



### **Table of Contents**

| Items | Content                                          | Page Number |
|-------|--------------------------------------------------|-------------|
| 1.    | Abstract                                         | 3           |
| 2.    | Introduction                                     | 3           |
| 3.    | Description                                      | 3           |
| 4.    | SETUP REQUIREMENTS                               | 5           |
| 5.    | Connections                                      | 6           |
| 6.    | Check list before turning ON the board           | 7           |
| 7.    | Turn ON Procedure                                | 7           |
| 8.    | Jumper Settings                                  | 8           |
| 9.    | SCHEMATICS                                       | 9           |
| 10.   | BILL OF MATERIAL                                 | 11          |
| 11.   | Board layout                                     | 13          |
| 12.   | Board images                                     | 14          |
| 13.   | Troubleshoot                                     | 14          |
| 14    | Additional information                           | 15          |
| 15    | Micro Controller setup – Using the Arduino board | 18          |



#### **ABSTRACT**

This user manual describes the functionality and characteristics of the AL5887 RGB LED driver using the demo board. The AL5887 is an I2C/SPI bus controlled, 36-channel, constant current LED driver. This user manual includes setup instructions, schematic diagram, bill of materials, printed-circuit board layout drawings and demo board images.

#### 2. INTRODUCTION

This demo board demonstrates the features of the AL5887 RGB LED driver. The main goal is to exercise vivid LED effects by I2C/SPI interface. This demo board has the additional feature of providing supply to the LEDs using a power bank connected through a USB Type-C® (J350) connector and supply voltage to the led driver through a micro USB connector (J407).



Figure 1. Image of AL5887 Demo Board

#### DESCRIPTION

The demo board consists of the following major components:

### 3.1. AL5887 RGB LED Driver

The AL5887 is a 36-channel RGB LED Driver with integrated color mixing and brightness control. This driver is comprised of 36 programmable LED current channels each with internal 12-bit PWM for color and brightness control through SPI or I2C digital interface. This is ideal for up to 12 RGB LED modules lighting applications with 3 programmable banks (A, B, and C) for software control of each color. The global output current of all 36 channels can be set up by an external resistor. Each channel current can digitally be configured up to 70mA under the thermal limitation of the package.

Features of the AL5887 are controlled via programmable SPI/I2C digital interface which supports 400kHz I2C and 2MHz SPI interface. Using the INT\_SEL pin, SPI or I2C protocol can be selected. The AL5887 has a 30kHz, 12-Bit PWM generator for each channel, as well as independent color mixing and brightness control registers for each RGB module to enable vivid LED effects with zero audible noise. There is a provision for connecting up to 4 devices using two external hardware address pins. Additionally, the driver features ultra-low quiescent current with four modes of operation (shutdown, standby, normal and power save mode).

AL5887EV1



#### 3.2. FT4222H USB to I2C/SPI Interface

FT4222H is a high-speed USB to Quad-SPI/I 2C interface Device Controller. This requires an external Crystal (12 MHz) for the internal PLL to operate. The SPI interface can be configured in master mode with single, dual, or quad bits data width transfer or in slave mode with single bit data width transfer. The I2C interface can be configured in master or slave mode.

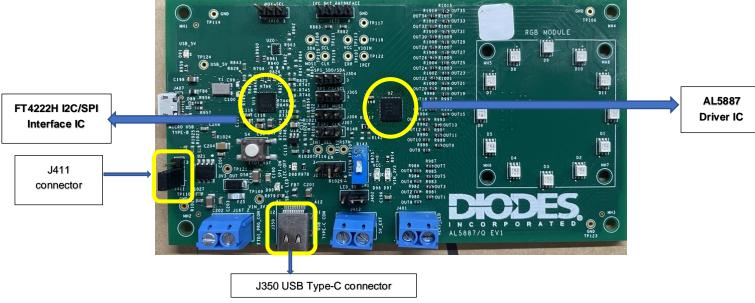



Figure 2. Image of demo board representing AL5887 IC and FT4222H IC

The demo board can be powered up through the micro USB Type-B connector (USB\_VBUS) connected at J407 connector and short 2-3 pins of the J411 connector. The RGBs can be powered up by connecting a power brick or battery bank through USB Type-C connector (J350) and short 2-3 pins of the J402 connector. For this setup refer jumper settings given below in table 3.

