

Datasheet

MM5600 - 40 Gbps DPDT Differential Switch with Integrated Driver

Product Overview

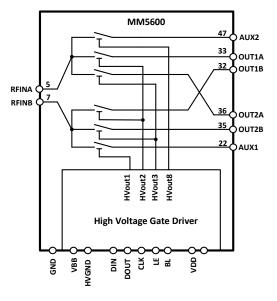
Description

Menlo Micro has developed a DPDT switch for high-speed differential signal switching. The MM5600 is based on Menlo's Ideal Switch® technology and can operate up to 40 Gbps for digital signaling applications, or high-performance RF applications up to 20 GHz. The MM5600 has low insertion loss, fast switching speed, internal ESD diodes, and can operate with greater than three billion switching cycles.

The MM5600's integrated driver is controlled by a serial-to-parallel interface that drives the high voltage gate lines of the switches. The design also offers two separate single-ended ports and a considerable 90% reduction in size when compared with comparable EM relay solutions. An external +5 VDC logic supply and high voltage +89 VDC bias source is required for operation of the internal switch driver.

Features

- DC to 20 GHz range, up to 40 Gbps
- Low Insertion Loss
- Integrated driver eliminates the requirement for an external gate driver
- Independently controlled dual loopback ports
- High Reliability: Greater than 3 billion switching operations


Applications

- Differential High-Speed Switching
- ATE-Device Interface Boards
- High-Speed Computer Peripheral Interfaces

Markets

- Differential Component Testing
- Differential Signal Routing
- Test and Measurement

Electrical Characteristics

Operating Characteristics

Absolute Maximum Ratings

Exceeding the maximum ratings as listed in Table 1 below may reduce the reliability of the device or cause permanent damage. Operation of the MM5600 should be restricted to the limits indicated in the Recommended Operating Conditions listed in Table 2.

Electrostatic Discharge (ESD) Safeguards

When handling the MM5600, observe precautions as with any other ESD sensitive device. Do not exceed the voltage ratings specified in Table 1 below.

Power Sequencing

The following power sequence is recommended to avoid latch-up.

- Power-Up: Apply VDD, set all inputs to known state, apply VBB
- Power-Down: Remove VBB, remove all inputs, remove VDD

The high voltage supply (VBB) may be applied and removed as required when VDD is present. VBB voltage should not drop below VDD or float during operation.

Table 1 Absolute Maximum Ratings 1

Parameter	Minimum	Maximum	Unit
Max RF Input Power @ 6 GHz Single Ended		+33	dBm
Open State Voltage Rating / Switch OUTx to INx ²	-150	150	V
Open State Voltage OUTx, INx to GND, VBB pin to GND Potential ²³	-150	150	V
Closed State Voltage VBB to OUTx, INx, GND $^{\rm 2}$	-100	100	V
Hot Switching Voltage @ 0.5 V ^{4 5}	-0.5	0.5	V
DC Carry Current Rating / Switch		100	mA
Driver Voltage Supply VDD	-0.5	+6	V
High Voltage Gate Driver Supply VBB		+100	V
Driver Logic Input Levels	-0.5	VDD+0.5	V

⁵ RF pins must not be allowed to electrically float during switch operation. See section *Floating Node Restrictions* for details on avoiding floating nodes.

¹ All parameters must be within recommended operating conditions. Maximum DC and RF power can only be applied during the on-state condition (cold-switched condition).

² This also applies to ESD events. This is a Class 0 device.

³ RF pins must not be allowed to electrically float during switch operation. See section *Floating Node Restrictions* for details on avoiding floating nodes.

⁴ For hot-switching, differential voltage across switch terminals must be less than or equal to 0.5 V and each switch port must within +/-0.5 V of RF ground.

