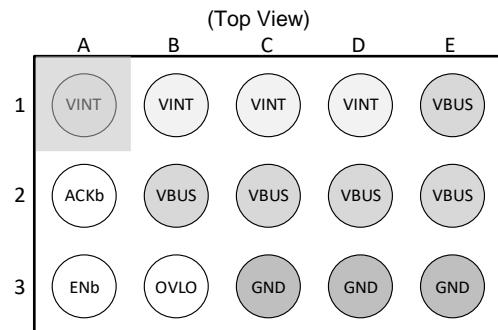


Description

The AP22950 is a uni-directional high-voltage power switch for USB PD featuring undervoltage lockout, overvoltage lockout, reverse current protection and overtemperature protection circuits.

The AP22950 features a low 30mΩ on-resistance and operates from 2.5V to 22.5V VBUS input voltage.

The reverse current protection features isolation from higher VINT than VBUS that allows supplying internal system power node from the highest voltage from multiple AP22950 that are connected together, which is suitable for portable devices that have multiple power inputs.


The AP22950 offers default 23V overvoltage protection threshold by default without resistor on OVLO and the threshold is adjustable from 4.0V to 23V by external resistor on OVLO pin. ACKb pin can be VBUS voltage status indicator.

The AP22950 is available in the U-WLB2515-15 package.

Applications

- Laptops and accessories
- Smartphones, tablet PCs
- Portable speakers, wearable devices

Pin Assignments

U-WLB2515-15

Features

- Wide Input-Voltage Range from 2.5V to 22.5V Complies with SPR (Standard Power Rating) Requirement of USB PD 3.X
- I_{sw} Maximum 5A Continuous Current
- 29V Tolerance on Both VBUS and VINT Pin
- 30mΩ Low ON Resistance
- Adjustable VBUS Overvoltage Protection Threshold
- Slew Rate Control for Inrush Current Limit
- Protection Features:
 - Thermal Shutdown (Overtemperature Protection)
 - Overvoltage Protection
 - Undervoltage Lockout
 - Reverse Current Protection
- Surge/ESD Protection:
 - IEC61000-4-5 Exceeds $\pm 100V$ on VBUS Without Capacitor
 - IEC61000-4-5 Exceeds $\pm 110V$ on VBUS with $22\mu F$ Capacitor
- **Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)**
- **Halogen and Antimony Free. "Green" Device (Note 3)**
- **For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please [contact us](#) or your local Diodes representative.**

<https://www.diodes.com/quality/product-definitions/>

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
2. See <https://www.diodes.com/quality/lead-free/> for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Typical Applications Circuit – Multi USB-C Ports

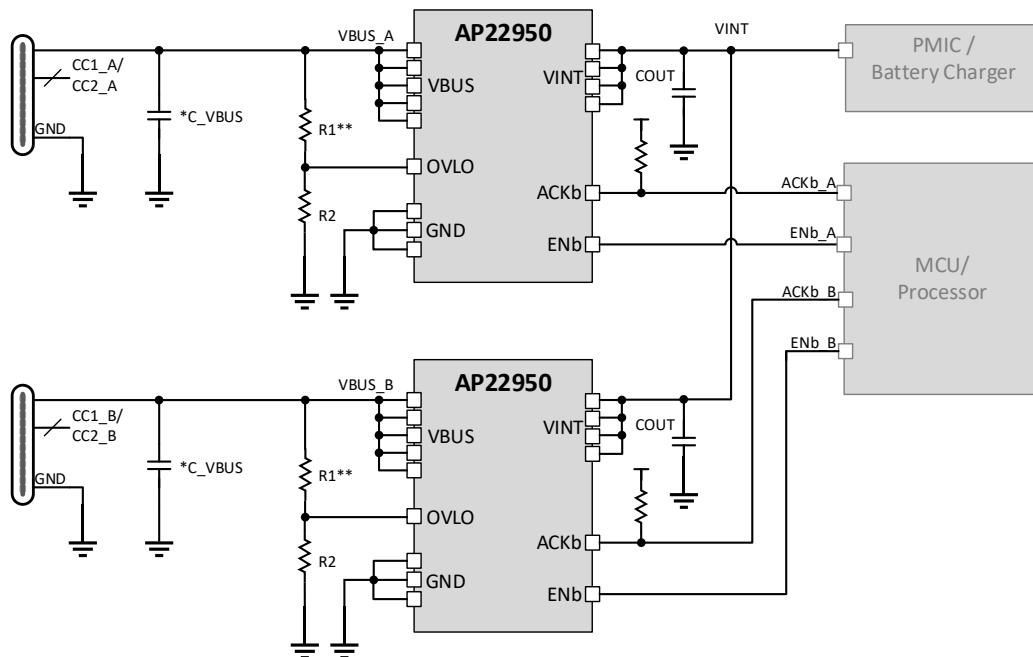


Figure 1. Typical Application Diagram - Multi USB-C® Ports

Notes: *C_VBUS requires larger than $22\mu\text{F}$ capacitance for 110V surge protection.

** R1 is recommended to use minimum $1\text{M}\Omega$.

Pin Descriptions

Pin Name	Pin Number	Type	Function
VBUS	B2, C2, D2, E1, E2	Power	Power Input
VINT	A1, B1, C1, D1	Power	Power Output
OVLO	B3	Input	Overvoltage threshold adjustment by external resistor (Default 23V if OVLO = GND)
ACKb	A2	Open Drain Output	Power-Good Acknowledge (Output Low for valid VBUS input)
GND	C3, D3, E3	Power	Gate driver out pin. Connects to gate of external MOSFET
ENb	A3	Input	Enable Control (Active Low)

Functional Block Diagram

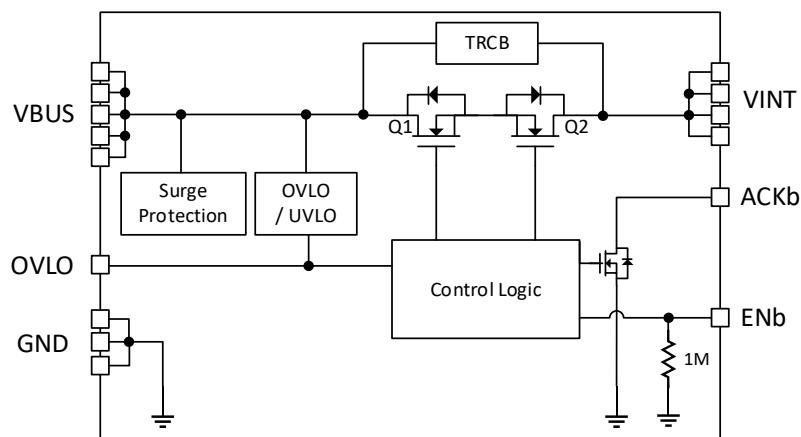


Figure 2. Functional Block Diagram

Absolute Maximum Ratings (@ $T_A = +25^\circ\text{C}$, unless otherwise specified.) (Note 4)

Symbol	Parameter	Ratings	Unit	
ESD HBM	Human Body ESD Protection	4	kV	
ESD CDM	Charged Device Model ESD Protection	1	kV	
VBUS	Input Voltage at VBUS	-0.5 to 29	V	
VINT	Input Voltage at VINT	-0.5 to 29	V	
ENb	Enable Control Input (Active Low)	-0.5 to 29	V	
ACKb	Power-Good Acknowledge (Active Low)	-0.5 to 6	V	
OVLO	OVLO Threshold Adjustment	-0.5 to VBUS	V	
Isw	Maximum Continuous Switch Current	$T_A = +85^\circ\text{C}$	5.0	A
		$T_A = +105^\circ\text{C}$	3.5	A
$T_{J(\text{max})}$	Maximum Junction Temperature	-40 to +150	$^\circ\text{C}$	
T _{STG}	Storage Temperature	-65 to +150	$^\circ\text{C}$	

Note: 4. Stresses greater than *Absolute Maximum Ratings* specified above can cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions exceeding those indicated in this specification is not implied. Device reliability can be affected by exposure to absolute maximum rating conditions for extended periods of time.