#### 4. SETUP REQUIREMENTS

The user will get following contents along with the demo board:

- Demo board
- Demo board user manual
- Emulator Software
- Emulator software user manual

#### 4.1. Software:

### **Emulator Software:**

Emulator is a standalone application developed using LabVIEW 2019 to support AL5887 LED driver testing. Features of AL5887 are controlled via SPI/I2C interface. Minimum system requirements for execution of Emulator software are given below.

| Item Number | Description | Specification/Requirement |
|-------------|-------------|---------------------------|
| 1.          | OS          | Windows 7/10              |
| 2.          | RAM         | 4GB or above              |
| 3.          | Disk space  | 250MB approximately       |

Refer to emulator software user manual for installing emulator software in PC/Laptop.



#### 4.2. Hardware setup:

- We need DC power supply with 5V/5A, as the maximum current consumed when all the LEDs with full brightness is approximately 1.5A.
- PC/Laptop in which Emulator software is installed.
- A USB to Micro USB Type-B connecting cable from PC/Laptop to Demo board.
- Arrange the setup as shown in the figure below.

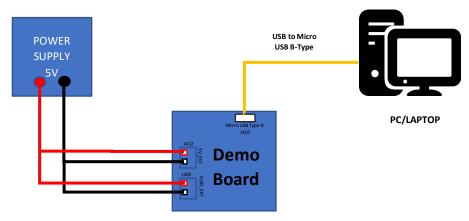



Figure 3. Basic hardware setup representation

#### 5. Connections:

- Connect V<sub>IN</sub> (5V) to J412 (5V\_Ext) connector. Ensure Vin less than 5.5V
- Connect V<sub>LED</sub> (5V) to J401 (VEXT\_LED) connector or a Battery bank via USB Type-C Connector (J350). Place appropriate jumper at J402.
- Place the jumpers as per the **default** jumper settings given in the Table.1 below to communicate via I2C communication.

| CONNECTOR | PURPOSE            | DEFAULT CONNECTION with I2C and<br>External Supply to RGB LEDs |
|-----------|--------------------|----------------------------------------------------------------|
| J304      | SPISDO/SDA         | PIN 2-3 SHORT                                                  |
| J305      | SPICS/SCL          | PIN 2-3 SHORT                                                  |
| J306      | SPI_MOSI           | PIN 1-2 SHORT                                                  |
| J307      | SPI_CLK            | PIN 1-2 SHORT                                                  |
| J27       | INTERFACE SELECT   | PIN 2-3 SHORT: I2C                                             |
| J402      | LED_5V POWER RAIL  | PIN 2-3 SHORT: VEXT_LED                                        |
| J411      | VIN_3V3 POWER RAIL | PIN 1-2 SHORT: 5V_EXT                                          |
| J410      | MUX SELECTION      | PIN 1-2 SHORT: I2C                                             |

**Table 1. Default Jumper Settings** 

**AL5887EV1** 4 of 35 **047/2023**Rev. 1 www.Diodes.com



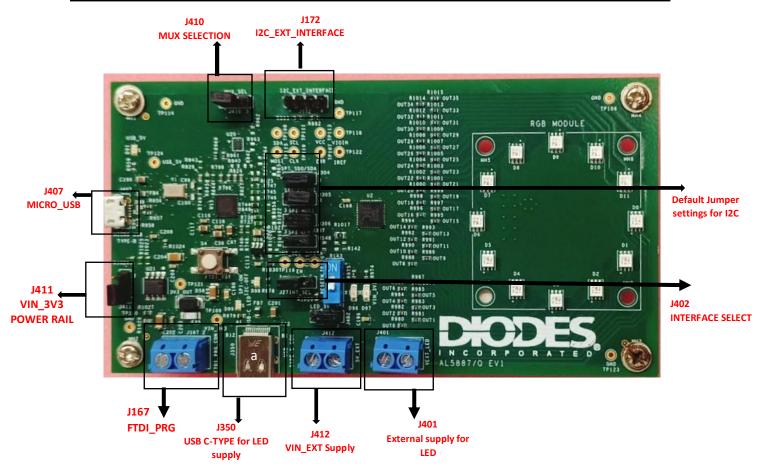



Figure 4. Demo board representing all the Connectors and Jumpers

 The slave address selection resistor table is given below. Solder / De-solder resistors to change the configuration.

