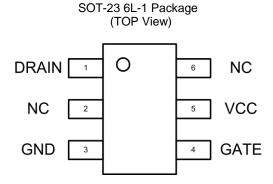


Replace 4 Bridge Diodes Compact and Self-Powered Simple and Easy to Construct an Almost No Loss Ideal Diode Bridge

GENERAL DESCRIPTION


CMDRBR is an industry first controller IC for Almost No Loss Ideal Diode Bridge.

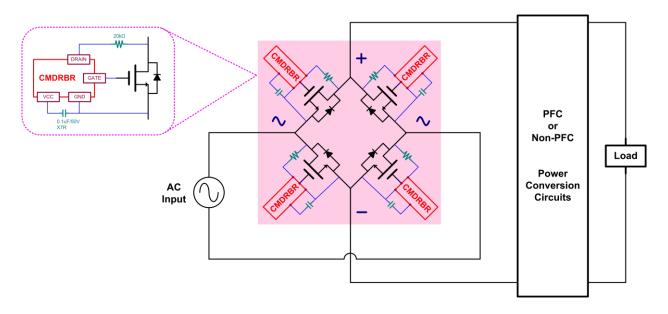
CMDRBR is a compact controller IC that can be used with an N-channel Super Junction Mosfet (SJMOS) in full-bridge or half-bridge rectifier topologies for AC rectification. It is developed to drive an external SJMOS to emulate an ideal diode. CMDRBR in SOT-23 6L-1 package (very compact). For bridge topology applications, is self-powered and does not require any external power. The traditional diode bridge rectifiers can be replaced with CMDRBR solution to minimize diode forward conduction losses and gain more efficient AC/DC power conversion.

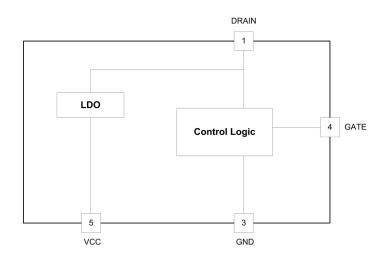
FEATURES

- Patented Pending
- ♦ No Need High-Side Driver
- Self-Powered with No External Power
- No Load Consumption < 20mW (4 Ideal Diodes
 @230Vac, when full circuit formed as a Dr. Bridge only;
 to replace traditional 4 Bridge Diodes)
- Low Forward-Voltage Drop and Almost No Power
 Dissipation Compared to Traditional Diode Bridge
- Maximizing Power Efficiency
 - Reducing Heat, Eliminating Thermal Design Problems
- ♦ Low Operation Current ~ 20uA
- Compact Package
- ◆ Easy to Use
- SMPS/Adaptors/Charger

PIN CONFIGURATION

FUNCTIONAL PIN DESCRIPTION


Pin Name	Pin Function
DRAIN	Connect to Drain of the external MOSFET
GND	Ground of the controller. Connect to Source of the external MOSFET
GATE	Gate Drive output pin. Connect to the Gate of the external MOSFET
VCC	Supply Voltage pin.



Replace 4 Bridge Diodes Compact and Self-Powered Simple and Easy to Construct an Almost No Loss Ideal Diode Bridge

APPLICATIONS

SIMPLIFIED BLOCK DIAGRAM

Product and Packing Information

Part No.	Package Type	Packing Type	Marking	
CMDRBR	SOT-23 6L-1	3K pcs / 7" reel	BRxx	

Note: xx: week & lot code

Replace 4 Bridge Diodes Compact and Self-Powered Simple and Easy to Construct an Almost No Loss Ideal Diode Bridge

