
UCANS32K1 Node boards

UCANS32K1 family CAN node boards

This GitBook provides the technical details of the NXP RDDRONE-UCANS32K1 famly of CAN-FD and
CAN-SIC boards with UAVCAN protocol support, as well as reference software and examples.

This GitBook is still a work in progress!

See also the for questions and answers about all our mobile
robotics reference designs. There is also

 .

NXP Mobile Robotics Community
thread for questions about UCANS32K148 and

UCANS32K1SIC

Also have a look at some of the other NXP GitBooks:

HoverGames

NavQ Companion Computer

RDDRONE-BMS772 Battery Management System

D2X Reference Design

NXP Cup

https://community.nxp.com/community/mobilerobotics
https://community.nxp.com/thread/534837
https://nxp.gitbook.io/hovergames/
https://nxp.gitbook.io/8mmnavq/
https://nxp.gitbook.io/rddrone-bms772/
https://nxp.gitbook.io/d2x/
https://nxp.gitbook.io/nxp-cup-hardware-reference-alamak/

What are the UCANS32K1 node boards?

UCANS32K146 and UCANS32K1SIC development boards are general purpose CAN node reference
designs. They can be used for any purpose, however specific software has been provided for drones, rovers
and other small (autonomous) vehicles. This software allows it to act as a bridge between a CAN bus (with

) and I2C, SPI, UART, GPIO or any other pin function of the (80 MHz ARM Cortex-
M4F, ASIL-B compliant). This allows sensors, actuators and other peripherals to be controlled by other
devices on the same CAN bus, such as the flight management unit reference design.

UAVCAN S32K146 MCU

RDDRONE-FMUK66

The relevant part numbers are:

KIT-UCANS32K1SIC (complete development kit with two UCANS32KSIC boards, a debugger
and an adapter board - everything you need to get started!)

UCANS32K1SIC (a single UCANS32K146 board, CAN cable and termination network board)

 (complete development kit with two UCANS32K146 boards, a debugger
and an adapter board - everything you need to get started!)
KIT-UCANS32K146

 (a single UCANS32K146 board, without additional debugger)UCANS32K146-01

Use cases

Possible use cases are:

1. PWM output for motor controllers or servos

Relieves the FMU of creating RC-PWM signals

Can report information about the motors back to the FMU

2. Battery management systems (also have a look at our !)BMS772 reference design

Report power consumption, state of charge, battery health and other faults to the FMU

3. GPS

Allows for more than one GPS to be connected to the FMU by communicating GPS info over CAN

4. Sensors

Airspeed/pressure sensors can report information to the FMU over CAN

5. And many more

Remote lights, arming/safety switches, and really any other peripheral which needs to communicate
with the FMU can be connected to the UCANS32K146 development board.

Board specifications

 (80 MHz ARM Cortex-M4F, ASIL-B compliant)NXP S32K146 Automotive MCU

Dual NXP TJA1044 CAN transceivers

OR Dual NXP TJA1463 CAN-SIC transceivers (with dual)4-pin JST-GH connectors

 with NFC interface (with external antenna, not included)NXP EdgeLock SE050 secure element

https://uavcan.org/
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/s32k-automotive-mcus/s32k1-microcontrollers-for-general-purpose:S32K
https://www.nxp.com/design/designs/px4-robotic-drone-fmu-rddrone-fmuk66:RDDRONE-FMUK66
https://www.nxp.com/part/KIT-UCANS32K146#/
https://www.nxp.com/part/UCANS32K146-01#/
https://nxp.gitbook.io/rddrone-bms772/
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/s32k-automotive-mcus/s32k1-microcontrollers-for-general-purpose:S32K
https://www.nxp.com/products/interfaces/can-transceivers/can-with-flexible-data-rate/high-speed-can-transceiver-with-standby-mode-mantis-family:TJA1044
https://github.com/pixhawk/Pixhawk-Standards/blob/master/DS-009%20Pixhawk%20Connector%20Standard.pdf
https://www.nxp.com/products/security-and-authentication/authentication/edgelock-se050-plug-trust-secure-element-family-enhanced-iot-security-with-maximum-flexibility:SE050

One (UCANK1S32K146) or Two (UCANS32KSIC) RC-PWM pin header with optional external power
input

Through-hole solder pads (for 0.100" pin headers) that expose SPI, I2C and UART. Can also be
remapped to other pin functions (GPIO, ADC, timer, ...)

5V power input; the board can be powered from the 4-pin JST-GH CAN connectors or the 2-pin power
input header. There is an optional power input for the RC-PWM header as well specifically for 3 pin
connected PWM devices such as high power RC servos.

