires good capacitive bypass to VSS, so the ceramic capacitor must have a trace less than $10mm$ from the pin.		
46	CSM	High-Voltage Buck Regulator Switching supply current sense input, Connect to the positive side of the current sense resistor		
47	PD5	IO port PD5		
48	PD4	IO port PD4		
49	PD3/AD1	IO port PD3 or ADC channel AD1		
50	PD2/AD2	IO port PD2 or ADC channel AD2		
51	PD1/AD3	IO port PD1 or ADC channel AD3		
52	PD0/AD4	IO port PD0 or ADC channel AD4		
53	PE0	IO port PE0		
54	PE1	IO port PE1		
55	PE2	IO port PE2		
56	PE3	IO port PE3		
57	VCC18	Internally generated 1.8V power supply. Connect a 2.2µF value ceramic capacitor from VCC18 to VSS. No external load allowed.		
58	PE4	IO port PE4		
59	PE5	IO port PE5		
60	VCORE	Internally generated 1.2V core power supply. Connect a 2.2µF or higher value ceramic capacitor from VCORE to VSS		
61	VCCIO	Internally generated digital I/O 3.3V power supply. Connect a 4.7µF or higher value ceramic capacitor from VCCIO to VSS		
62	PF7/AD7	IO port PF7 or ADC channel AD7		
63	PF6/AD6	IO port PF6 or ADC channel AD6		
64	PF5/AD5	IO port PF5 or ADC channel AD5		
65	PF4/AD4	IO port PF4 or ADC channel AD4		
66	PF3	IO port PF3		
67	PF2	IO port PF2		
68	VSS	Ground		

Mechanical Information



Notes:

- 1. All dimensions are in mm. Angles are in degrees.
- 2. Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 3. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

Package Marking

Handling Precautions

Parameter	Rating	Standard
ESD – Human Body Model (HBM)	Class 1A	ESDA/JEDEC JS-001-2012
ESD – Charged Device Model (CDM)	Class C3	JEDEC JESD22-C101F
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020

Caution!

ESD sensitive device

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

REVISION HISTORY

Revision	Description
1.0.0	PAC25140 Preview Release

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice

The information contained herein, and any associated documents is considered to be reliable; however, Qorvo makes no warranties regarding the Information contained herein and assumes no responsibility or liability whatsoever for the use of said information. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo® products. Information contained herein or any use of such information does not grant, explicitly, implicitly, or otherwise any rights or licenses to any third party with respect to patents or any other intellectual property whether with regard to such information itself or anything described by such information.

THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo® products are not warranted or authorized for use as critical components in medical, lifesaving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Arm® and Cortex® are registered trademarks of Arm Limited. All referenced brands and trademarks are the property of their respective owners.

© 2023 Qorvo US, Inc. All rights reserved. This document is subject to copyright laws in various jurisdictions worldwide and may not be reproduced or distributed, in whole or in part, without the express written consent of Qorvo US, Inc. QORVO® is a registered trademark of Qorvo US, Inc.