| ADDR1 | ADDR0 | I2C SLAVE<br>ADDRESS | RESISTOR ARRANGEMENT |              | Remarks |
|-------|-------|----------------------|----------------------|--------------|---------|
|       |       |                      | MOUNT                | REMOVE       |         |
| 0     | 0     | 0110000              | R1019, R1022         | R1020, R1021 | Default |
| 0     | 1     | 0110001              | R1019, R1021         | R1020, R1022 |         |
| 1     | 0     | 0110010              | R1020, R1022         | R1019, R1021 |         |
| 1     | 1     | 0110011              | R1020, R1021         | R1019, R1022 |         |

Table 2. Address selection table

- Connect USB to Micro USB connector at J407 to establish communication (I2C/SPI) from GUI.
- To communicate with AL5887 using external I2C bus (not from GUI), refer jumper setting table (Table 3).

#### 6. Check list before turning ON the board

- Ensure that V<sub>IN</sub> given at J412 is less than 5.5V to avoid device damage.
- Ensure LED External supply V<sub>LED</sub> given at J401 is not exceeding 5V.
- Make sure the jumper settings are changed as given in Table 3 and for default settings refer Table 1.
- Check the RESETN switch (SW1) is in OFF condition.

**AL5887EV1** 5 of 35 **04/7/2023**Rev. 1 www.Diodes.com

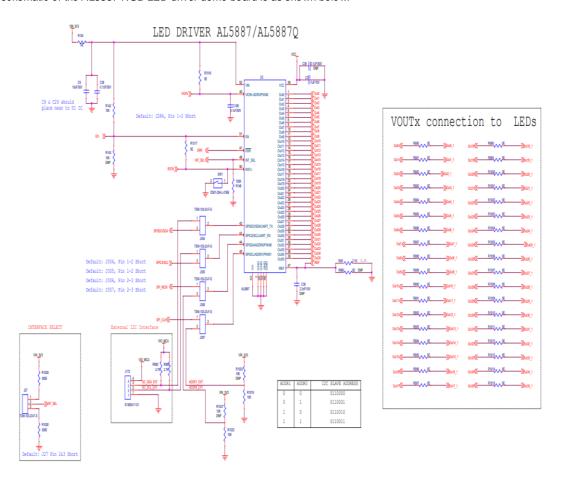


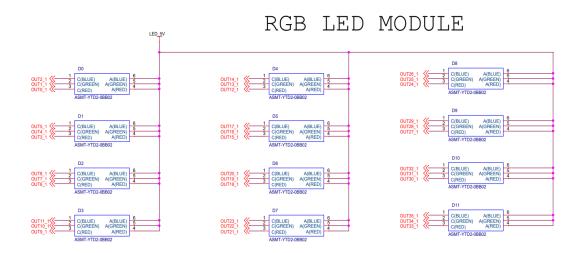
### 7. Turn ON Procedure

- 1. Turn on the External 5V power supply given at connector J412 and check for the power on indication at LED D97 (RED LED).
- 2. Check LED D96 lit on the board which indicates AL5887 LDO output supply.
- 3. Power ON LED Supply (Either External 5V supply on J401 or Battery Bank).
- 4. Open GUI in Desktop/Laptop and run the exe file shared along with this manual.
- 5. Connect USB to Micro USB connector between desktop/Laptop to Demo Board Connector (J407).
- 6. Operate LEDs from GUI using the controls given. Refer emulator software manual shared along with this manual.

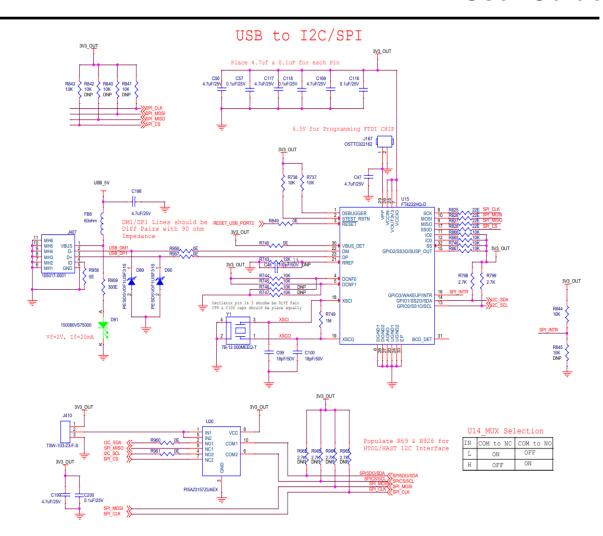
### 8. Jumper Settings

Connect the jumpers as per user requirement and connection table is given below.

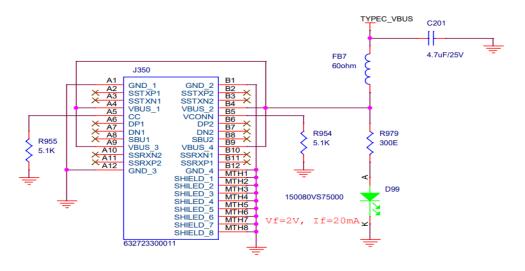

| CONNECTOR | PURPOSE            | CONNECTION                |
|-----------|--------------------|---------------------------|
| J304      | I2C_SDA_EXT        | PIN 1-2 SHORT             |
| 3304      | SPISDO/SDA         | PIN 2-3 SHORT             |
| 1205      |                    |                           |
| J305      | I2C_SCL_EXT        | PIN 1-2 SHORT             |
|           | SPICS/SCL          | PIN 2-3 SHORT             |
| J306      | SPI_MOSI           | PIN 1-2 SHORT             |
|           | ADDR0_EXT          | PIN 2-3 SHORT             |
| J307      | SPI_CLK            | PIN 1-2 SHORT             |
|           | ADDR1_EXT          | PIN 2-3 SHORT             |
| J27       | INTERFACE SELECT   | PIN 1-2 SHORT: SPI        |
|           |                    | PIN 2-3 SHORT: I2C        |
| J402      | LED_5V POWER RAIL  | PIN 1-2 SHORT: TYPEC_VBUS |
|           |                    | PIN 2-3 SHORT: VEXT_LED   |
| J411      | VIN_3V3 POWER RAIL | PIN 1-2 SHORT: 5V_EXT     |
|           |                    | PIN 2-3 SHORT: USB_5V     |
| J410      | MUX SELECTION      | PIN 1-2 SHORT: I2C        |
|           |                    | PIN 2-3 SHORT: SPI        |


Table 3. Jumper connection table

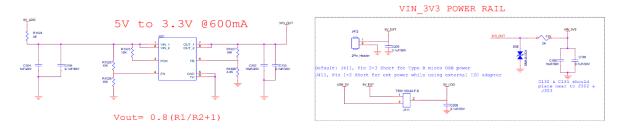


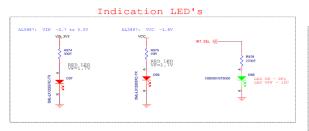

### 9. SCHEMATICS

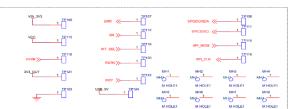
The schematic of the AL5887 RGB LED driver demo board is as shown below.