More information is .available on the NXP website

Hardware designs and example software

The hardware schematics and board layout for UCANS32K146 and
. We encourage you to create your own designs based on our UCANS32K146 board!

are available on this GitBook on the
NXP website

We do not only provide hardware designs, there is also plenty of example software available. There are
multiple options to use the UAVCAN protocol. We have also worked with the Apache NuttX and PX4
Autopilot communities to enable their open source software projects on the UCANS32K146.

Additional designs and example software might be made available in the future.

Contribute to this GitBook

We would really like to receive your feedback regarding this GitBook. It is synchronized to a
, so you can just open an issue. If you want to contribute you can also open a pull request. The

pages are written using an extended version of , so it should be pretty straightforward to add
sections or even complete pages!

Git repository
on GitHub

Markdown

This work is licensed under a .Creative Commons Attribution 4.0 International License

Disclaimer

This page contains important information that you should be aware of before using UCANS32K146.

Important Notice

NXP provides the enclosed product(s) under the following conditions:

This reference design is intended for use of ENGINEERING DEVELOPMENT OR EVALUATION
PURPOSES ONLY. It is provided as a sample IC pre-soldered to a printed circuit board to make it easier to

https://www.nxp.com/design/development-boards/automotive-development-platforms/s32k-mcu-platforms/can-fd-development-system-for-drones-rovers-and-mobile-robotics:UCANS32K146#t990
https://www.nxp.com/design/development-boards/automotive-development-platforms/s32k-mcu-platforms/can-fd-development-system-for-drones-rovers-and-mobile-robotics:UCANS32K146#t990
https://github.com/NXPHoverGames/GitBook-UCANS32K146
https://www.markdownguide.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

access inputs, outputs, and supply terminals. This reference design may be used with any development
system or other source of I/O signals by simply connecting it to the host MCU or computer board via off-the-
shelf cables. Final device in an application will be heavily dependent on proper printed circuit board layout
and heat sinking design as well as attention to supply filtering, transient suppression, and I/O signal quality.
The goods provided may not be complete in terms of required design, marketing, and or manufacturing
related protective considerations, including product safety measures typically found in the end product
incorporating the goods.

Due to the open construction of the product, it is the user's responsibility to take any and all appropriate
precautions with regard to electrostatic discharge. In order to minimize risks associated with the customers
applications, adequate design and operating safeguards must be provided by the customer to minimize
inherent or procedural hazards. For any safety concerns, contact NXP sales and technical support services.
Should this reference design not meet the specifications indicated in the kit, it may be returned within 30
days from the date of delivery and will be replaced by a new kit.

NXP reserves the right to make changes without further notice to any products herein. NXP makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages.

Typical parameters can and do vary in different applications and actual performance may vary over time. All
operating parameters, including Typical, must be validated for each customer application by customer’s
technical experts.

NXP does not convey any license under its patent rights nor the rights of others. NXP products are not
designed, intended, or authorized for use as components in systems intended for surgical implant into the
body, or other applications intended to support or sustain life, or for any other application in which the failure
of the NXP product could create a situation where personal injury or death may occur. Should the Buyer
purchase or use NXP products for any such unintended or unauthorized application, the Buyer shall
indemnify and hold NXP and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even
if such claim alleges NXP was negligent regarding the design or manufacture of the part.

PostCard quick reference

Quick reference to connectors and pinouts for UCANS32K146. CANSIC board follows the same pinout, but
includes a second RC-PWM port and connector

Getting started

UCANS32K146 overview

RDDRONE-UCANS32K146 front view

RDDRONE-UCANS32K146 back view

Powering the board

There are two options when powering the UCANS32K146. The first option is to connect 5V power to the
power pins on the board. The second option is to power the board through one of the JST-GH CAN
connectors. The middle two pins on the CAN connector are for CAN data, and the outer two are for power.
The left-most pin is for 5V, and the right-most pin is for GND.

Two options for powering UCANS32K146.

UCANS32K146 (pre-production) powered through the JST-GH CAN connector

Flashing and debugging

For flashing firmware and interfacing with the serial console, a 7-pin JST-GH connector with SWD and
UART interfaces is present on the board. It is located on the side of the board next to the CAN connectors.

UCANS32K146 (pre-production) connected to a debugger breakout boards.