Storage Temperature Range ⁶	-65	+150	°C
ESD Rating HBM Driver Pins ⁷		750	V
ESD Rating HBM RF I/O Pins ⁸ ⁹		500	V

Table 2 Recommended Operating Conditions

Parameter	Min	Typical	Max	Unit
Driver Logic Supply Voltage (VDD)	4.5	5.0	5.5	V
High-Voltage Bias Supply Voltage (V _{BB}) ¹⁰	88	89	90	V_{DC}
Operating Temperature Range	-40		+85	°C

DC and AC Electrical Specifications

All specifications valid over full VBB range and operating temperature range unless otherwise noted.

Table 3 RF Characteristics

Parameter	Minimum	Typical ¹¹	Maximum	Unit
Operating Frequency Range				
Single-Ended mode	DC		10	GHz
Differential mode	DC		20	
Max RF Power @ 3 GHz ¹²			33	dBm
Insertion Loss				dB
Single-Ended mode @ 10 GHz		1.3		uВ
Input / Output Return Loss				dB
Single-Ended mode @ 10 GHz		11		uБ
Isolation				dB
Single-Ended mode @ 10 GHz		24		uБ
Third-Order Intercept Point (IP3) ¹³		77		dBm
Second Harmonic (H2) ¹⁴		-102		dBc
Third Harmonic (H3) ¹⁵		-101		dBc

⁶ See section Storage and Shelf Life for more information on shelf and floor life.

¹⁵ Measured at 2 GHz fundamental frequency and 33 dBm input power.

⁷ Driver pins include: CLK, BL, LE, DIN, DOUT, VBB, VDD.

⁸ RF I/O pins include: RFINA, RFINB, OUT1A, OUT1B, OUT2A, OUT2B, AUX1, AUX2.

⁹ RF I/O pin ESD rating of 500V is preliminary pending completion of qualification.

¹⁰ Note that High-Voltage Bias must be applied to VBB. It is not part of the integrated driver.

¹¹ Typical specifications represent the parametric norm.

¹² Single Ended only 50 Ohms Measured at +85°C.

¹³ Measured at +25°C and 37dBm input power of the fundamental tones.

¹⁴ Measured at 2 GHz fundamental frequency and 33 dBm input power.

Signal Integrity Differential Performance

Test conditions for the differential eye-diagram performance measurements are listed below:

- Test pattern: 2¹⁵-1 NRZ
- Differential RF input amplitude: 1000 mVpp
- Measurements performed at 32 Gbps and 40 Gbps
- Tests performed at ambient temperature
- RF connector, traces, and cables are de-embedded
- Testing performed on MM5600 EVK

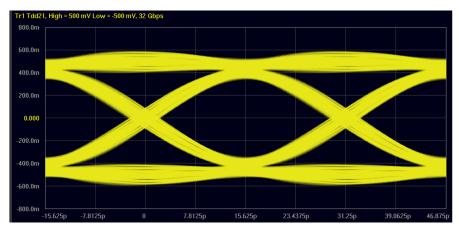


Figure 1 32 Gbps OUT1 ON Eye Diagram

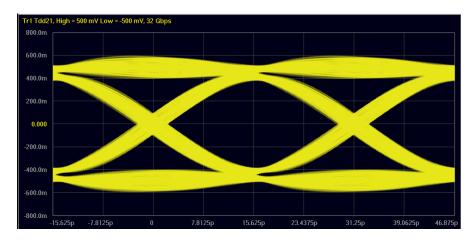


Figure 2 32 Gbps OUT2 ON Eye Diagram

Test Cases	Bit rate	Eye Height	Eye Width	Jitter	Rise Time	Fall Time
	(Gbps)	(mV)	(ps)	(Peak to Peak,ps)	(10%-90%, ps)	(90%-10%,ps)
Output 1 ON	32	603.2	23.48	5.66	22.03	22.04
Output 2 ON	32	646.3	23.46	5.59	21.24	21.27