ABSOLUTE MAXIMUM RATINGS*1

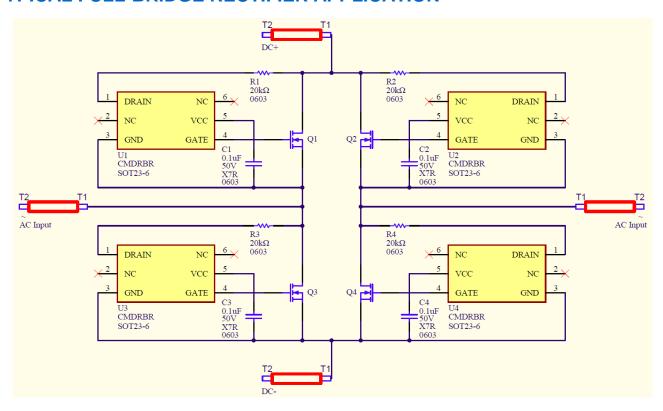
Parameters	Value/Limit	Unit
DRAIN to GND	-0.3 to 800	V
GATE to GND	-0.3 to 27	V
VCC to GND	-0.3 to 27	V
T _J , Junction Temperature	150	°C
Toperation, Operating Temperature Range	-40 to 125	°C
T _{stg} , Storage Temperature Range	-65 to 150	°C
Package Thermal Resistance ^{*2} SOT-23 6L-1, θ _{JA}	260.7	°C /W
Maximum Power Dissipation*3	0.38	W

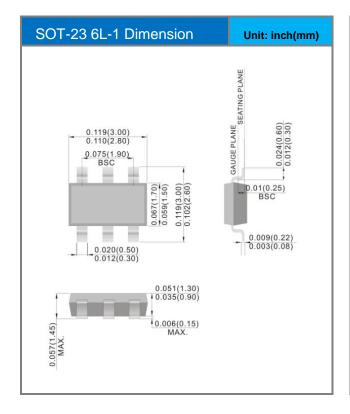
Note:

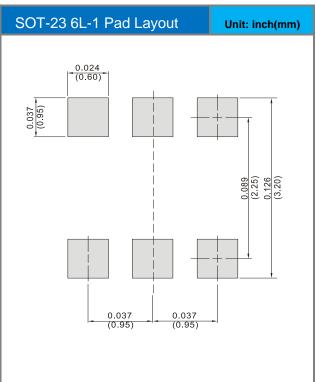
- *1: Exceeding these ratings may damage the device.
- *2: θ_{JA} is measured in natural convection (still air) at T_A=25°C with the component mounted on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.
- *3: T_A=25°C. The maximum allowable power dissipation is a function of the maximum junction temperature T_{J(max)}, the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_{D(max)}=(T_{J(max)}-T_A)/θ_{JA}.

ELECTRICAL CHARACTERISTICS

 $T_A = 25$ °C, unless otherwise specified.


PARAMETER	SYMBOL	TEST CONDITIONS	Value			
TAKAMETEK		TEOT CONDITIONS	Min	Тур	Max	Unit
Minimum Switch-On Voltage across External MOSFET's Body Diode	VDRAIN to GND Vth(turn-on)	External MOSFET V_{GS} =0V, VCC=15V, add 20k Ω in series with DRAIN, GATE connects 100k Ω to GND.	-250	-	-60	mV
vcc						
IC's ON threshold	UVLOon		7	7.4	8	V
IC's OFF threshold	UVLOoff		7	7.4	8	V
IC's Operation Current	Iccq	VCC=15V	4	-	20	uA
GATE Turn-OFF Threshold	V _{th(turn-off)}	Wafer based online trimming	-5	-	0	mV
GATE Turn-ON Delay	T _{delay(turn-on)}	VCC=15V, add $20k\Omega$ in series with DRAIN, GATE connects $100k\Omega$ to GND, Input=± $300mV$, $60Hz$ Square Wave.	10	-	50	us
GATE Turn-OFF Delay	T _{delay} (turn-off)	VCC=15V, add 20kΩ in series with DRAIN, GATE connects 100kΩ to GND, Input=±300mV, 60Hz Square Wave.	3	-	10	us
Propagation Delay + Rising Time	T _{pd} + Trising	VCC=15V, add 20kΩ in series with DRAIN, GATE connects 1000pF to GND, Input=±300mV, 60Hz Square Wave. Measure the time from Input=-100mV to GATE pin = 7V	15	-	85	Us




Replace 4 Bridge Diodes Compact and Self-Powered Simple and Easy to Construct an Almost No Loss Ideal Diode Bridge

TYPICAL FULL-BRIDGE RECTIFIER APPLICATION

PACKAGE DIMENSION

Replace 4 Bridge Diodes Compact and Self-Powered Simple and Easy to Construct an Almost No Loss Ideal Diode Bridge

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are
 responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no
 representation or warranty that such applications will be suitable for the specified use without further testing or
 modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining