

DESCRIPTION

The AP62500 is a 5A, synchronous buck converter with a wide input voltage range of 4.5V to 18V. The device fully integrates a 47m Ω high-side power MOSFET and a 18m Ω low-side power MOSFET to provide high-efficiency step-down DC-DC conversion.

The AP62500 device is easily used by minimizing the external component count due to its adoption of Constant On-Time (COT) control to achieve fast transient response, easy loop stabilization, and low output voltage ripple.

The AP62500 design is optimized for Electromagnetic Interference (EMI) reduction. The device has a proprietary gate driver scheme to resist switching node ringing without sacrificing MOSFET turn-on and turn-off times, which reduces high-frequency radiated EMI noise caused by MOSFET switching.

The device is available in a V-QFN2030-12 (Type A) package.

FEATURES

- VIN: 4.5V to 18V
- Output Voltage (VOUT): 0.6V to 7V
- 5A Continuous Output Current
- 0.6V ± 1% Reference Voltage
- 195µA Quiescent Current
- Selectable Operation Modes
 - Pulse Frequency Modulation (PFM)
 - Ultrasonic Mode (USM)
 - Pulse Width Modulation (PWM)
- Selectable Switching Frequency
 - o 400kHz
 - o 800kHz
 - o 1.2MHz

- Programmable Soft-Start Time
- Proprietary Gate Driver Design for Best EMI Reduction
- Power-Good Indicator
- Precision Enable Threshold to Adjust UVLO
- Protection Circuitry
 - Undervoltage Lockout (UVLO)
 - Cycle-by-Cycle Valley Current Limit
 - Thermal Shutdown

APPLICATIONS

- 5V and 12V Input Distributed Power Bus Supplies
- Television Sets and Monitors
- White Goods and Small Home Appliances
- FPGA, DSP, and ASIC Supplies
- Home Audio
- Network Systems
- Gaming Consoles
- Consumer Electronics
- General Purpose Point of Load

FUNCTIONAL BLOCK

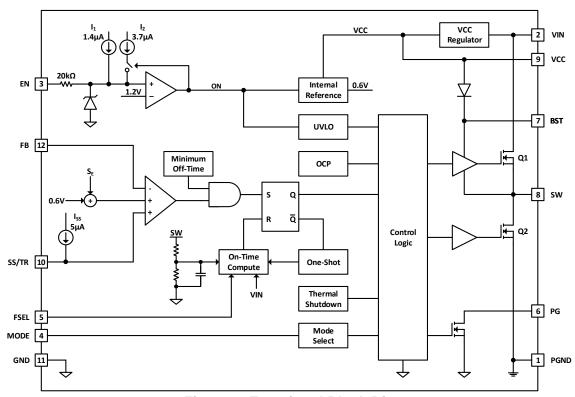


Figure 1. Functional Block Diagram

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
VIN	Supply Voltage	4.5	18.0	V
VOUT	Output Voltage	0.6	7.0	V
TA	Operating Ambient Temperature	-40	+85	°C
TJ	Operating Junction Temperature	-40	+125	°C

EVALUATION BOARD

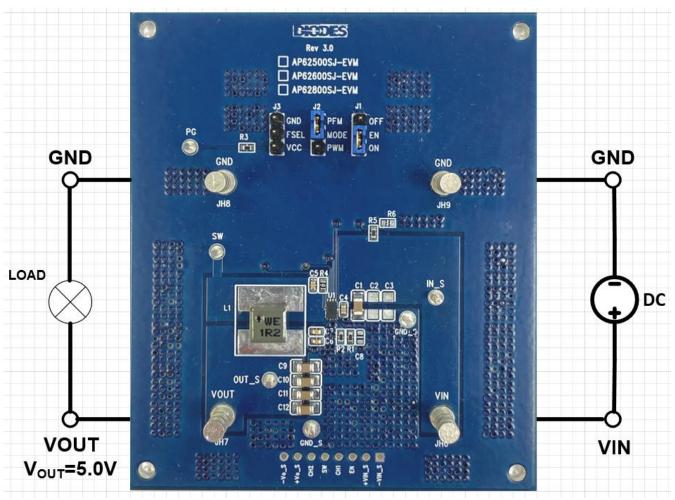


Figure 2. AP62500SJ-EVM

AP62500SJ-EVM

4.5V TO 18V INPUT, 5A SYNCHRONOUS BUCK CONVERTER

QUICK START GUIDE

The AP62500SJ-EVM has a simple layout and allows access to the appropriate signals through test points. The board is targeted to be used in providing a simple and convenient evaluation environment for the AP62500.

To operate the EVM, set jumpers J1, J2 and J3 to the desired positions per below shown.

- J1 = EN pin input jumper. For Enable, to enable IC, leave it OPEN or jump to "ON" to program an external resistor voltage divider at R5 and R6 to set the EN level. Jump to "OFF" position to disable IC.
- J2 = PFM, PWM or USM mode selection. At J2, connect a jumper to PWM to force the device in Pulse Width Modulation (PWM) operation mode. Connect a jumper to PFM to ground the pin to operate the device in Pulse Frequency Modulation (PFM) operation mode without Ultrasonic Mode (USM). Leave J2 OPEN to float the pin to operate the device in PFM with USM mode.
- J3 = Switching frequency selection. At J3, connect a jumper to GND to set clock frequency to 400kHz. Leave J3 OPEN to float the pin to set clock frequency to 800kHz. Connect a jumper to VCC to set clock frequency to 1.2MHz.

To evaluate the performance of the AP62500SJ-EVM, follow the procedure below:

- 1. Connect a power supply to the input terminals VIN and GND. Set VIN to 12V.
- 2. Connect the positive terminal of the electronic load to Vout and negative terminal to GND.
- 3. By default, the evaluation board should now power up with a 5.0V output voltage. Frequency is 800kHz.
- 4. Check for the proper output voltage of 5.0V (±1%) at the output terminals Vou⊤ and GND. Measurement can also be done with a multimeter with the positive and negative leads between Vou⊤ and GND.
- 5. Set the load to 5A through the electronic load. Check for the stable operation of the SW signal on the oscilloscope. Measure the switching frequency.

MEASUREMENT/PERFORMANCE GUIDELINES:

- 1) When measuring the output voltage ripple, maintain the shortest possible ground lengths on the oscilloscope probe. Long ground leads can erroneously inject high frequency noise into the measured ripple.
- 2) For efficiency measurements, connect an ammeter in series with the input supply to measure the input current. Connect an electronic load to the output for output current.

APPLICATION INFORMATION

Setting the Output Voltage of AP62500

(1) Setting the output voltage

The AP62500 features external programmable output voltage by using a resistor divider network R2 and R1 as shown in the typical application circuit. The output voltage is calculated as below,

$$R1 = R2 \cdot \left(\frac{VOUT}{0.6V} - 1\right)$$

First, select a value for R1 according to the value recommended in the table 1. Then, R3 is determined. The output voltage is given by Table 1 for reference. For accurate output voltage, 1% tolerance is required.

Table 1. Resistor selection for output voltage setting

Vo	R2	R1
1.2V	10kΩ	10kΩ
1.5V	10kΩ	15kΩ
1.8V	10kΩ	20kΩ
2.5V	10kΩ	31.6kΩ
3.3V	10kΩ	45.3kΩ
5V	10kΩ	73.2kΩ

EXTERNAL COMPONENT SELECTION:

Table 2. Recommended inductors and output capacitor

AP62500							
Output Voltage	Frequency	R1	R2	L1	C1	C9, C10, C11	C5
(V)	(kHz)	(kΩ)	(kΩ)	(μH)	(μ F)	(μF)	(nF)
	400			1.50			
1.2	800	10	10	0.75	22	3 x 22	100
	1200			0.51			
	400			1.80			
1.5	800	15	10	0.87	22	3 x 22	100
	1200	1		0.62			
	400			2.00			
1.8	800	20	10	1.00	22	3 x 22	100
	1200			0.68			
	400			2.70			
2.5	800	31.6	10	1.30	22	3 x 22	100
	1200			0.87			
	400			3.3			·
3.3	800	45.3	10	1.5	22	3 x 22	100
	1200			1.00			
	400			3.5			·
5.0	800	73.2	10	2.2	22	3 x 22	100
	1200			1.20			

EVALUATION BOARD SCHEMATIC

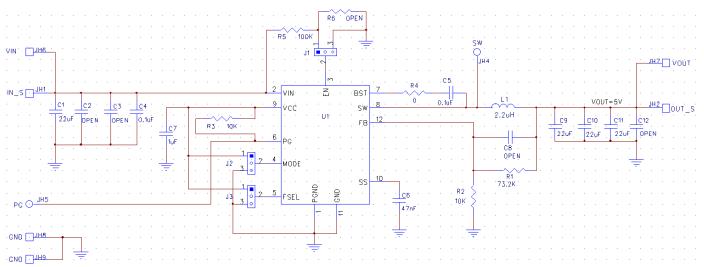


Figure 3. AP62500SJ-EVM Schematic

PCB TOP LAYOUT

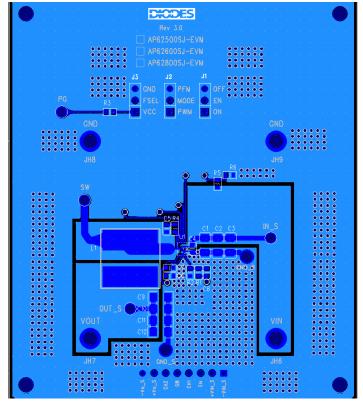


Figure 4. AP62500SJ-EVM - Top Layer

PCB INNER LAYER 2 LAYOUT

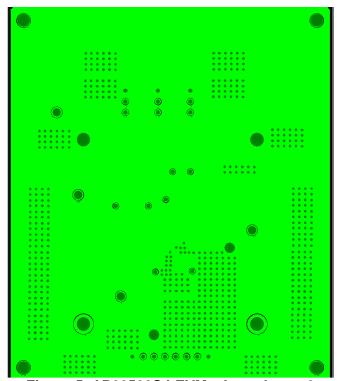


Figure 5. AP62500SJ-EVM - Inner Layer 2

PCB INNER LAYER 3 LAYOUT

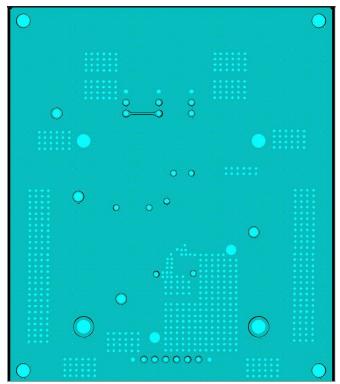


Figure 6. AP62500SJ-EVM - Inner Layer 3

PCB BOTTOM LAYOUT

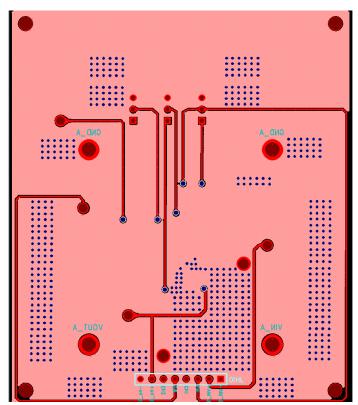


Figure 7. AP62500SJ-EVM - Bottom Layer

BILL OF MATERIALS for AP62500SJ-EVM for Vout=5V @800kHz

Ref	Value	Description	Qty	Size	Vendor	Manufacturer PN	PCB Layer
C1, C9, C10,	22µF	Ceramic Capacitor, 25V, X6S	4	1206	Samsung	CL31X226KAHN3NE	Тор
C4, C5	0.1µF	Ceramic Capacitor, 50V, X7R, 10%	2	0603	Wurth Electronics	885012206095	Тор
C6	47nF	Ceramic Capacitor, 50V, X7R, 10%	1	0603	Wurth Electronics	885012206093	Тор
C7	1µF	Ceramic Capacitor, 25V, X7R, 10%	1	0603	Wurth Electronics	885012206076	Тор

L1	2.2µH	DCR=10.5mΩ, Ir=8A	1	6.65x6.45x3. 30mm	Wurth Electronics	74439344022	Тор
R1	73.2ΚΩ	RES SMD 1%	1	0603	Panasonic	ERJ-3EKF7322V	Тор
R2, R3	10ΚΩ	RES SMD 1%	2	0603	Panasonic	ERJ-3EKF1002V	Тор
R4	0Ω	RES SMD 1%	1	0603	Yageo	RC0603FR-070RL	Тор
R5	100ΚΩ	RES SMD 1%	1	0603	Yageo	AC0603FR-13100KL	Тор
J1, J2, J3		PCB Header, 40 POS	3	1X3	3M	2340-6111TG	Тор
JH6, JH7, JH8, JH9	1598	Terminal Turret Triple 0.094" L (Test Points)	4	Through- Hole	Keystone Electronics	1598-2	Тор
U1	AP62500	5A Sync DC/DC Converter	1	QFN2030-12	Diodes Inc	AP62500SJ	Тор