Figure 3 32 Gbps Eye-Diagram Measurements

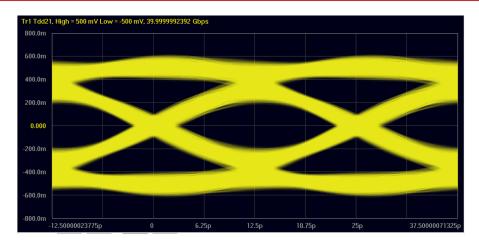


Figure 4 40 Gbps OUT1 ON Eye Diagram

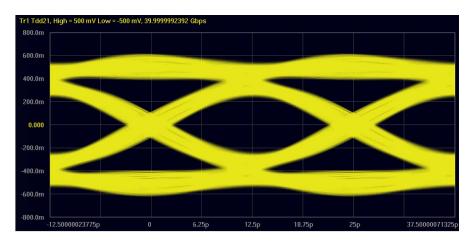


Figure 5 40 Gbps OUT2 ON Eye Diagram

Test Cases	Bit rate (Gbps)	Eye Height (mV)	Eye Width (ps)	Jitter (Peak to Peak,ps)	Rise Time (10%-90%, ps)	Fall Time (90%-10%,ps)
Output 1 ON	40	224.5	16.33	6.85	20.02	20.02
Output 2 ON	40	310.0	16.07	6.61	19.97	19.93

Figure 6 40 Gbps Eye-Diagram Measurements

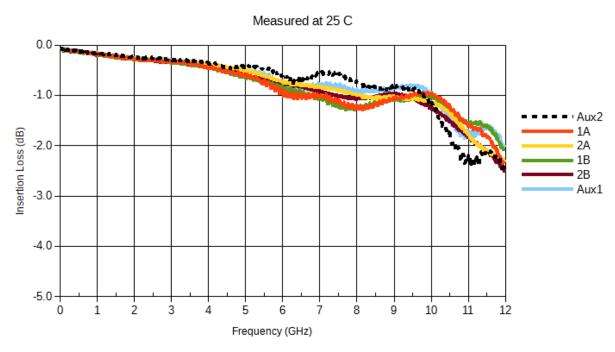


Figure 7 Single-ended Insertion Loss / S21

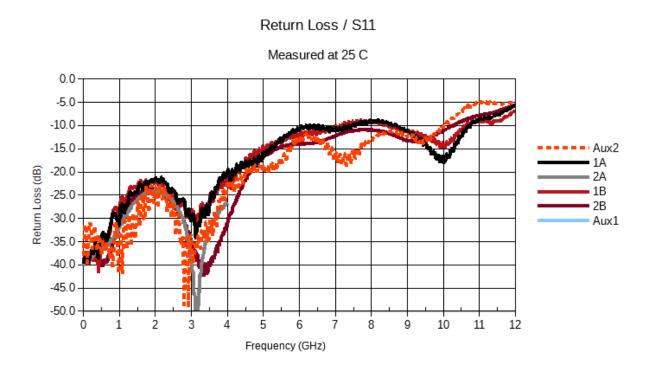


Figure 8 Single-ended Return Loss / S11

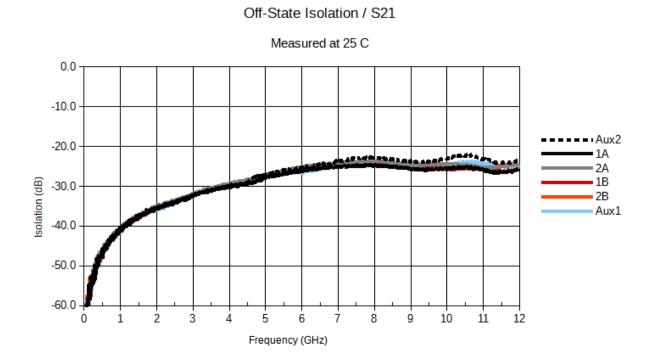


Figure 9 Single-ended Isolation / S21

Table 4 DC and AC Electrical Characteristics¹⁶

Parameter	Minimum	Typical	Maximum	Unit
On / Off Switching including Settling Time				
Settling time: on		8.5	16	μs
Settling time: off		2.5	6	
On / Off Switch Operations ¹⁷	3x10 ⁹	30x10 ⁹		Cycles
Off-State Leakage Current 18				
at 30 V _{DC}		3	10	nA
On-State Resistance (Ron)		1.2	3.0	Ω
Off-State Capacitance (C _{Off}) ¹⁹		15		fF

Hot Switch Restrictions

The MM5600 is not intended for hot switching applications and care should be taken to insure that switching occurs at less than 0.5 V. Further, the voltage at the switch terminals must be within +/-0.5 V relative to RF ground.