Guides for flashing binaries to UCANS32K146 are available for and Apache NuttX.PX4 Autopilot

Available software

UCANS32K146 software enablement

PX4 Autopilot

UCANS32K146 is a build target for PX4 Autopilot. PX4 is an open source flight control software for drones
and other unmanned vehicles. While UCANS32K146 is not a flight controller, it can leverage the PX4
infrastructure to provide communications and portability of peripheral drivers, leading to enablement of a
distributed vehicle architecture. For example drivers for secure element SE050 would be identical on the
FMU and CAN nodes. PX4 makes use of a managed and maintained version of NuttX RTOS.

More information

Apache NuttX

In addition to PX4, UCANS32K146 is also a build target in Apache NuttX and can therefore be used without
PX4 infrastructure if not needed.

More information

UAVCAN V1

http://px4.io/
https://nuttx.apache.org/
https://uavcan.org/

UAVCAN is a lightweight protocol designed for reliable intravehicular communication in aerospace and
robotic applications over CAN bus, ethernet, and other robust transports. The name UAVCAN stands for
Uncomplicated Application-level Vehicular Communication And Networking. It is created to address the
challenge of deterministic on-board data exchange between systems and components of next-generation
intelligent vehicles: manned and unmanned aircraft, spacecraft, robots, and cars.

Bare metal example with libuavcan

SocketCAN API

CAN driver compatible with SocketCAN API, takes benefit of POSIX socket API for painless and portable
CAN application development.

More information

SLCAN - CAN over serial

This software interface supports debugging UAVCAN and CAN on PC reusing an UCANS32K board
reprogrammed as a debugger.

More information

Differences between UCANS32K146-01 and UCANS32K1SIC,
UCANS32K146B

Outline the differences in the two versions of the board

Changes as follows:

Type name CANPHY PWM Other

UCANS32K146-01
TJA1044 8 pin
(Mantis 2017)

1

UCANS32K146B
TJA1443 HVSON14
(Avery 2020)

2

UCANS32K1SIC
TJA1463 HVSON14
(Signal improvement
2020)

2

https://www.kernel.org/doc/Documentation/networking/can.txt
https://python-can.readthedocs.io/en/master/interfaces/slcan.html

UCANS32K1SIC demo application

Demo: UCANS32K1SIC Introduction

A sample application based on PX4/NuttX has been prepared that can be flashed to the UCANS32K1SIC
boards. The basic premise is to form a two node CAN-FD network, and give you a console terminal
available on each board using

 the UART/USB cable connected to your PC.

Simple commands can be issued on each node to initiate CAN-FD communications.

The UCAN boards will be powered via 5V injected through he CAN-TERM board microUSB connection.

DEMO: UCANS32K1SIC Hardware setup

How to connect two UCANS32K1SIC boards in preparation to run the demo software

DRAFT

Show image of PC with USB - UART cable(s) and USB mini power cable connected to CAN-TERM-BRD.
Show two UCAN boards connected via the CAN wires. The CAN-TERM boards should be at either end.
only one CAN-TERM board should provide 5V power via some USB-Micro cable connection.

NOTE - USB-Micro cable is not included.

DEMO: UCANS321SIC running the demo software

Hardware Reference

Schematics and designs

Schematics of UCANS32K146 prototype and production version

Production Schematics UCANS32K146-01

Production Version 01 Schematics
Schematics for the production version UCANS32K146 are published on NXP.com at the link below under
<Documents and Software><Design Resources><Design tools and Files>:

CAN FD development system for Drones, Rovers, and Mobile Robotics
NXP

Prototype Schematics UCANS32K146

Prototype pre-release hardware schematics, board layout and bill-of-materials.

Note that these files are for the prototype version of the board. These are included here only for
convenience to the small number of developers that may have this prototype board.

20191104_SCH_LID2438_final.pdf 549KB

PDF

UCANS32K146 Schematics November 2019

20191105_SCH_BOM_PCB3D.PDF 5MB

PDF

UCANS32K146 SCH, PCB & BOM November 2019

S32K1 SDK

S32K1 SDK with libuavcan

S32 Design Studio and S32K1 SDK

S32 Design Studio IDE for Arm® based MCUs | NXP Semiconductors
NXP

Application Note AN12842

It might take a while for the embedded PDF file to load. The file is also available on NXP.com.

Page 1 of 12

by: NXP Semiconductors

1 Introduction

Libuavcan is a lightweight C++ library for implementing the UAVCAN
communication protocol in embedded systems. This application note covers
the driver for the transport layer of the protocol over CAN-FD, which utilizes
the FlexCAN peripheral available in the S32K1 family of microcontrollers,
running at 1 Mbit/s and 4 Mbit/s in nominal and data phases, respectively.

The library is completely statically defined, all the parameters of an application
are determined at compile time, avoiding dynamic memory allocation and
reducing possible points of failure, and making verification of the system
easier.