### TYPE C: BATTERY BANK INPUT







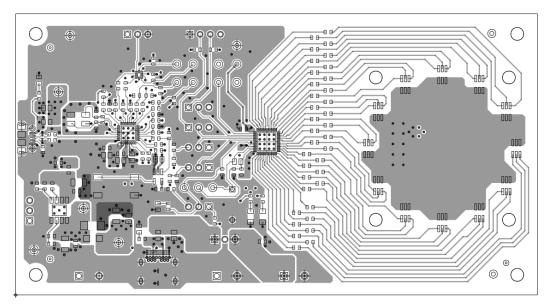




TEST POINTS

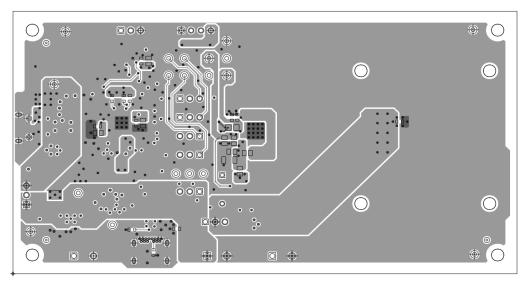
### 10. BILL OF MATERIAL

The components used in the demo board are listed below with their part numbers.


| DESIGNATOR                | VALUE            | PART NUMBER          | REMARKS          |
|---------------------------|------------------|----------------------|------------------|
| C3                        | 1 uF/10V         | C0805C105K8RACTU     |                  |
| C9,C189                   | 10uF/50V         | GMC31X7R106K50NT     |                  |
| C29,C190                  | 0.1UF/50V        | 08055C104KAT4A       |                  |
| C36                       | 0.1UF/50V        | 08055C104KAT4A       | DNP              |
| C38                       | 2.2nF/10V        | 8.85012E+11          | DNP              |
| C46                       | 100pF/50V        | CL21C101JBANNNC      | DNP              |
| C47,C56,C117,C169,C198,   | 4.7uF/25V        | CGA4J1X7R1E475M125AE |                  |
| C199,C201                 |                  |                      |                  |
| C57,C116,C118,C200        | 0.1uF/25V        | CL10B104MB8NNNC      |                  |
| C99,C100                  | 18pF/50V         | 06035A180JAT4A       |                  |
| C112                      | 1 uF/10V         | GRM21BR71A105KA01L   |                  |
| C113                      | 10nF/50V         | 06035C103KAT4A       |                  |
| C168,C196,C203,C206,C207, | 0.1uF/50V        | CL10B104MB8NNNC      |                  |
| C208,C209                 |                  |                      |                  |
| C202                      | 10uF/25V         | CL31B106KAHVPNE      |                  |
| C204                      | 1 uF/25V         | C1206C105M3RAC7800   |                  |
| D1,D2,D3,D4,D5,D6,D7,D8,  | ASMT-YTD2-0BB02  | ASMT-YTD2-0BB02      |                  |
| D9,D10,D11,D0             |                  |                      |                  |
| D58                       | SMAJ6.0CA        | SMAJ6.0CA            |                  |
| D89,D90                   | PESD5V0F1USF315  | PESD5V0F1USF315      |                  |
| D91,D98,D99               | 150080VS75000    | 150080VS75000        |                  |
| D96,D97                   | SML-LX1206SRC-TR | SML-LX1206SRC-TR     |                  |
| FB6,FB7                   | 60ohm            | BLM21PG600SH1D       |                  |
| F25                       | 2A               | 0685T2000-01         |                  |
| J27,J304,J305,J306,J307,  | TSW-103-23-F-S   | TSW-103-23-F-S       |                  |
| J402,J410,J411            |                  |                      |                  |
| J167                      | OSTTC022162      | OSTTC022162          |                  |
| J172                      | 61300411121      | 61300411121          |                  |
| J350                      | 632723300011     | 632723300011         |                  |
| J401,J412                 | 2Pin_Header      | OSTTC022162          |                  |
| J407                      | 105017-0001      | 105017-0001          |                  |
| MH1,MH2,MH3,MH4,MH5,MH6,  | M HOLE1          |                      | not<br>necessary |
| MH7, MH8                  |                  |                      | j                |