Floating Node Restrictions

RF pins must not be allowed to electrically float during switch operation and therefore require some form of DC path to ground to prevent charge accumulation. DC paths can be an inductor or high value resistance which serves as a discharge path. Floating node examples are:

- Unconnected RF pins, resistively terminate or tie to ground.
- Series capacitance coupling which floats RF pin, shunt with DC path to ground.

See Menlo Micro application note **Avoiding Floating Nodes** for detailed explanation of the hazard conditions to avoid and recommended solutions.

¹⁹ Capacitance between input and output pins.

¹⁶ DC measurements were performed in single-ended configuration.

¹⁷ Specified at 25 C ambient.

¹⁸ Measurement performed at 30V applied to RF input pin with corresponding RF output pins connected to ground.

Table 5 Driver DC Electrical Characteristics

Parameter	Minimum	Typical	Maximum	Unit
Driver Logic Supply Current (I _{DD}) ²⁰			4	mA
Driver Input				
High-Level Logic Voltage V _{IH}	VDD-0.9V		VDD	V
Low-Logic Input Voltage V _{IL}	0		0.9	V
High-Logic Input Current I _{IH}			10	uA
Low-Logic Input Current I _{IL}			-350	uA
Driver Output				
High-Level Logic Output V _{OH} ²¹	VDD – 1V			V
Low-Level Logic Output VoL ²²			1	
High-Voltage Bias Supply Current (IBB) ²³			10	uA

Table 6 Driver AC Electrical Specifications

Parameter	Minimum	Typical	Maximum	Unit
Clock Frequency f _{CLK}	0		8	MHz
Clock Width High and Low twL,twH	62			ns
Data Setup Time before Clock Rises t _{SU}	15			ns
Data Hold Time after Clock Rises t _H	30			ns
Latch Enable Pulse Width t _{WLE}	80			ns
Latch Enable Delay Time after Rising Edge of Clock t _{DLE}	35			ns
Latch Enable Setup Time before Clock Rises t _{SLE}	40			ns
Delay Time Clock to Data Low to High t _{DLH}			110	ns
Delay Time Clock to Data High to Low t _{DHL}			110	ns
All Logic Inputs t _r , t _f			5	ns

 $^{^{23}}$ Measured at $V_{BB} = 100V$ and no load.

²⁰ Measured at Fclk = 8 MHz, LE = LOW.

 $^{^{21}}$ V_{OH} measured at ID_{OUT} = -0.1 mA.

 $^{^{22}}$ V_{OL} measured at ID_{OUT} = -0.1 mA.