The last top layers of the protocol implementation for the latest specification, UAVCAN V1.0, are under development at the time
this document was written.

The goal of this document is to demonstrate a programming example of the FlexCAN peripheral in particular implementation of
the UAVCAN protocol. This for serving as a code reference for custom applications that wish to integrate the CAN-FD
capabilitiesof the module.

2 Overview of UAVCAN

The acronym originally stood as a reference for CAN for Unmanned Aerial Vehicles, but due to the diverse possible applications
of the protocol. It later became an acronym for Uncomplicated Application-level Vehicular Communication And Networking. It is
an open communication protocol used in avionics, aerospace, robotics and rovers. It is the de-facto protocol in the widely used
PX4 autopilot firmware for communications over CAN.

Figure 1. Logo of the communication protocol from which Libuavcan is implemented from

It offers reliable, deterministic and real-time capabilities over the already robust CAN protocol and other transports like UDP,
also,no licensing nor approval of any kind is necessary for its implementation. The specification is freely available at the UAVCAN
web page, and the source code for many reference implementations are accessible under the MIT license. For links to the
specification and code repositories, refer to References.

2.1 Features of the protocol

The protocol’s principal abstraction is based on the publisher/subscriber software design pattern. For example, in a robotic
system,the sensors would be abstracted as publishers of data and at a predetermined rate, and actuators become subscribers of that
information. This pattern is also found in additional robotics software such as ROS.

Contents

1 Introduction.. 1

2 Overview of UAVCAN............................1

3 Structure of the library’s driver...............2

4 Methods of the transport layer from
the library.. 5

5 Usage example......................................9

A References.. 11

AN12842

Libuavcan S32K1 Driver over CAN-FD

For the UAVCAN Communication Protocol

Rev. 0 — June, 2020 Application Note

Page 1 / 12

https://www.nxp.com/docs/en/application-note/AN12842.pdf
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/s32k-automotive-mcus/s32k1-microcontrollers-for-general-purpose:S32K1?utm_medium=AN-2021

UAVCAN quick start demo

CAN-FD echo example between two UCANS32K146 boards, sending UAVCAN V1 messages at 1 Mbit/s in
nominal phase and 4 Mbit/s in data phase.

S32 Design Studio for ARM

Download and install S32 Design Studio for ARM. It's available for Windows and Linux.

S32 Design Studio IDE for Arm® based MCUs | NXP Semiconductors
NXP

UCANS32K146 hardware setup

Interconnect two UCANS32K146 boards with a single 4-wire JST-GH CAN cable between both CAN2
connectors, and CAN bus terminators in the CAN1 connectors below.

Connect a 5V supply to the pin headers.

This pictures was taken with an earlier version of the UCANS32K146 board, there might be some
(minor) differences in board layout. The software settings should be the same, though.

S32 Design Studio example project

1. In S32 Design Studio, go to "File" and then "Import...":

2. Select "Projects from Git" and click "Next":

3. Paste the Git URL () of the demo and click "Next":https://github.com/noxuz/libuavcan_demo

4. Select the master branch and click "Next".

5. Click "Browse", select the desired destination directory for the project and click "Next".

https://github.com/noxuz/libuavcan_demo

6. Choose "Import existing Eclipse projects", click "Next" and then "Finish".

7. Click the small arrow at the right of the build icon (the hammer) in the toolbar and select NODE_A to build
the code for the first board (transmitter).

8. Click the yellow lightning shaped icon in the toolbar for flashing the project to the board.

9. In the list located at the left of the popup window, choose the appropriate profile, e.g.
"libuavcanV1_demo_Debug NODE_A" if you are building the code for NODE_A. Then click "Flash" with the
board connected to the J-Link debugger. Don't forget to power the board (5V)!

10. Repeat steps 7-9 for the other board but with the desired build configuration changed to NODE_B.

11. A green led close to the 5V headers should blink approximately once a second. Also see the description

at the top of the src/main.cpp file. If the green LED from both boards is not blinking, try pressing the
reset button on the board that got the NODE_A program flashed into, which is the one that starts the
transmission.

With an oscilloscope or logic analyzer you can view the frames being transmitted at 4Mbit/s data phase
speed and at 1Mbit/s in nominal phase:

Apache NuttX

About Apache NuttX

NuttX is an embedded RTOS with an emphasis on standards compliance and small footprint.

What is NuttX?

