

a YAGEO company

Taking the Mystery Out of RF Ceramic Capacitors

Taking the Mystery Out of RF Ceramic Capacitors Agenda

- What is RF?
- RF Applications
- Ceramic Capacitor Basics
- What are RF Capacitors?
- KEMET HiQ-CBR Series
- Characterization and E2Di
- CBR Roadmap and Summary

What is RF? Radio Frequency

Magnetic Field

 $frequency = \frac{C = Speed of Light}{\lambda = Wavelength}$

10s MHz – 300GHz "High Frequency"

RF Frequency Spectrum

			©KEMET Corporat	ion. All Rights Reserved.		RF "H	ligh Frequen	cy'' Range Microwave Band		
			M		J.		(())		mmWave	
		Marine Navigation, Wireless Heart Rate Monitors	Navigation, RFID	AM Radio, Amateur Radio	Shortwave Radio, Aviation Communication, NVIS	VHF Television, FM Radio, Weather Radio, Line-of-Sight Communications	GPS, 4G Mobile Phones, Satellite Radio, Remote Control Systems	5G Mobile, Satellite Communications, WiFi	Radio Astronomy, Millimeter Wave Scanner	
Desi	ignation	VLF	LF	MF	HF	VHF	UHF	SHF	EHF	
Wavelength	100) km 10	km 1	km 100) m 10) m 1	m 10	cm 1 c	:m 1 n	nm
Frequency	3 k	(Hz 30	kHz 300	kHz 3 N	1Hz 30	MHz 300	MHz 3 (GHz 30 (GHz 300	GHz

Advantages of Higher Frequencies

More use of the frequency spectrum

• High capacity (bandwidth) / sending more data in less time

4G^M

5**G**

Disadvantages of Higher Frequencies

Shorter range

Signals may be blocked by dense objects

If outside, weather conditions have an impact

5G Technology Capacity / Bandwidth vs Range

Capacity / Bandwidth 5G mmWave • >24GHz Frequency 5G Mid Band 1GHz - 6GHz • 5G Low Band Range • <1GHz

Rural Areas Light Population

Urban Areas

Dense Population

©KEMET Corporation. All Rights Reserved.

RF Capacitor Applications and Functions

KEMET

a YAGEO company

Ceramic Capacitor Basics

©KEMET Corporation. All Rights Reserved.

Ceramic Capacitor Basics MLCC Construction

10000

Ceramic Capacitor Basics

Ideal Capacitor

- Ideal Capacitor
 - Pure Capacitance
 - No resistance (ESR)
 - No Inductance (ESL)

1000

Frequency (MHz)

0.1

Ceramic Capacitor Basics Real Capacitor

Real Capacitor

- Real Capacitor
 - C Nominal capacitance
 - ESR Equivalent Series resistance
 - ESL Equivalent Series inductance

Simplified Real Model

$$Z = \sqrt{ESR^2 + (X_L - X_C)^2}$$

Z = Total Impedance ESR = Equivalent Series Resistance $X_C = Capacitive Reactance$ $X_L = Inductive Reactance$

Ceramic Capacitor Basics Closer Look at ESR

RF Capacitors

What's the Difference?

"Standard" Ceramic Capacitor

RF Ceramic Capacitor

Key Characteristics for Capacitors in RF Applications What's Important for Design Engineers?

Most Important

a **YAGEO** company

©KEMET Corporation. All Rights Reserved

So, What is an RF Capacitor?

An RF capacitor is a capacitor whose "characteristics" are optimal at RF frequencies

Key Characteristic	RF Capacitor Requirements
ESR (Equivalent Series Resistance)	Lowest possible ESR at RF frequencies
Q (Quality Factor)	High Q at RF frequencies
SRF (Series Resonant Frequencies)	High SRF as high as possible
TCC (Temperature Coefficient of Capacitance)	Minimal capacitance shift across temperature

So, for RF capacitors, materials are chosen, and designs are optimized so that the capacitor's characteristics are optimal at the higher frequencies.

Optimizing MLCCs for RF Applications

Design	Design Goal	How?
Dielectric	 Low ESR / High Q Temperature and Voltage Stability 	Typically, High Q class 1 dielectrics such as C0G or NPO

Design	Design Goal	How?			
Electrodes	Low ESR / High QLow Inductance	 Non-ferrous materials No Nickel electrodes Copper (BME) 			

KEMET HiQ-CBR Series

Downloadable S-Parameters Available Advanced Modelithics[™] Models

HIQ-CBR

KEMET HiQ-CBR Series

CBR Application Frequency Range

Wavelength

Frequency

KEMET CBR Characterization and E2Di

"Why is KEMET's CBR Series not in the KSIM tool?"

©KEMET Corporation. All Rights Reserved.