| R49                                                | 2.1K                  | RQ73C1J2K1BTD       |                  |
|----------------------------------------------------|-----------------------|---------------------|------------------|
| R134, R1016, R1017                                 | 0E                    | RMCF0805ZT0R00      |                  |
| R142, R737,R744,R745                               | 10K                   | RC0603FR-7W10KL     |                  |
| ,R748                                              |                       |                     |                  |
| ,R843,R844,R856,                                   |                       |                     |                  |
| R865,R866,R1019,R1020,                             |                       |                     |                  |
| R1021,R1022,R1023,R1025,                           |                       |                     |                  |
| R1027                                              |                       |                     |                  |
| R148                                               | 100K                  | RCA0603100KFKEAHP   |                  |
| R738,R867                                          | 10K                   | RC0603FR-7W10KL     |                  |
| R740,R849,R956,R957,                               | 0E                    | RC0603JR-070RL      |                  |
| R958,R960,R961,R980,R981,                          |                       |                     |                  |
| R982,R983,R984,R985,R986,                          |                       |                     |                  |
| R987,R988,R989,R990,R991,                          |                       |                     |                  |
| R992,R993,R994,R995,R996,                          |                       |                     |                  |
| R997,R998,R999,R1000,                              |                       |                     |                  |
| R1001,R1002,R1003,R1004,                           |                       |                     |                  |
| R1005,R1006,R1007,R1008,                           |                       |                     |                  |
| R1009,R1010,R1011,R1012,                           |                       |                     |                  |
| R1013,R1014,R1015,R1024                            |                       |                     |                  |
| R743                                               | 12K                   | RT0603DRD0712KL     |                  |
| R749                                               | 1M                    | RN73H1JTTD1004B25   |                  |
| R798,R799,R882,R883,                               | 2.7K                  | RMCF0603FT2K70      |                  |
| 11/00,11/00,11002,11000,                           | 2.710                 | 111101 00001 121110 |                  |
| R825,R826,R827,R828                                | 22E                   | CRGCQ0603F22R       |                  |
| R954,R955                                          | 5.1K                  | RMCF0603JT5K10      |                  |
| R959,R974,R979,R1029,                              | 300E                  | ESR03EZPJ301        |                  |
| R1030                                              | 3332                  | LONGSELF GOOT       |                  |
| R975                                               | 20R                   | RNCP0603FTD20R0     |                  |
| R978                                               | 2700E                 | ERJ-PB3D2701V       |                  |
| R1026                                              | 15K                   | SG73S1JTTD1502F     |                  |
| R1028                                              | 3.3K                  | CRGH0603F3K3        |                  |
| SW1                                                | DS01-254-L-01BE       | DS01-254-L-01BE     |                  |
| S4                                                 | FSM2JSMAATR           | FSM2JSMAATR         |                  |
|                                                    | FSIVIZJSIVIAA I K     | FSWZJSWAATK         | not              |
| TP106,TP110,TP114,TP117                            | 5124                  | 5124                | necessary        |
| TP107,TP108,TP109,TP111,                           | TEST POINT            |                     | not<br>necessary |
| TP112,TP113,TP115,TP116,                           |                       |                     |                  |
| TP118,TP119,TP120,TP121,                           |                       |                     |                  |
| TP122,TP123,TP124                                  |                       |                     |                  |
| U2                                                 | AL5887                | AL5887              |                  |
| U15                                                | FT4222HQ-D FTDI Chip™ | FT4222HQ-D          |                  |
| U18                                                | TLV840MADL29DBVR      | TLV840MADL29DBVR    |                  |
| U20                                                | PI5A23157ZUAEX        | PI5A23157ZUAEX      |                  |
| U21                                                | AP7165-SPG-13         | AP7165-SPG-13       |                  |
| Y1                                                 | 7B-12.000MEEQ-T       | 7B-12.000MEEQ-T     |                  |
| R143,R1020,R1021,R840,R841,R<br>842,R746,R747,R845 | 10K                   | RC0603FR-7W10KL     | DNP              |
| R860                                               | 0E                    | RC0603JR-070RL      | DNP              |
| R962,R963,R964,R965                                | 2.7K                  | RMCF0603FT2K70      | DNP              |


### 11. BOARD LAYOUT

The following images are the top layer and bottom layer Gerber images of demo board.



TOP LAYER

Figure 5. TOP LAYER



BOTTOM LAYER

Figure 6. BOTTOM LAYER



#### 12. BOARD IMAGES

The following images are top view, bottom view of the demo board and few LED effects performed using demo board.