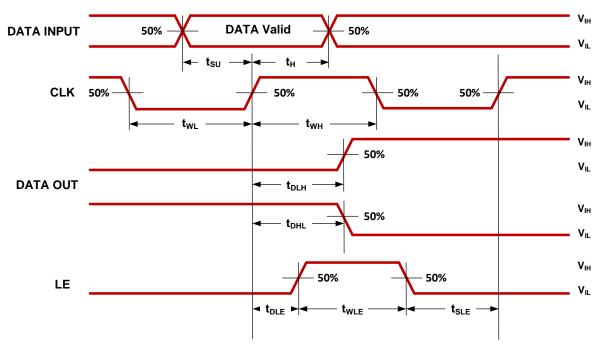


Figure 10: Driver Interface Timing Diagram

Functional Block Diagram

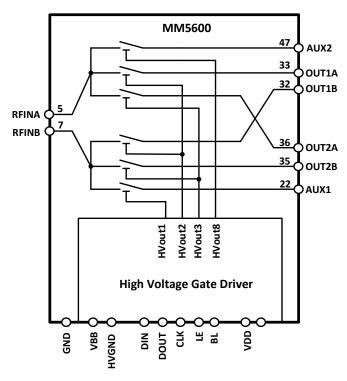


Figure 11: Functional Block Diagram

Package / Pinout Information

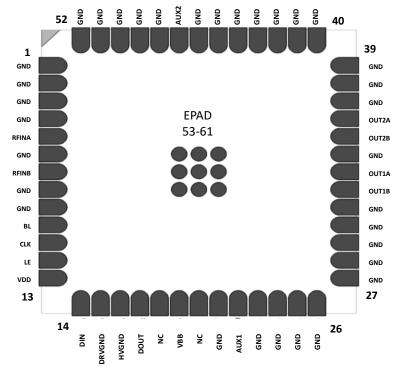


Figure 12: Top-Down Pin Layout

See Table 7 below for detailed pin description.

Table 7 Detailed Pin Description

Pin #	Pin Name	Description
1,2,3,4,6,8,9,21,23,24,25,26,27,28,29,30,31, 34,37,38,39,40,41,42,43,44,45,46,48,49,50, 51,52	GND	RF Ground
53,54,55,56,57,58,59,60,61	EPAD	Tie these pins to GND
15	DRVGND	Driver Ground
16	HVGND	High Voltage Ground
11	CLK	Clock
10	BL	Blank
12	LE	Latch Enable
18,20	NC	No Connect
14	DIN	Data In
17	DOUT	Data Out
19	V_{BB}	High Voltage Supply
13	V_{DD}	Logic Supply Voltage
5	RFINA	Differential Input A
7	RFINB	Differential Input B
133	OUT1A	Differential Output 1A
32	OUT1B	Differential Output 1B
36	OUT2A	Differential Output 2A
35	OUT2B	Differential Output 2B
22	AUX1	Single-ended Output 1
47	AUX2	Single-ended Output 2

High Voltage Gate Driver Control

Operating Description

The integrated high voltage gate driver is controlled through a serial-to-parallel interface that drives the high voltage gate lines of the switches. Switch control data is shifted into an 8-bit shift register, latched, level translated, and applied as gate control signals as shown in block diagram Figure 13 below.

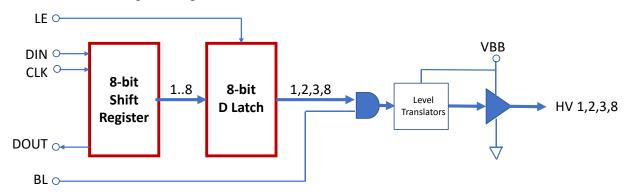


Figure 13: High Voltage Gate Driver Block Diagram

The gate driver is controlled by serial data input to DIN, sampled by CLK, latched by LE, and blanked by BL as follows:

- An 8-bit data byte is serially loaded into shift register bits 1-to-8 on the positive edge of CLK. Shift order is MSB first starting with bit 8.
- Parallel data from the shift register is transferred to the high voltage gate output buffers through an 8-bit D latch when the latch enable input LE is logically high. Transparent mode occurs when LE is held high while shifting data into the shift register.
- The MM5600 uses only four of the eight data bits latched for switch control. Bits 1, 2, and 3 and 8 correspond to high voltage gate lines HV1, HV2, HV3, and HV8 respectively. Bits 4,5,6 and 7 are not used. Data bits set to logical "1" close the corresponding switch to On and "0" open the switch to Off.
- Shift register data output pin DOUT may be used to cascade multiple devices by connecting DOUT of the first device to DIN of the next device. Other control signals should be shared between all the devices. In this case it is recommended to load 8-bit bytes consisting of 4 dummy bits and 4 switch control bits so that each byte controls one switch.
- There is no reset function. To clear register content, new data must be loaded.
- The blanking input BL will turn all gates off when logically low. The pin should be logically high for normal operation.
- Pins BL and LE have internal 20K ohm pull-up resistors to VDD. If blanking is not used, BL may be unconnected.