ESR and **Q**

KEMET

a YAGEO company

Boonton 34a – ESR and Q Measurements

Electrical Characteristics cont.

ESR vs. Frequency 0402

Q vs. Frequency 0402

ESR vs. Frequency 0603

Q vs. Frequency 0603

RF and Microwave

<u>Ultra HiQ-CBR Squared, COG Dielectric, 250 VDC</u> <u>HiQ-CBR, COG Dielectric, Low ESR, 6.3 - 500 VDC</u>

ESR, Q, and SRF

Datasheet Availability

https://www.kemet.com/en/us/capacitors/ceramic.html#tab-datasheets

©KEMET Corporation. All Rights Reserved.

ESR vs. Frequency 0805

Q vs. Frequency 0805

SRF (MHz) vs. Cap (pF)

E2Di EASY TO DESIGN IN

S-Parameters

Low Frequency Design vs High Frequency "RF" Design

Impedance / ESR Approach

S-Parameter Network Approach

S-Parameters (Scattering Parameters) What are they?

S-Parameters Example of S11 Plot

S-Parameters How Designers Use Them

RF Simulation Tools

- Keysight's Advanced Design Systems (ADS)
- Keysight's PathWave RF Synthesis (Genesys)
- Cadence AWR's Microwave Office
- Other tools available

ASCII text files - Touchtone Format

!Agilent Technologies, E5071C, MY46109480, A. 09. 54 !Date: Tue Oct 11 20:23:29 2011 !Data & Calibration Information: 522:50LT2(ON) !Freq S11:SOLT2(ON) 521:SOLT2(ON) 512:50LT2(ON) # Hz S dB R 50 50000000 -3.760025e-001 -1.745230e+001 -1.070520e+001 7.279950e+001 -1.070309e+001 7.281087e+001 -3.737441e 74937500 -8.168459e-001 -2.525207e+001 -7.644260e+000 6.481506e+001 -7.641570e+000 6.482366e+001 -8.142310e 99875000 -1.360752e+000 -3.223251e+001 -5.704231e+000 5.780029e+001 -5.702769e+000 5.781035e+001 -1.357891e -1.973216e+000 124812500 -3.834190e+001 -4.391318e+000 5.161158e+001 -4.389353e+000 5.162188e+001 -1.970618e -2.616565e+000 149750000 -4.365442e+001 -3.463572e+000 4.626452e+001 -3.460819e+000 4.627317e+001 -2.613514e 74607500 702025-000

Considering Effects of the PCB and Pad Dimensions

PCB properties

- Thickness
- Dielectric Constant
- Trace Thickness

a YAGEO company

Advanced CBR Modelithics Models **E2Di** LEASY TO Full Parasitic Models

#Modelithics

Simulating Real World Parasitics

- Capacitance and Tolerance
- PCB Properties
- Pad Dimensions

MSub	4 m	nil Rogers 4350B	
Mdlx4MiRogers4360B MSub1 H=4 mil Er=4.15 Mur=1 Cond=1.0E+07 Hu=3.03701e+34 mil T=0.043 mm TanD=0.0031 Rough=0 mil	TermG TermG1 Num=1 Z=50 Ohm	CAP_KMT_0402_004_MOLXCL KMT_CBR04_C1 C=4.7 pF Subst="MSub1" Sim_mode=0 - Full Parasitic Mo Tolerance=1.0 Pad_Width=0.52 mm Pad_Length=0.52 mm Pad_Cap=0.28 mm	RKMT1 del TermG2 Num=2 Z=50 Ohn

♦ 60 mil Rogers 4003C

First Pass Design Success!!!

Advanced CBR Modelithics Models **E2Di** LASY TO DESIGN IN

How Designers Access Models

RF Simulation Tools

- Keysight's Advanced Design Systems (ADS)
- Keysight's PathWave RF Synthesis (Genesys)
- Cadence AWR's Microwave Office

Accessing Models

Contact Product Management

KEMET HIQ CBR Full E2Di Support

"Standard" Capacitor

Low Frequencies <100MHz Nickel (BME)

Low ESR

Moderate Q-Factor

Class 1 or Class 2 Dielectrics

Standard E2Di Tools (KSIM)

Higher frequencies >100MHz Copper (BME) Very Low ESR High Q-Factor Class 1

Advanced Tools (S-Parameters, Modelithics Models)

CBR RF Capacitor

Key Takeaways

- An RF capacitor is a capacitor whose "characteristics" are optimal at RF frequencies
- Applications including RF Power Amplifiers, Base Stations, 5G, wearables, autonomous and connected vehicles
- KEMET continues to expand the CBR Hi-Q RF Series
 - 01005 case size
 - CBR Automotive
- CBR E2Di Tools
 - Datasheet graphs
 - S-Parameters
 - Advanced Modelithics Models
 - Engineering Kits
 - Long Tail Stocking package