TYPICAL PERFORMANCE CHARACTERISTICS

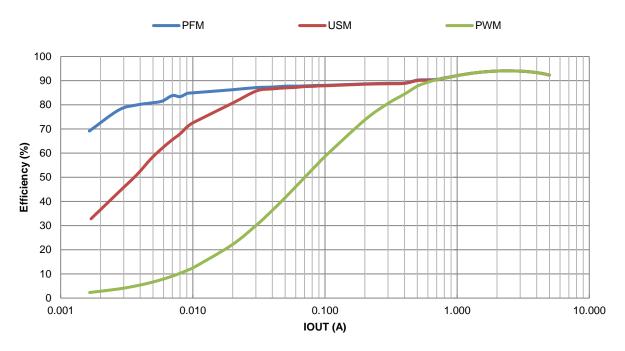


Figure 8. Efficiency vs. Output Current, VIN = 12V, VOUT = 5V, L = 2.2µH, f_{SW} = 800kHz

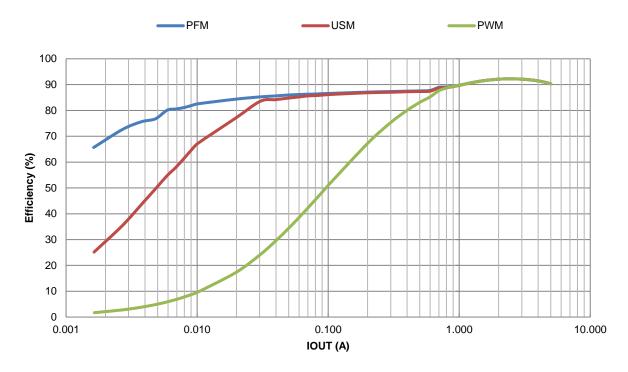


Figure 9. Efficiency vs. Output Current, VIN = 12V, VOUT = 3.3V, L = $1.5\mu H$, f_{SW} = 800kHz

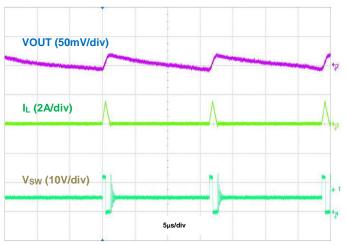


Figure 10. Output Voltage Ripple, IOUT = 50mA VIN = 12V, VOUT = 5V PFM f_{SW} = 800kHz

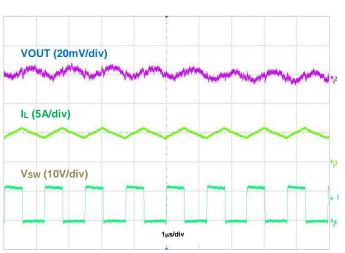


Figure 11. Output Voltage Ripple, IOUT = 5A VIN = 12V, VOUT = 5V PFM f_{SW} = 800kHz

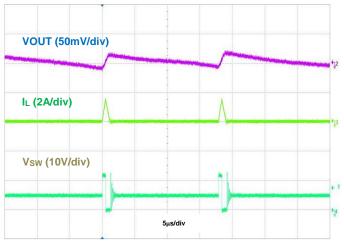


Figure 12. Output Voltage Ripple, IOUT = 50mA VIN = 12V, VOUT = 5V USM f_{SW} = 800kHz

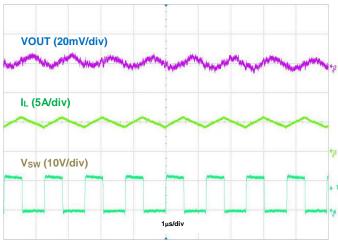


Figure 13. Output Voltage Ripple, IOUT = 5A VIN = 12V, VOUT = 5V USM f_{SW} = 800kHz

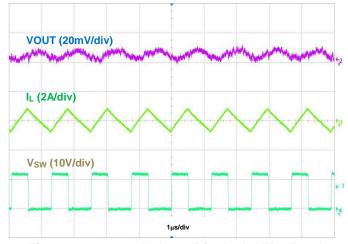


Figure 14. Output Voltage Ripple, IOUT = 50mA VIN = 12V, VOUT = 5V PWM f_{SW} = 800kHz

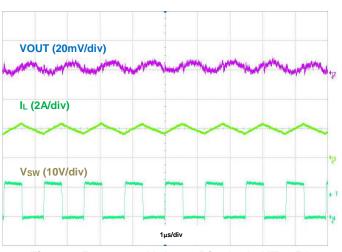


Figure 15. Output Voltage Ripple, IOUT = 5A VIN = 12V, VOUT = 5V PWM f_{SW} = 800kHz

AP62500SJ-EVM

4.5V TO 18V INPUT, 5A SYNCHRONOUS BUCK CONVERTER

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2024, Diodes Incorporated

www.diodes.com