Package Thermal Information (Note 5)

Symbol	Parameter	Value	Unit
$R_{\theta JA}$	Junction-to-Ambient Thermal Resistance	60.3	$^\circ\text{C}/\text{W}$
$R_{\theta JC(\text{top})}$	Junction-to-Case (Top) Thermal Resistance	12.2	$^\circ\text{C}/\text{W}$
$R_{\theta JB}$	Junction-to-Board Thermal Resistance	6.2	$^\circ\text{C}/\text{W}$
ψ_{JT}	Junction-to-Top Characterization Parameter	0.26	$^\circ\text{C}/\text{W}$
ψ_{JB}	Junction-to-Board Characterization Parameter	5.81	$^\circ\text{C}/\text{W}$
$R_{\theta JC(\text{bot})}$	Junction-to-Case (Bottom) Thermal Resistance	6.67	$^\circ\text{C}/\text{W}$

Note: 5. $R_{\theta JA}$ and $R_{\theta JC}$ are measured at $T_A = +25^\circ\text{C}$ on a highly effective thermal conductivity four-layer test board per JEDEC 51-7.

Recommended Operating Conditions (@ $T_A = +25^\circ\text{C}$, unless otherwise specified.)

Symbol	Parameter	Min	Max	Unit	
VBUS	Input Voltage at VBUS	2.5	22.5	V	
VINT	Input Voltage at VINT	0	22.5	V	
ACKb	Power-Good Acknowledge Pullup Voltage	0	5.5	V	
ENb	Enable Control	0	20	V	
C _{IN}	Input Capacitance on VBUS (Note 6)	For IEC61000-4-5, 110V	22	—	μF
		For IEC61000-4-5, 100V	1	—	μF
C _{OUT}	Output Capacitance on VINT (Note 6)	10	1000	μF	
T _J	Operating Junction Temperature	-40	+125	$^\circ\text{C}$	
T _A	Operating Ambient Temperature	-40	+85	$^\circ\text{C}$	

Note: 6. Refer to the typical application circuit.

Electrical Characteristics ($T_J = -40^\circ\text{C}$ to $+85^\circ\text{C}$, $\text{V}_{\text{BUS}} = 2.5\text{V}$ to 22.5V , typical values are at $\text{V}_{\text{BUS}} = 5\text{V}$ and $T_J = +25^\circ\text{C}$, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
VBUS/VINT						
$\text{V}_{\text{BUS_CLAMP}}$	VBUS Clamp Voltage	$\text{I}_{\text{VBUS}} = 10\text{mA}$, $T_A = +25^\circ\text{C}$	—	32	—	V
V_{UVLO}	UVLO Release Voltage	$\text{EN}_b = \text{GND}$	2.0	2.3	2.5	V
$\text{V}_{\text{HYS_UVLO}}$	UVLO Hysteresis Voltage	Hysteresis of VBUS UVLO enter/release, $\text{EN}_b = \text{GND}$ $\text{V}_{\text{UVLO_Enter}} = \text{V}_{\text{UVLO}} - \text{V}_{\text{HYS_UVLO}}$	—	100	—	mV
I_{Q}	VBUS Quiescent Current	$\text{EN}_b = \text{GND}$, $\text{V}_{\text{BUS}} = 5\text{V}$, $\text{I}_{\text{LOAD}} = 0\text{mA}$	—	70	95	μA
		$\text{EN}_b = \text{GND}$, $\text{V}_{\text{BUS}} = 20\text{V}$, $\text{I}_{\text{LOAD}} = 0\text{mA}$	—	100	140	μA
$\text{I}_{\text{Q_SD}}$	VBUS Shutdown Current	$\text{EN}_b = \text{High}$, $\text{V}_{\text{BUS}} = 5\text{V}$, $\text{I}_{\text{LOAD}} = 0\text{mA}$	—	5	10	μA
		$\text{EN}_b = \text{High}$, $\text{V}_{\text{BUS}} = 20\text{V}$, $\text{I}_{\text{LOAD}} = 0\text{mA}$	—	15	30	μA
$\text{I}_{\text{OFF_VBUS}}$	VBUS Off Leakage Current	$\text{EN}_b = \text{High}$, $\text{V}_{\text{BUS}} = 5\text{V}$, $\text{V}_{\text{INT}} = \text{GND}$	—	5	10	μA
		$\text{EN}_b = \text{High}$, $\text{V}_{\text{BUS}} = 20\text{V}$, $\text{V}_{\text{INT}} = \text{GND}$	—	15	30	μA
$\text{I}_{\text{OFF_VINT}}$	VINT Off Leakage Current	$\text{EN}_b = \text{High}$, $\text{V}_{\text{INT}} = 5\text{V}$, $\text{V}_{\text{BUS}} = \text{GND}$	—	1	5	μA
		$\text{EN}_b = \text{High}$, $\text{V}_{\text{INT}} = 20\text{V}$, $\text{V}_{\text{BUS}} = \text{GND}$	—	4	16	μA
EN_b Input						
$\text{V}_{\text{IL_EN}_b}$	Enable Input Logic-Low	$\text{V}_{\text{BUS}} = 2.5\text{V}$ to 20V	—	—	0.4	V
$\text{V}_{\text{IH_EN}_b}$	Enable Input Logic-High	$\text{V}_{\text{BUS}} = 2.5\text{V}$ to 20V	1.2	—	—	V
$\text{C}_{\text{IN_EN}_b}$	Input Capacitance	$\text{V}_{\text{BUS}} = 5.0\text{V}$	—	4.5	—	pF
$\text{R}_{\text{PULL_DOWN_EN}_b}$	Internal Pulldown Resistance	—	—	1	—	$\text{M}\Omega$
ACK_b Output						
$\text{V}_{\text{OL_ACK}}$	ACK _b Output Logic-Low	$\text{IO} = 8\text{mA}$; $\text{V}_{\text{BUS}} = 2.5\text{V}$ to 20V	—	—	500	mV
OVLO						
$\text{V}_{\text{OVLO_TH}}$	OVLO Set Voltage Threshold	$\text{EN}_b = \text{GND}$	1.164	1.227	1.287	V
$\text{V}_{\text{OVLO_DEF_RISING}}$	Default OVLO Rising Threshold	$\text{OVLO} = \text{GND}$	—	23	—	V
$\text{V}_{\text{OVLO_DEF_FALLING}}$	Default OVLO Falling Threshold	$\text{OVLO} = \text{GND}$	—	22.5	—	V
$\text{I}_{\text{IN_OVLO}}$	OVLO Input Leakage Current	$\text{OVLO} = \text{V}_{\text{OVLO_TH}}$	—	—	50	nA
Switch						
$\text{R}_{\text{ON_5V}}$	On Resistance	$\text{I}_{\text{LOAD}} = 1\text{A}$, $\text{V}_{\text{BUS}} = 5.0\text{V}$	—	30	—	$\text{m}\Omega$
$\text{R}_{\text{ON_20V}}$	On Resistance	$\text{I}_{\text{LOAD}} = 1\text{A}$, $\text{V}_{\text{BUS}} = 20.0\text{V}$	—	30	—	$\text{m}\Omega$
Reverse Current Protection						
$\text{V}_{\text{RCP_TRIG}}$	RCP Triggering Voltage	$\text{V}_{\text{RCP_TRIG}} = \text{V}_{\text{INT}} - \text{V}_{\text{BUS}}$	—	45	—	mV
$\text{V}_{\text{FRCP_TRIG}}$	Fast RCP Triggering Voltage to Turn Off Switch Without Deglitch Time	$\text{V}_{\text{F_RCP_TRIG}} = \text{V}_{\text{INT}} - \text{V}_{\text{BUS}}$	—	120	—	mV
$\text{V}_{\text{RCP_RECOVERY}}$	RCP Recovery Voltage	$\text{V}_{\text{RCP_RECOVERY}} = \text{V}_{\text{BUS}} - \text{V}_{\text{INT}}$	—	70	—	mV

Electrical Characteristics ($T_J = -40^\circ\text{C}$ to $+85^\circ\text{C}$, $\text{V}_{\text{BUS}} = 2.5\text{V}$ to 22.5V , typical values are at $\text{V}_{\text{BUS}} = 5\text{V}$ and $T_J = +25^\circ\text{C}$, unless otherwise specified.) (continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Timing Characteristics						
t_{EN}	Enable Delay Includes 15ms of Debounce Time	Timing from $\text{EN}_b = \text{Low}$ or $\text{V}_{\text{UVLO}} < \text{V}_{\text{BUS}} < \text{V}_{\text{OVLO}}$ to $\text{V}_{\text{INT}} = 10\%$ of V_{BUS} $\text{V}_{\text{BUS}} = 5.0\text{V}$, $\text{C}_{\text{LOAD}} = 100\mu\text{F}$, $\text{R}_{\text{LOAD}} = 100\Omega$	—	21.9	—	ms
$t_{\text{RISE_5V}}$	V_{INT} Rising Time at $\text{V}_{\text{BUS}} = 5.0\text{V}$	V_{INT} from 10% to 90% of V_{BUS} , $\text{C}_{\text{LOAD}} = 100\mu\text{F}$, $\text{R}_{\text{LOAD}} = 100\Omega$	—	3.4	—	ms
$t_{\text{RISE_20V}}$	V_{INT} Rising Time at $\text{V}_{\text{BUS}} = 20.0\text{V}$	V_{INT} from 10% to 90% of V_{BUS} , $\text{C}_{\text{LOAD}} = 100\mu\text{F}$, $\text{R}_{\text{LOAD}} = 100\Omega$	—	6.9	—	ms
t_{OFF}	Switch Off Delay	Timing from $\text{EN}_b = \text{High}$ to $\text{V}_{\text{INT}} = 10\%$ of V_{BUS} , $\text{V}_{\text{BUS}} = 5.0\text{V}$, $\text{C}_{\text{LOAD}} = 100\mu\text{F}$, $\text{R}_{\text{LOAD}} = 100\Omega$	—	23	—	ms
t_{OVP}	OVP Switch Off Time	Timing from $\text{V}_{\text{BUS}} > \text{V}_{\text{OVLO_DEF_RISING}}$ to $\text{V}_{\text{INT}} = 80\%$ of V_{BUS} , $\text{V}_{\text{BUS}} = 5.0\text{V}$, $\text{C}_{\text{LOAD}} = 0\mu\text{F}$, $\text{R}_{\text{LOAD}} = 100\Omega$, $\text{OVLO} = \text{GND}$	—	100	—	ns
$t_{\text{RCP_DEGLITCH}}$	RCP Deglitch Time	Timing from $\text{V}_{\text{INT}} > \text{V}_{\text{BUS}} + \text{V}_{\text{RCP_TRIG}}$ to Starting $t_{\text{RCP_OFF}}$ for switch off	2.6	3.7	5.0	ms
$t_{\text{RCP_OFF}}$	RCP Switch Off Time	Timing from $\text{V}_{\text{INT}} > \text{V}_{\text{BUS}} + \text{V}_{\text{FRCP_TRIG}}$ to switch off	—	10	—	μs
$t_{\text{RCP_RELEASE}}$	RCP Release Time	Timing from $\text{V}_{\text{INT}} < \text{V}_{\text{BUS}} - \text{V}_{\text{RCP_RECOVERY}}$ to switch on	—	10	—	μs
Thermal Protection						
T_{SD}	Thermal Shutdown	—	—	+150	—	°C
$T_{\text{SD_HYS}}$	Thermal Shutdown Hysteresis	—	—	+20	—	°C