NuttX is a real-time operating system (RTOS) with an emphasis on standards compliance and small
footprint. Scalable from 8-bit to 32-bit microcontroller environments, the primary governing standards in
NuttX are Posix and ANSI standards. Additional standard APIs from Unix and other common RTOS’s
(such as VxWorks) are adopted for functionality not available under these standards, or for functionality
that is not appropriate for deeply-embedded environments (such as fork()). -- Apache NuttX website

NuttX was created by Gregory Nutt and he has been one of the main developers for a very long time.
In 2019 the RTOS was accepted as an incubating project under the Apache Software Foundation, which
means it is currently undergoing the process to become an official ASF project. There is now a management
committee in place that oversees the ongoing development of NuttX.

NuttX is a very versatile operating system with many (optional) features that supports a wide range of
microcontroller platforms. This includes support for NXP's S32K1xx and i.MX RT 10xx, as well as many
MCUs from the Kinetis and LPC families.

NuttX is licensed under the permissive Apache License 2.0. This allows it to be integrated into other projects
without the need to distribute the derivative work under the same license. Parts of the codebase may still be
licensed under the BSD 3-clause license that was used previously, but this should not pose any limitations.

NuttX support for UCANS32K146

A board configuration for RDDRONE-UCANS32K146 is available in the upstream Apache NuttX
repositories. As of September 2020, the following features are confirmed to be available:

Basic support for the NXP S32K1xx family (ARM Cortex-M0+ and M4F)

SPI, I2C and UART are enabled and can be used in your own drivers and applications

PWM output using the FlexTimer peripheral is available as well

There is currently no driver support in NuttX for the NXP EdgeLock SE050 secure element.

PX4, NuttX or bare-metal?

 is build on top of NuttX, so most of the features that are available in NuttX are also available if
you choose to . PX4 uses most interfaces that NuttX provides, but adds
additional abstractions and in some cases it bypasses the NuttX interfaces and implements its own API. So
there's some differences, but you still get most of the features of NuttX, as well as PX4's

, their , as well as many
.

PX4 Autopilot
run PX4 on the UCANS32K146

uORB
publish/subscribe messaging API parameter system drivers for sensors and
actuators

https://nuttx.apache.org/
https://docs.px4.io/master/en/
https://dev.px4.io/master/en/middleware/uorb.html
https://dev.px4.io/master/en/advanced/parameters_and_configurations.html
https://dev.px4.io/master/en/middleware/modules_driver.html

However, if you do not plan on using any of the PX4 features and do not need to interface with any other
PX4-enabled system, you can also use the UCANS32K146 development board with "just" NuttX. This
makes it easier to to your liking without having to worry
about breaking the PX4 stack.

customize the configuration and enable features

There is also a third option. NXP offers a "bare-metal" SDK for the S32K1xx family, and
. That means you can use the UCANS32K146 board with

UAVCAN, but without any operating system or software stack. Or you can integrate it with other software.

there is also a bare-
metal libUAVCAN implementation available

Documentation and getting help

Documentation for NuttX is available on their website:

https://nuttx.apache.org/

https://nuttx.apache.org/docs/latest/

https://cwiki.apache.org/confluence/display/NUTTX/Documentation

Their online documentation is not exactly beginner friendly. A few volunteers have stepped forward to help
improve the available documentation, but there is still some work to be done. Luckily, the code base is pretty
clean and self explanatory (and often well documented within the code itself). With a few pointers in the right
direction and some patience you can get pretty far on your own.

The community page on the official Apache NuttX website lists a few ways to ask questions, report issues
and get in contact with the main developers:

https://nuttx.apache.org/community/

Download NuttX

How to download (clone) the NuttX source code using Git.

Repositories

NuttX consists of two repositories. The main operating system and an additional set of applications. Both
repositories need to be in the same parent folder, with the main operating system being in a folder named
"nuttx" and the applications have to be in a folder named "apps".

NuttX - https://github.com/apache/incubator-nuttx

Apps - https://github.com/apache/incubator-nuttx-apps

Let's start by creating a parent folder to store both repositories. The following command will create an
"apache-nuttx" folder if it doesn't exist already and makes it the active working directory.

https://nuttx.apache.org/
https://nuttx.apache.org/docs/latest/
https://cwiki.apache.org/confluence/display/NUTTX/Documentation
https://nuttx.apache.org/community/
https://github.com/apache/incubator-nuttx
https://github.com/apache/incubator-nuttx-apps

mkdir -p ~/src/apache-nuttx && cd ~/src/apache-nuttx1

We can now clone the Git repository that contains the main operating system. We'll immediately name the
folder "nuttx" because the build system might get lost if it has a different name.

git clone https://github.com/apache/incubator-nuttx.git nuttx1

Similarly, we'll clone the apps repository:

git clone https://github.com/apache/incubator-nuttx-apps.git apps1

You should now have a "apache-nuttx" folder located at ~/src/ that contains two folders: "nuttx" and
"apps". That's all you need.