Table 8 Truth Function Table

	Inputs			Shift Register		High Voltage Output HVx	
Function	Data	CLK	LE	BL	1	28	1 238
All off (blank)	Χ	Х	Χ	L	*	* *	L LLL
Load Shift Register	H/L	1	L	Н	H/L	* *	* ***
Latched	Χ	Х	L	Н	*	*	* ***
Transfer	H/L	Х	Н	Н	H/L	*	H/L * * *

Note:

H = High logic level

L = Low logic level

X = Don't care logic level

↑ = Low to high logic transition

Each switch is individually controllable. In Table 9 below, primary usage states are highlighted in **bold**. Multiple branches may be closed simultaneously, however RF performance is not specified for such states. Note that On= Closed, Off = Open.

^{* =} Dependent on the previous stage's state before the last CLK or last LE high

Table 9 Applied Gate Voltage vs. RF Switch States

HV1	HV2	HV3	HV8	RFINA	RFINA	RFINA –	RFINB	RFINB	RFINB -
				OUT1A	OUT2A	AUX1	OUT1B	OUT2B	AUX2
0	0	0	VBB	Off	Off	Off	Off	Off	On
0	0	VBB	0	Off	On	Off	Off	On	Off
0	VBB	0	0	On	Off	Off	On	Off	Off
VBB	0	0	0	Off	Off	On	Off	Off	Off
0	0	0	0	Off	Off	Off	Off	Off	Off
				C	Other valid	d states			
0	0	VBB	VBB	Off	On	Off	Off	On	On
0	VBB	0	VBB	On	Off	Off	On	Off	On
0	VBB	VBB	0	On	On	Off	On	On	Off
VBB	0	0	VBB	Off	Off	On	Off	Off	On
VBB	0	VBB	0	Off	On	On	Off	On	Off
VBB	VBB	0	0	On	Off	On	On	Off	Off
VBB	VBB	0	VBB	On	Off	On	On	Off	On
VBB	VBB	VBB	0	On	On	On	On	On	Off
VBB	VBB	VBB	VBB	On	On	On	On	On	On
0	VBB	VBB	VBB	On	On	Off	On	On	On
VBB	0	VBB	VBB	Off	On	On	Off	On	On

Package Drawing

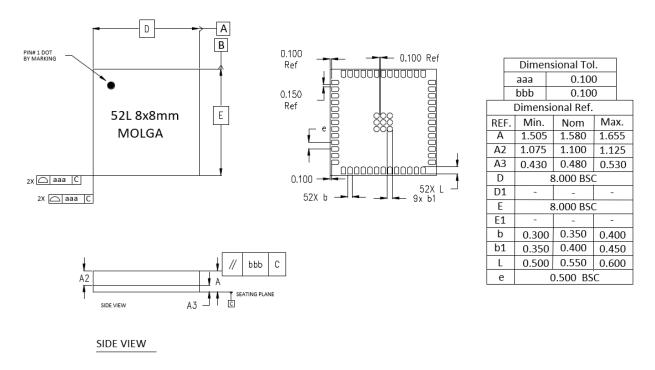
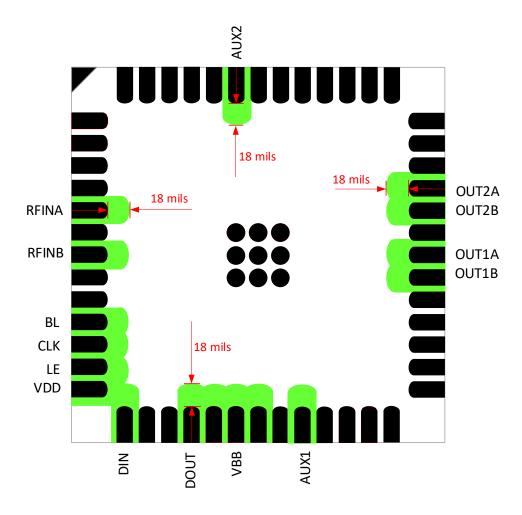



Figure 14 Package Drawing

The pin array is located symmetrically on the package body as specified in JEDEC Design Guide 4.25B for JEDEC LGA.