Typical Timing Characteristics

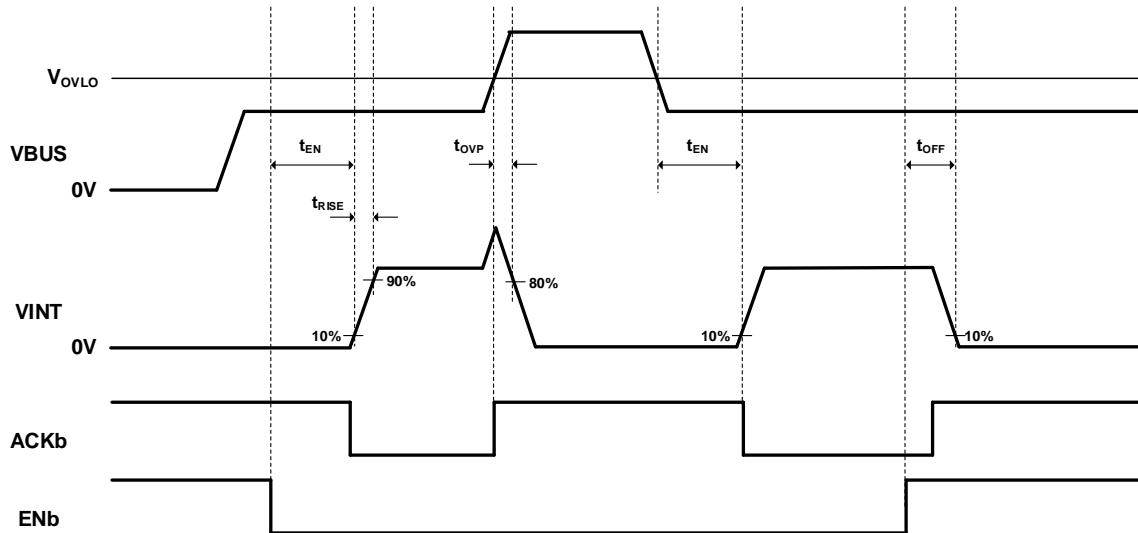


Figure 3. Timing Diagram: Overvoltage Protection, Turn On/Off

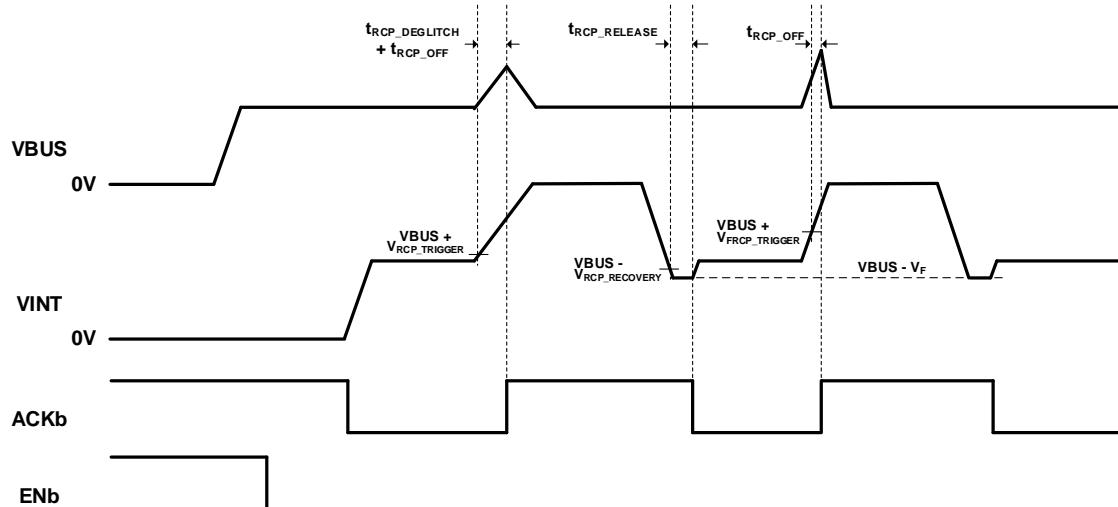


Figure 4. Timing Diagram: Reverse Current Protection

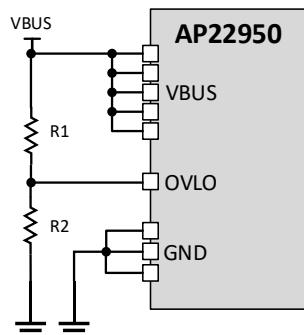
Application Information

Enable/Disable Control

The ENb pin controls the state of the power switch. Logic-high on ENb disables AP22950 and the AP22950 is enabled when the ENb pin is asserted low. The built-in $1\text{M}\Omega$ pulldown resistor on ENb pin ensures AP22950 stays in conduction mode even if entire system is in a dead battery or depleted battery condition. A 15ms debounce timer filters out glitch on control signal that prevent from fault enable.

Input/Output Capacitor

The AP22950 has a built-in circuit for surge protection. This circuitry requires an external $22\mu\text{F}$ capacitor on VBUS pin for 110V surge protection and 100V surge protection is achievable without $22\mu\text{F}$ capacitor. Minimum $1\mu\text{F}$ capacitor is required and placed as close as possible to the VBUS pin and GND to minimize parasitic effect. Minimum $1\mu\text{F}$ capacitor on VINT pin is required.


Undervoltage Lockout

When ENb is low and $\text{VBUS} < \text{VUVLO}$, the undervoltage lockout (UVLO) detection circuits disable the AP22950. Once VBUS exceeds VUVLO and there is no other protection circuit is triggered, the AP22950 is controlled by the ENb pin.

Overvoltage Lockout

When ENb is low and $\text{VBUS} > \text{VOVLO_DEF_RISING}$ (If $\text{OVLO} = \text{GND}$ or $< 0.1\text{V}$) or $\text{OVLO} > \text{OVLO}_{\text{TH}}$, the overvoltage lockout (OVLO) circuit disables the AP22950 and ACKb asserts Hi-Z state. Once $\text{VBUS} < \text{VOVLO_DEF_RISING}$ (If $\text{OVLO} = \text{GND}$ or $< 0.1\text{V}$) or $\text{OVLO} < \text{VOVLO}_{\text{TH}}$ and no other protection circuit is triggered, the AP22950 resumes normal operation.

The OVLO pin is used to configure the overvoltage threshold. The default overvoltage threshold is 23V when OVLO pin shorts to GND ($\text{OVLO} < 0.1\text{V}$). Connecting a resistor divider to the OVLO pin adjusts the overvoltage threshold from 4V to 23V using the equation below.

$$\text{VOVLO} = \text{VOVLO}_{\text{TH}} \times \frac{R1 + R2}{R2}$$

Note: $\text{VOVLO}_{\text{TH}} (\text{typ}) = 1.227\text{V}$

R1 is recommended to use minimum $1\text{M}\Omega$.

Figure 5. OVLO External Resistor Configuration

Overtemperature Protection

When EN is low and the device temperature reaches T_{SD} (typ $+150^\circ\text{C}$), the overtemperature protection (OTP) circuit disables the AP22950 and asserts the ACKb output Hi-Z. Once the device temperature decreases below $T_{\text{SD}} - T_{\text{SD_HYS}}$ ($120^\circ\text{C} = 150^\circ\text{C} - 30^\circ\text{C}$) and no other protection circuit is active, the AP22950 returns back to normal operation being controlled by the ENb pin status.

Acknowledge Flag Output (ACKb)

The ACKb output is an open-drain output that requires an external pullup resistor. The ACKb pin indicates the state of the power switch. When no fault condition is triggered and power switch is conducting, ACKb asserts output low; otherwise it stays Hi-Z state. $10\text{k}\Omega$ to $200\text{k}\Omega$ of external pullup resistor is recommended.

Application Information (continued)

Reverse Current Protection

The AP22950 monitors voltage difference between VBUS and VINT. Once V_{RCP_TRIG} (typ 45mV) $< V_{INT} - V_{BUS} < V_{FRCP_TRIG}$ (typ 120mV), control logic turn Q2 switch by internal reverse current protection circuit trigger after $t_{RCP_DEGLITCH}$ (typ 3.7ms) and the control logic turn Q2 switch off immediately if $V_{INT} - V_{BUS} > V_{FRCP_TRIG}$ (120mV) by fast reverse current protection circuit.