Checkout a stable release

By default Git will checkout the latest commit in the master branch when you clone the repositories. This is
the latest development version at that point in time. Keep in mind that if you want to keep up with any

changes you should use git pull to pull in any new commits. Keep in mind to do this for both the "nuttx"
and the "apps" repositories.

You can also checkout the latest stable release. Change your working directory to the first repository, and
fetch the available tags.

git fetch && git fetch --tags1

Now that the tags are available locally, you can checkout a particular release. At the time of writing the latest
stable release is NuttX 9.1.0. You can checkout this particular version with the following command:

git checkout nuttx-9.1.01

Don't forget to do both steps for both repositories! A particular version of the NuttX OS always should be
matched by the same version of the NuttX Apps.

Building and flashing NuttX

Toolchain

The online NuttX documentation provides , but the
 is also a good starting point. In general you're good to go if you

are using Linux with a standard GNU toolchain.

an overview of possible development environments
README file in the main NuttX repository

https://nuttx.apache.org/docs/latest/introduction/development_environments.html
https://github.com/apache/incubator-nuttx/blob/master/README.md

Within the NXP Mobile Robotics team we often use PX4 Autopilot as well. They have their own toolchain
preferences (which are compatible with NuttX), so we often install their preferred toolchain. This is also easy
to do because they provide some scripts that take care of most of the work.

Building NuttX

Building NuttX is very easy when you have all required tools installed. You just have to select a canned

configuration, change the configuration to your liking and just run make . If you want to throw away the

current configuration and select another configuration you first have to run make distclean . That's all.

Flashing NuttX

Download and install the . It is available for all major operating
systems, but we will assume here that you are using a Linux-based OS. Open a terminal and navigate to the

main nuttx directory, which contains nuttx.bin after a successful build. Then you can start the J-Link
tools by entering:

J-Link Software and Documentation Pack

JLinkExe1

Make sure that the debugger is plugged into both the UCANS32K146 board and your computer. If you are
using a virtual machine, the debugger USB device should be made available inside the VM. Also do not
forget to power the board. Now enter:

connect1

You are now asked to specify a device. It is quickest to manually enter the device:

s32k1461

The target interface needs to be specified, which is SWD:

s1

Finally you have to specify the target interface speed. It is recommended to use 1000 kHz:

10001

Now flash the binary with:

loadbin nuttx.bin 01

https://www.segger.com/downloads/jlink#J-LinkSoftwareAndDocumentationPack

The binary will be programmed and this process will also be verified. It should then mention if everything
went OK. You can quit the J-Link tools with:

q1

You may need to power cycle the device afterwards. The debug console should now be available on
LPUART1 (115200 baud) - which is also accessible on the debugger breakout board.

NuttX configuration

NuttX offers a wide range of configuration options and features that can be enabled with one of the available
Kconfig frontends.

Install Kconfig frontends

NuttX uses a similar configuration system as the Linux kernel. There are Kconfig files that define the
different options and you can generate a configuration file that can be used by the build system with a
Kconfig frontend.

NuttX provide their own fork/back-up of the Kconfig-frontends, to make sure that they always have access to
a compatible version. It is still hosted on their old BitBucket repository.

In Ubuntu 20.04 it is possible to directly install the kconfig-frontends package from the package

repositories. You only need to run apt install kconfig-frontends .

You can then skip most of the instructions below.

First, make sure you have gperf installed:

sudo apt install gperf1

Then download the source code by cloning the NuttX Tools repository from BitBucket:

git clone https://bitbucket.org/nuttx/tools.git1

Change the working directory to the kconfig-frontends folder:

cd tools/kconfig-frontends1

Configure the build to include (at least) the menuconfig and qconfig tools. The Kconfig frontends will be
installed into the /usr folder.

1

/configure --enable-mconf --enable-qconf --prefix=/usr

Now build the tools according to the configuration that we just created:

make1

And finally install the Kconfig-frontends that we just build from source:

sudo make install1

Once you have a "default" configuration in place (we will get to that in a second), you can edit the

configuration with make menuconfig or make qconfig . Both tools have their pros and cons, just give
them a try and see which one you like the most!

Start with a canned configuration

Make sure you are inside the "nuttx" folder:

cd ~/src/apache-nuttx/nuttx1

Then use the configure script to select the "nshdebug" configuration for the "rddrone-uavcan146" board:

./tools/configure.sh rddrone-uavcan146:nshdebug1

Make sure to first run make distclean if you still have another active configuration.

Configuration

Menuconfig is the "default" tool to configure the NuttX build. Once you have a board configuration selected
(see above) you can edit the configuration with:

make menuconfig1

You can also use qconfig, which shows the configuration as a nested list instead of different menus. This
might make it a bit easier to navigate through the many options that are available:

make qconfig1

Menuconfig and qconfig are easy to use tools, but NuttX is very configurable and you can easily got lost in
the hundreds of menus and options that it provides. Take your time to explore the options that NuttX has to

offer, but don't try to enable many options at once. Just select a few, build the code and give it a try on the

SocketCAN

What is SocketCAN?

SocketCAN is a set of open source CAN drivers and a networking stack contributed by Volkswagen
Research to the Linux kernel. Formely known as Low Level CAN Framework (LLCF). -- Wikipedia

This page is still under construction.

SLCAN

What is SLCAN?

SLCAN is an interface for CAN communication over a serial line.

November 2020: SLCAN support is not yet publicly available. We hope to release this as soon as
possible, but it will likely take us at least a few more weeks.

This page is still under construction.

PX4 Autopilot

About PX4 Autopilot

PX4 is an open source flight control software for drones and other unmanned vehicles.

What is PX4 Autopilot?

PX4 is an open source flight control software for drones and other unmanned vehicles. The project
provides a flexible set of tools for drone developers to share technologies to create tailored solutions for

https://en.wikipedia.org/wiki/SocketCAN

drone applications. PX4 provides a standard to deliver drone hardware support and software stack,
allowing an ecosystem to build and maintain hardware and software in a scalable way.PX4 is part of , a non-profit organization administered by Linux Foundation to foster the use of
open source software on flying vehicles. Dronecode also hosts QGroundControl, MAVLink & the SDK. --

Dronecode

PX4 website

PX4 Autopilot for UCANS32K146 is build on top of NuttX. Therefore, most of the information in the
" " section also applies to PX4! Besides flight control and autopilot software, it also
contains additional tools, drivers and middleware.
Apache NuttX

Why use PX4 Autopilot on UCANS32K146?

The UCAN board is not an Autopilot, so why consider using PX4 on it? There are a number of reasons
for this:

Building a PX4 distributed architecture. The same peripheral drivers running on an FMU can be
reused here on the UCAN board, with only the CAN bus (UAVCAN) separating them. This means a
common codebase is developed and used for something like a sensor or actuator.

PX4 carefully maintains and updates their branch of NuttX, and regularly backports to mainstream
NuttX. This means PX4/Nuttx is more stable and there are minimal "surprises" due to untested code
making it's way into the OS.

PX4 includes and tests additional tools and methods within their distribution. i.e 'top'

Connection with the PX4.io community ecosystem through slack, discourse and regular standards
bodies meetings.

PX4 support for UCANS32K146

The PX4 development team provides basic support for UCANS32K146. A board configuration is available
from which . Because PX4 is build on top of NuttX, it supports most of the

 for UCANS32K146.
a binary can easily be build

features that were enabled in the NuttX build

There are some additional features offered by PX4:

uORB and MAVLink messaging

PWM generation

Most PX4 drivers and modules can be enabled

There is currently no driver support in PX4 or NuttX for the NXP EdgeLock SE050 secure element.

https://www.dronecode.org/
https://px4.io/software/software-overview/
https://dev.px4.io/master/en/middleware/

Documentation and getting help

Documentation for PX4 is available on their website:

https://px4.io/

https://docs.px4.io/master/en/

https://dev.px4.io/master/en/

PX4 Autopilot is originally a drone flight control stack, therefore most of the documentation is focused on
using PX4 on flight management units. Not all features may be directly available on UCANS32K146, though
you can potentially enable all modules in the source code.

Issues can be reported on the . There are various available where you can
ask questions and discuss your ideas.

PX4 GitHub support channels

Building and flashing PX4

How to build and flash PX4 Autopilot for NXP UCANS32K146.

Prerequisites

You need a build environment that can build PX4 Autopilot. You can generally use the
, but you will need to install some additional packages. To get started, you can use the

, or install your own Linux (virtual) machine. When you have a basic Linux
environment, you only need to to continue.

same environment as
with Apache NuttX
HoverGames virtual machine

install the PX4 toolchain

More information is also available in the .PX4 Developer Guide

If you have not yet cloned the PX4 source code as part of the toolchain installation, you should do so now:

git clone https://github.com/PX4/PX4-Autopilot1

Building PX4 Autopilot for UCANS32K146

Change your working directory (cd command) to the PX4-Autopilot Git repository that you just cloned.
Next we will build the bootloader and firmware for our UCAN board.