Recommended PCB Layout and SMT Parameters

- PCB lands should be as shown in the pad pattern diagram
- Connect GND pins (floating shield inside the package) to RF Signal Ground
- Open space around the package can have grounded thru holes
- ENIG (Electroless Nickel Immersion Gold) pad surface finish
- 20 micron (µm) thick solder mask
- Type 3 or higher solder paste with no clean flux
- Component placement force not to exceed 100 grams

Keep out the GND shape (green area) away from the RF PADs and IO signal PADs.

Recommended Solder Reflow Profile

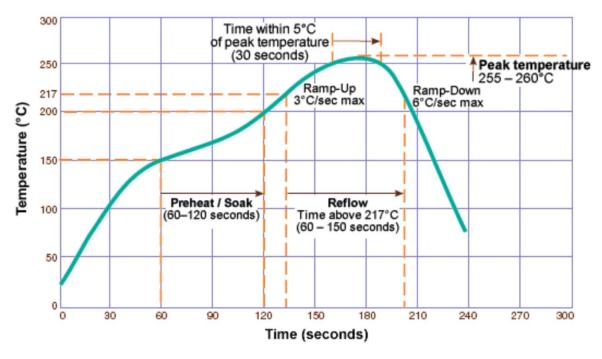


Figure 15 Reflow Profile

Follow Moisture Sensitivity Level (MSL) 3 handling precautions specified in IPC/JEDEC J-STD-020.

Storage and Shelf Life

Under typical industry storage conditions (≤30 °C/60% RH) in Moisture Barrier Bags:

- Customer Shelf Life: 24 months from customer receipt date
- Extended Shelf Life: 60 months from customer receipt date if re-bagged every 32 months or less.
- Floor life: Moisture Sensitivity Level (MSL) testing is not required for Hermetic package as per JESD47K.

Package Options and Ordering Information

Part Number	ECCN	Package	Temp Range
MM5600-01NDB MM5600-01NDB-TR	EAR99	DC-40 Gbps - DPDT - 8mm x 8mm LGA (for semitest/ATE applications), Industrial Temp with 3B Cycles, Mechanical Endurance at 25°C DC-40 Gbps - DPDT - 8mm x 8mm LGA (for semitest/ATE applications), Industrial Temp with 3B Cycles Mechanical Endurance at 25°C, Tape and Reel (Qty 250)	-40°C to +85°C
MM5600-EVK1	EAR99	Evaluation board for MM5600 (differential DPDT, w/Southwest SMA connector-QTY-8) DC-20GHz/40Gbps - 8mm x 8mm LGA	
MM5600-EVK2	EAR99	Evaluation board for MM5600 (single- ended mode, w/Rosenberger SMA connector-QTY-8) DC-12GHz - 8mm x 8mm LGA	

Important Information

Disclaimer

The data presented in this document is for informational purposes only and shall in no event be regarded as a guarantee of conditions or characteristics. Any warranty or license for this product shall be specified and governed by the terms of a separate purchase agreement. Menlo Micro does not assume any liability arising out of the application or use of this product; neither does it convey any license under its patent rights, nor the rights of others.

Menlo Micro reserves the right to make changes in these specifications and features shown herein to improve reliability, function and design, or discontinue of this product, at any time without notice or obligation. Contact our product representative for the most current information.

Warning

This product is not authorized for use:

- 1) In any life support systems.
- **2)** Applications for implanting into the human body, without the express written approval from Menlo Micro.

Trademark Notices

All trademarks and product service marks are owned by Menlo Microsystems, Inc.

Contact Information

Please contact Menlo Micro for the latest specifications, additional product information, test and evaluation boards, product samples, worldwide sales and distribution locations:

Internet: www.menlomicro.com
E-mail: sales@menlomicro.com

For product technical questions and application information: support@menlomicro.com.