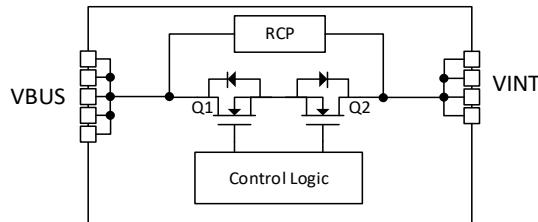


Figure 6. Power Switch Block

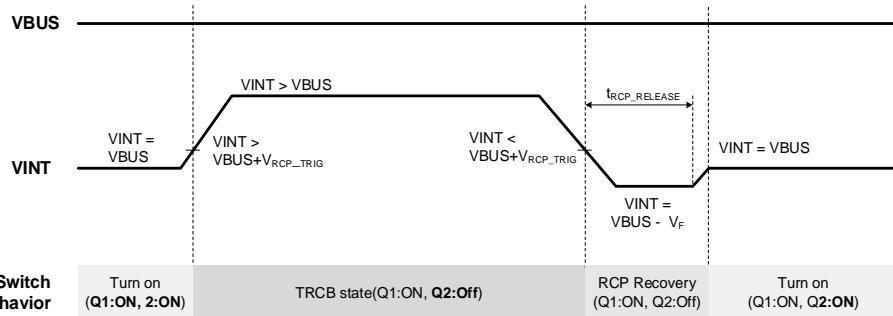
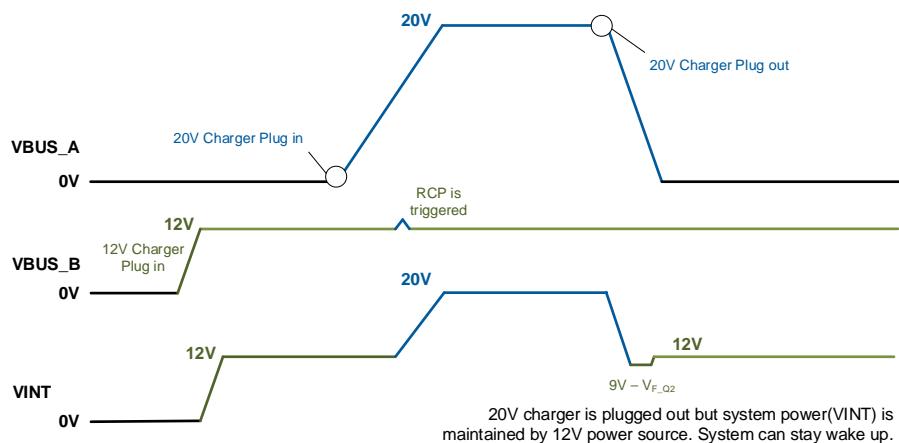
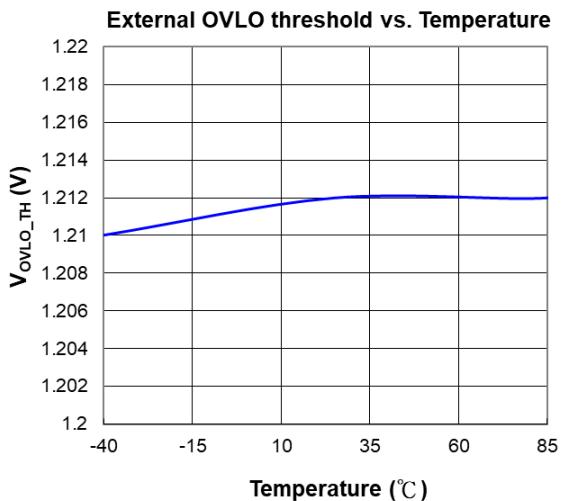
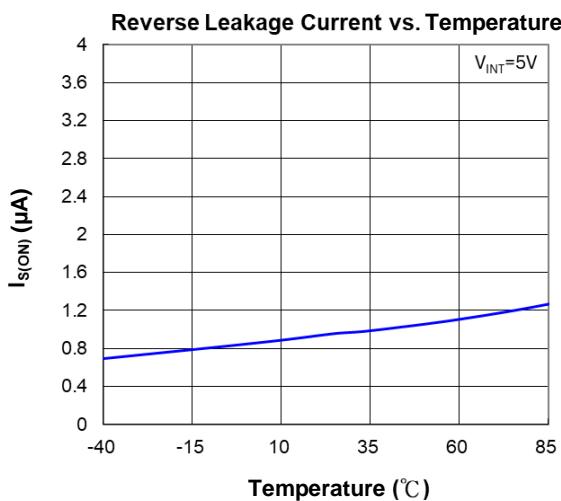
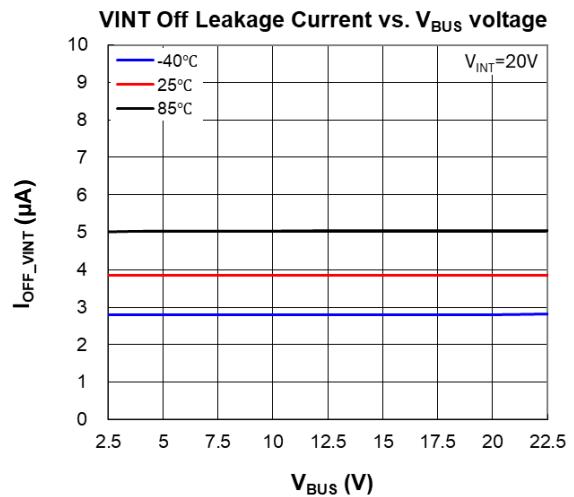
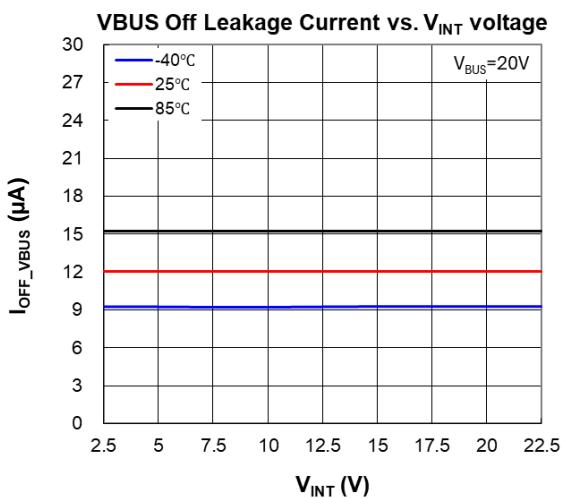
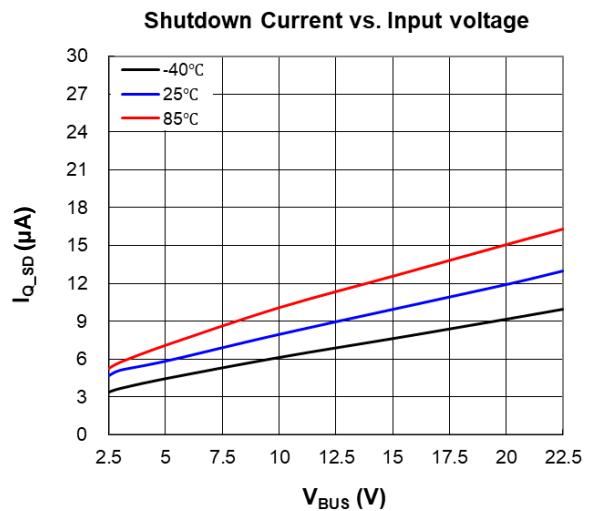
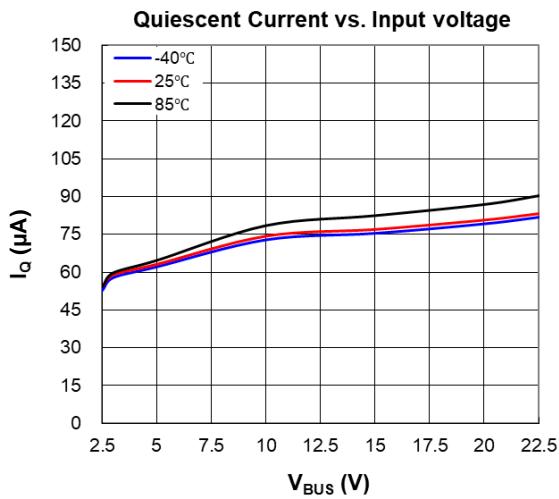
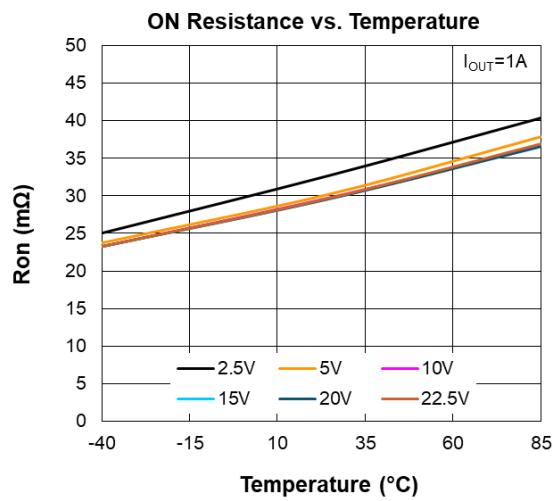
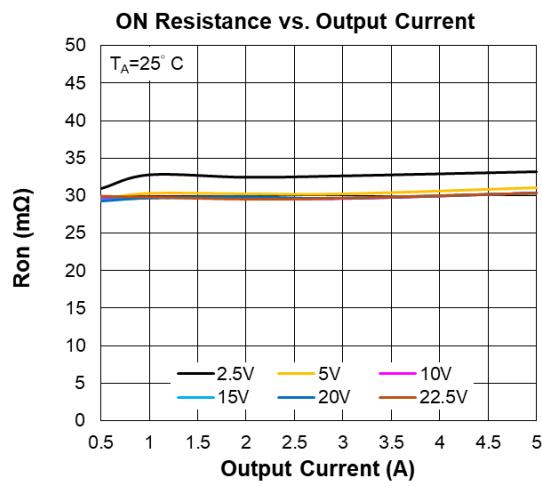
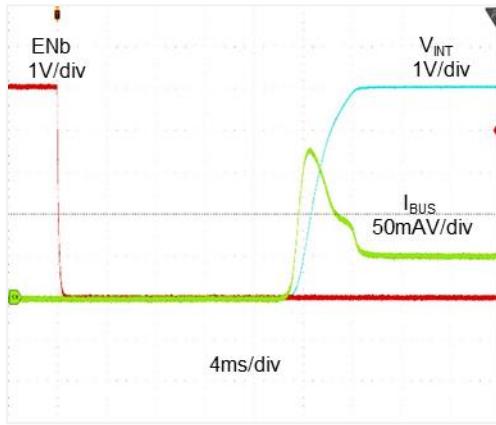
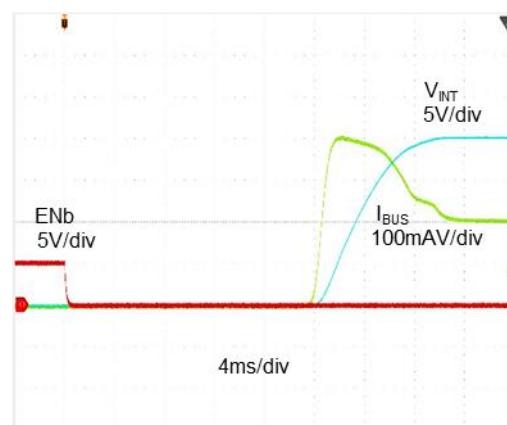
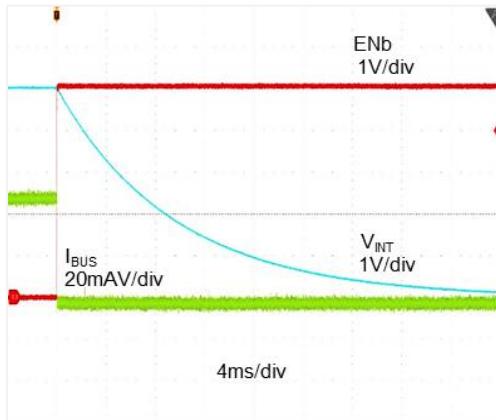
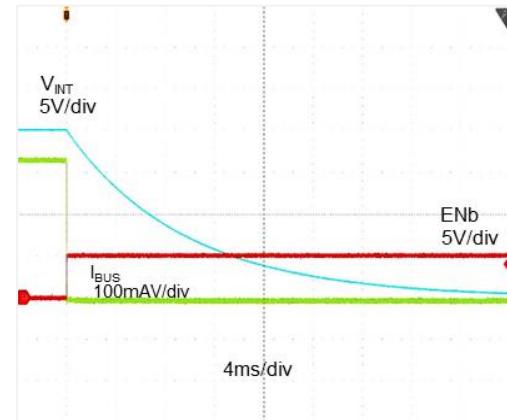
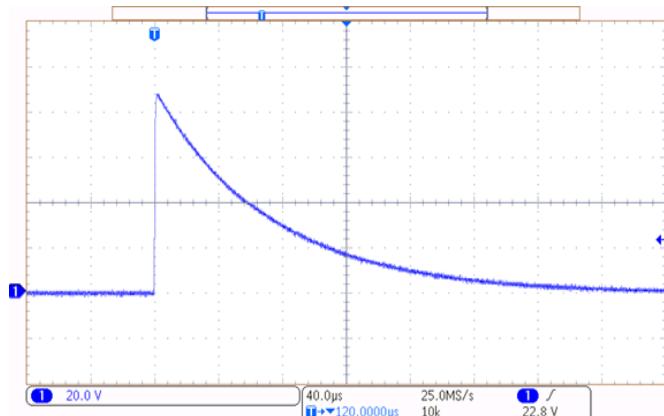