Bootloader

https://px4.io/
https://docs.px4.io/master/en/
https://dev.px4.io/master/en/
https://github.com/PX4/PX4-Autopilot
https://dev.px4.io/master/en/contribute/support.html
https://nxp.gitbook.io/hovergames/developerguide/tools
https://nxp.gitbook.io/hovergames/developerguide/tools/toolchain-installation
https://dev.px4.io/master/en/setup/getting_started.html

You only need to build and flash the bootloader once. If you rebuild/reflash PX4, you can skip all of
the bootloader steps.

Downloading the Bootloader

If you don't want to build the bootloader, you can download it by clicking the file below.

http://ci.px4.io/job/PX4_misc/job/Firmware-compile/job/master/lastSuccessfulBuild/artifact/buil…

UCANS32K146 PX4 Bootloader (Latest build)

Alternatively, run the following command to build the bootloader:

make nxp_ucans32k146_canbootloader1

The binary file will be located at PX4-
Autopilot/build/nxp_ucans32k146_canbootloader/nxp_ucans32k146.bin . Keep this file
handy for flashing later.

PX4 Firmware

A prebuilt version of PX4 for UCANS32K146 is linked below. This is the latest build of PX4 master.

http://ci.px4.io/job/PX4_misc/job/Firmware-compile/job/master/lastSuccessfulBuild/artifact/buil…

UAVCAN PX4 firmware binary (Latest build)

Alternatively, you can build the firmware by running the following command in the root of the PX4-Autopilot
repository:

make nxp_ucans32k1461

The .bin file for flashing the firmware will be stored in build/nxp_ucans32k146_default/deploy .

The file you're looking for is 34.bin . You can leave the file there or copy it to another location for flashing
the board in the next section.

Flashing PX4 Autopilot to the UCANS32K146 board

Download and install the . It is available for all major operating
systems, but we will assume here that you are using a Linux-based OS. Open a terminal and navigate to the

directory which holds the nxp_ucans32k146.bin file that we build in the previous step.

J-Link Software and Documentation Pack

https://www.segger.com/downloads/jlink#J-LinkSoftwareAndDocumentationPack

Now start the J-Link tools by entering:

JLinkExe1

Make sure that the debugger is plugged into both the UCANS32K146 board and your computer. If you are
using a virtual machine, the debugger USB device should be made available inside the VM. Also do not
forget to power the board. Now enter:

connect1

You are now asked to specify a device. It is quickest to manually enter the device:

s32k1461

The target interface needs to be specified, which is SWD:

s1

Finally you have to specify the target interface speed. It is recommended to use 1000 kHz:

10001

Now flash the bootloader with:

loadbin /path/to/nxp_ucans32k146.bin 0x01

The binary will be programmed and this process will also be verified. It should then mention if everything
went OK.

Next, flash the PX4 firmware binary with:

If using pre-built binary1
loadbin /path/to/34-0.1.{commit}.uavcan.bin 0x60002
If using self-built binary3
loadbin /path/to/34.bin 0x60004

And you're good to go.

You can quit the J-Link tools with:

q1

You may need to power cycle the device afterwards. The debug console should now be available on
LPUART1 (115200 baud) - which is also accessible on the debugger breakout board.

More information

The PX4-build for UCANS32K146 is in an early state and not all features may be available. More
information about PX4 Autopilot is available in their and . Their software
development is managed on . There are also various available.

User Guide Developer Guide
GitHub support channels

PX4 examples to try

Assuming you have successfully connected via the UART and are seeing the PX4/NuttX nsh> prompt, you
can try a few things using PX4/NuttX

nsh> help1

This will show you basic help as well as list the Builtin Apps.

Try running some of the builtin apps: (Lines beginning with # below are just comments)

nsh> #run hello world1
nsh> hello2

3
nsh> #control the onboard RGB LED 4
nsh> led_control breathe -c cyan5

6
nsh> #check the actual RGB PWM driver status7
nsh> rgbled_pwm status8

9
nsh> #view the rtos processes10
nsh> top11

12
nsh> #check the hardware version and git verion13
nsh> ver hw14
nsh> ver git15

As you can see there are also a number of other builtin apps ready to test servo's, I2C devices, SPI devices,
and even a GPS when attached.

http://docs.px4.io/master/en/
https://dev.px4.io/master/en/
https://github.com/PX4/PX4-Autopilot
https://dev.px4.io/master/en/contribute/support.html