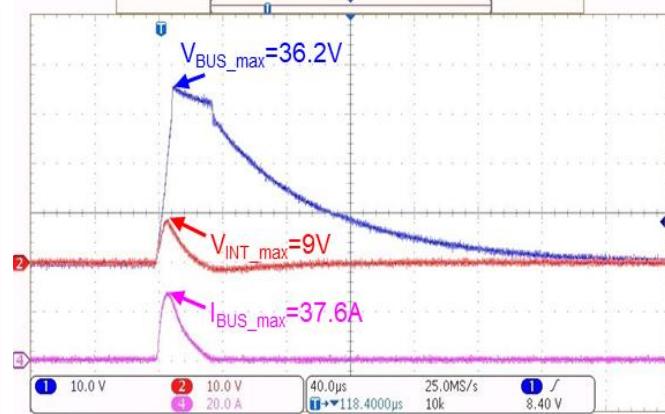
Figure 7. Switch Behavior in RCP Operation

In the multi-port system application, while Q2 switch is off, VBUS is able to supply VINT whenever VINT becomes lower than VBUS through Q2 body diode path. This is to prevent a portable system from losing system power supply when the first high-voltage charger is plugged out while the second high-voltage charger remains plugged in. System shall stay in operation mode upon any plugging in and out any port occurs as long as one port has plugged-in charger.


Figure 8. VINT Power Transition in Multi-Ports System

Typical Performance Characteristics ($T_J = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{\text{BUS}} = 2.5\text{V}$ to 22.5V , typical values are at $V_{\text{BUS}} = 5\text{V}$ and $T_J = +25^{\circ}\text{C}$, unless otherwise specified.)


Typical Performance Characteristics ($T_J = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $\text{V}_{\text{BUS}} = 2.5\text{V}$ to 22.5V , typical values are at $\text{V}_{\text{BUS}} = 5\text{V}$ and $T_J = +25^{\circ}\text{C}$, unless otherwise specified.) (continued)

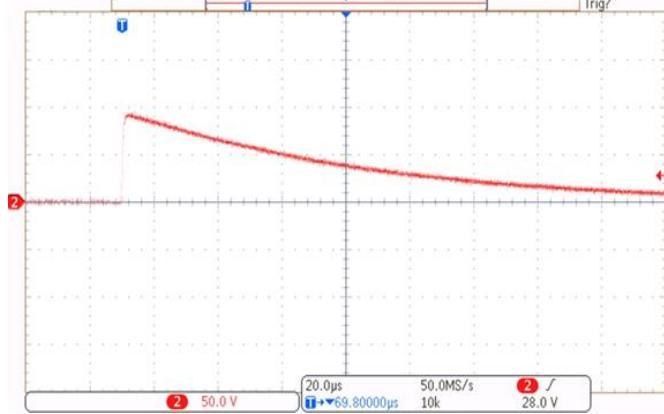
 Turn-on Time and In-rush Current at $\text{V}_{\text{BUS}} = 5.0\text{V}$

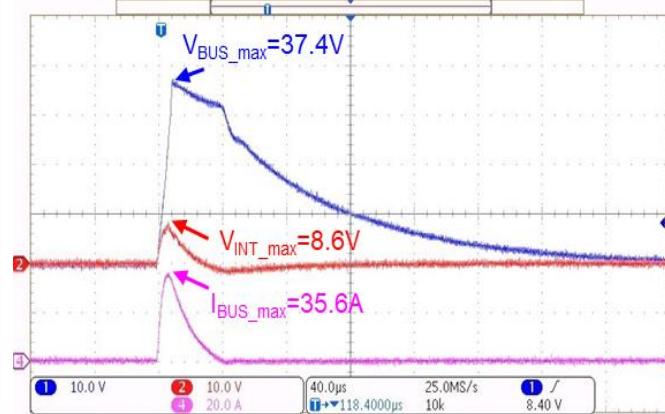
 Turn-on Time and In-rush Current at $\text{V}_{\text{BUS}} = 20.0\text{V}$

 Turn-off Time at $\text{V}_{\text{BUS}} = 5.0\text{V}$

 Turn-off Time at $\text{V}_{\text{BUS}} = 20.0\text{V}$

Typical Performance Characteristics ($T_J = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $\text{V}_{\text{BUS}} = 2.5\text{V}$ to 22.5V , typical values are at $\text{V}_{\text{BUS}} = 5\text{V}$ and $T_J = +25^{\circ}\text{C}$, unless otherwise specified.) (continued)


IEC61000-4-5 90V Surge Voltage without AP22950


IEC61000-4-5 90V Surge Voltage with AP22950

IEC61000-4-5 100V Surge Voltage without AP22950

IEC61000-4-5 100V Surge Voltage with AP22950 (22μF on VBUS)

PCB Layout Recommendation

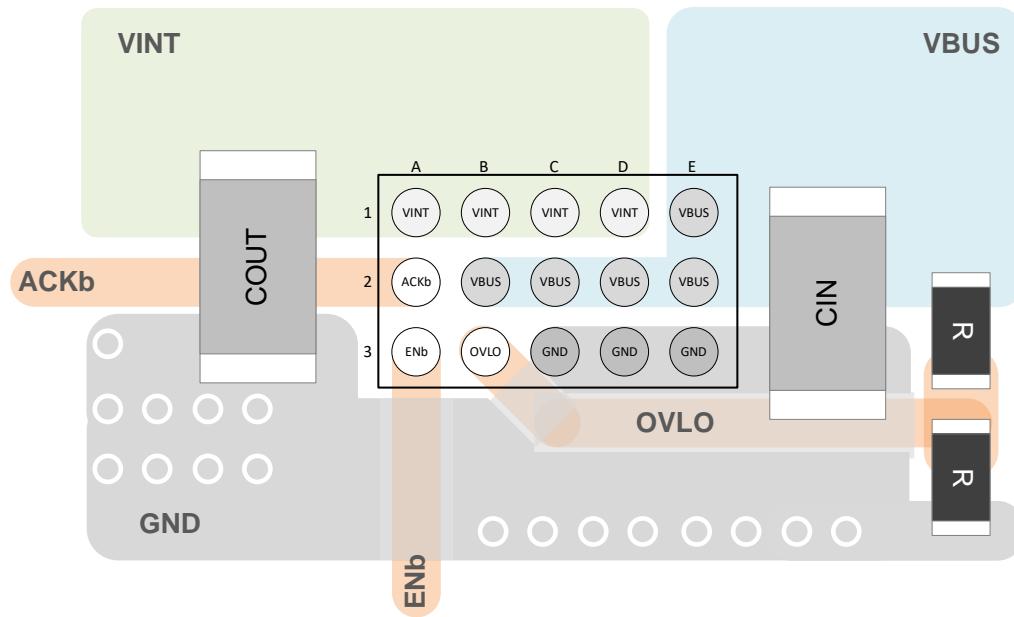


Figure 9. Recommended PCB Layout

Ordering Information (Note 7)

AP22950 XXXX - X

CZ15 : U-WLB2515-15

7 : Tape & Reel

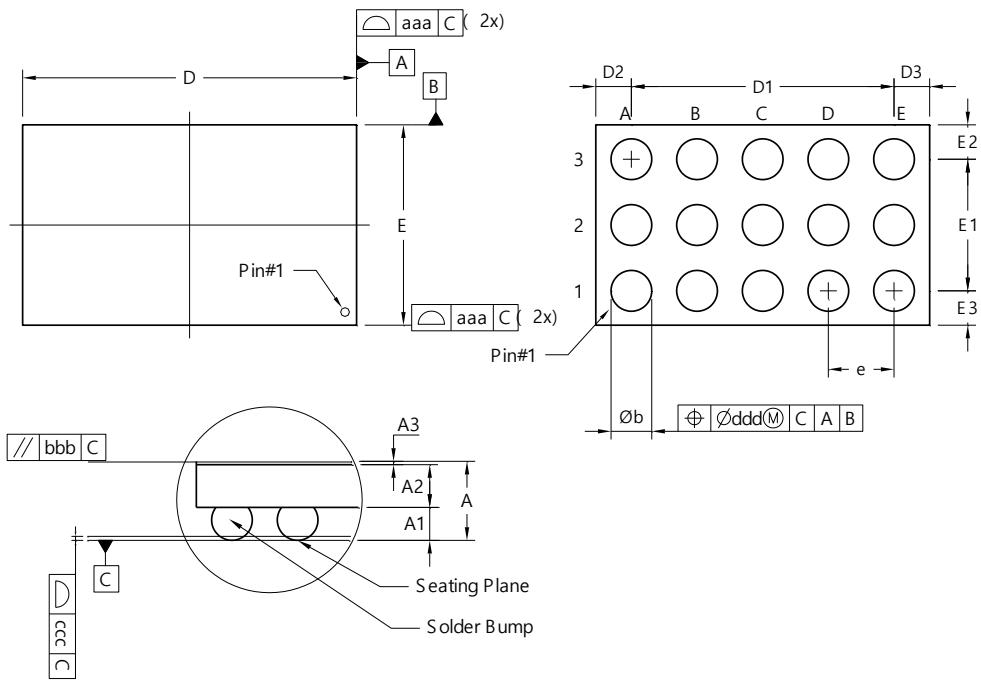
Orderable Part Number	Package Code	Package	Packing	
			Qty.	Carrier
AP22950CZ15-7	CZ15	U-WLB2515-15	3,000	Tape and Reel

Note: 7. For packaging details, go to our website at <https://www.diodes.com/design/support/packaging/diodes-packaging/>.

Marking Information

U-WLB2515-15

(Top View)

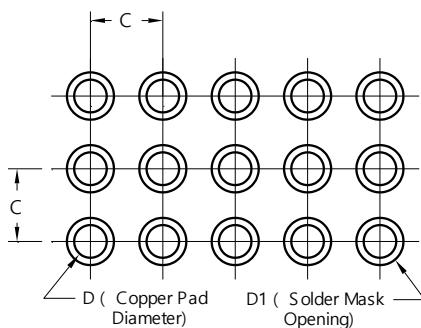

XX : Identification Code
Y : Year : 0~9
W : Week : A~Z : 1~26 week;
 a~z : 27~52 week; z represents
 52 and 53 week
X : Internal Code

Orderable Part Number	Package	Identification Code
AP22950CZ15-7	U-WLB2515-15	G5

Package Outline Dimensions

Please see <http://www.diodes.com/package-outlines.html> for the latest version.

U-WLB2515-15

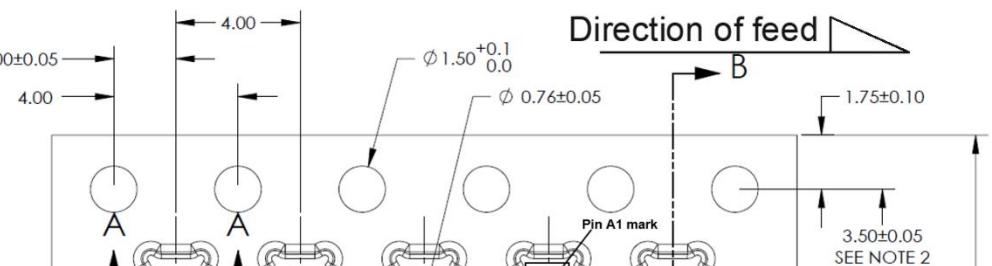

U-WLB2515-15			
Dim	Min	Max	Typ
A	0.5470	0.6530	0.6000
A1	0.2250	0.2750	0.2500
A2	0.3000	0.3500	0.3250
A3	0.0220	0.0280	0.0250
b	0.2635	0.3565	0.3100
D	2.5150	2.5700	2.5425
D1	--	--	2.000
D2	--	--	0.2713
D3	--	--	0.2713
E	1.4950	1.5500	1.5225
E1	--	--	1.000
E2	--	--	0.2613
E3	--	--	0.2613
e	--	--	0.50
aaa	--	--	0.0275
bbb	--	--	0.0600
ccc	--	--	0.0300
ddd	--	--	0.1500

All Dimensions in mm

Suggested Pad Layout

Please see <http://www.diodes.com/package-outlines.html> for the latest version.

U-WLB2515-15


Dimensions	Value (in mm)
C	0.500
D Ø	0.225
D1 Ø	0.325

Note: The suggested land pattern dimensions have been provided for reference only, as actual pad layouts may vary depending on application. These dimensions may be modified based on user equipment capability or fabrication criteria. A more robust pattern may be desired for wave soldering and is calculated by adding 0.2 mm to the "Z" dimension. For further information, please reference document IPC-7351A, Naming Convention for Standard SMT Land Patterns, and for International grid details, please see document IEC, Publication 97.

Note: For high-voltage applications, the appropriate industry sector guidelines should be considered with regards to creepage and clearance distances between device Terminals and PCB tracking.

Device Taping Orientation

Package Type: U-WLB2515-15

Tape Width	Part Number Suffix	Tape Orientation												
8mm	-7	<table border="1" data-bbox="1264 906 1501 1017"> <thead> <tr> <th></th> <th>DIM</th> <th>±</th> </tr> </thead> <tbody> <tr> <td data-bbox="1264 906 1320 939">Ao</td><td data-bbox="1320 906 1375 939">1.85</td><td data-bbox="1375 906 1431 939">0.05</td></tr> <tr> <td data-bbox="1264 939 1320 971">Bo</td><td data-bbox="1320 939 1375 971">2.75</td><td data-bbox="1375 939 1431 971">0.05</td></tr> <tr> <td data-bbox="1264 971 1320 1017">Ko</td><td data-bbox="1320 971 1375 1017">0.75</td><td data-bbox="1375 971 1431 1017">+0.10/-0.05</td></tr> </tbody> </table>		DIM	±	Ao	1.85	0.05	Bo	2.75	0.05	Ko	0.75	+0.10/-0.05
	DIM	±												
Ao	1.85	0.05												
Bo	2.75	0.05												
Ko	0.75	+0.10/-0.05												

Note: For part marking, refer to *Marking Information*.

Note: Tape and package drawings are not to scale and are shown for device tape orientation only.

Note: The taping orientation of the other package type can be found on our website at <https://www.diodes.com/assets/Packaging-Support-Docs/AP02007.pdf>.

Mechanical Data

- Surface-Mount Package
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish – Tin Silver Copper (SnAgCu), Solderable per MIL-STD-202, Method 208 (e1)
- Weight: 0.00472 grams (Approximate)
- Max Soldering Temperature +260°C for 30 secs as per JEDEC J-STD-020

IMPORTANT NOTICE

1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (<https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/>) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
9. This Notice may be periodically updated with the most recent version available at <https://www.diodes.com/about/company/terms-and-conditions/important-notice>

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries.
All other trademarks are the property of their respective owners.
© 2025 Diodes Incorporated. All Rights Reserved.

www.diodes.com