Figure 7. TOP VIEW

Figure 8. BOTTOM VIEW

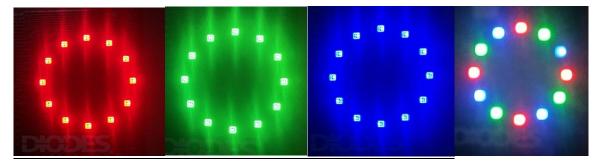



Figure 9. Shows various LED effects, starting from left: a. RED, b. GREEN, c. BLUE, d. mixture of RGB

### 13. TROUBLESHOOT:

Current Limit:

If board is drawing excess current, remove the resistor R134, then check for the cause.

- Verify the following test points to ensure the required voltage levels.
  - i) VIN\_3V3 5V (TP 109)
  - ii) EN ->3.3V (TP 112)
  - iii) VCC 1.8V (TP 113)
  - iv)  $3V3_{OUT} 3.3V$  (TP 121)
  - v) RSTn->3.3V (TP 120)
  - vi)  $V_{IOIN} 3.3V \text{ (TP 118)}$
  - vii) ERR (TP 107)
  - viii) INT\_SEL 0V (TP 116)
  - ix) IREF 0.7V (TP 122)
- To verify the communication, reconnect the cable. Probe oscilloscope on the following test points,
  - 1. SPISDO / SDA TP108
  - 2. SPICS / SCL TP111
  - 3. SPIMOSI TP115
  - 4. SPICLK TP119
- If LEDs are not glowing, then check the LED supply.
- For open and short, read the register data using GUI and check for corresponding fault bit value. If any fault bit is set high. Then check the corresponding channel is open / short.

**AL5887EV1** 12 of 35 **047/2023**Rev. 1 12 of 35 www.Diodes.com



#### 14. Additional Information:

#### 14.1 Device functional modes:

- Normal mode: The AL5887 device enters the NORMAL mode when Chip\_EN (register) = 1. ICC is 5mA (typical). The voltage at IREF test point (TP122) should be 696mV - 704mV.
- 2. **Power save mode:** Automatic power-save mode is enabled when register bit Power\_Save\_EN = 1 (default) and all the LEDs are off (both color and brightness registers = 00H) for a duration of >30ms. Almost all analog blocks are powered down in power-save mode. If any I2C/SPI command to the device occurs, the AL5887 device returns to NORMAL mode.
- 3. **Shutdown mode**: The device enters into SHUTDOWN mode from all states on VIN power down or when EN = Low >25ms.  $I_{CC}$  is < 1 $\mu$ A (max).
- 4. **Standby mode**: The device enters the STANDBY mode when Chip\_EN (register bit) = 0. In this mode, all the OUTx are shut down, but the registers retain the data and keep it available via I2C/SPI. STANDBY is the low-power-consumption mode, when all circuit functions are disabled. ICC is 15µA (maximum).
- 5. **Thermal shutdown mode:** The device automatically enters the THERMAL SHUTDOWN mode when the junction temperature exceeds 160°C (typical). In this mode, all the OUTx outputs are shut down. If the junction temperature decreases below 150°C (typical), the device returns to the NORMAL mode.



### 14.2 Current Setting for all channels:

The maximum global output current for all 36 channels can be adjusted by the external resistor, RSET, as described below.

IMAX = KIREF \* VIREF / RSET \* [(Max\_Current\_Option/4) + (3/4)] .....(1)

where, IMAX = Channel average current, Color Register=FF, Brightness Register=FF VREF= 0.7 V, RSET = External dimming resistor ( $2.1 \text{k}\Omega$  recommended), Max\_Current\_Option = 1 (default), KIREF = 21 + (N \* 3), is the current multiplication factor which can be programmed using 6-bit global dimming register G5:G0 (Address = 66H), which is analog dimming register and N is the decimal equivalent of G5 G4 G3 G2 G1 G0.

For example, if all global dimming register bits are 0, the N will be decimal equivalent of 100000 which is 32. Hence, KIREF = 21 + (32 \* 3) = 117.

Using equation (1) above, for global dimming register setting of 000000H and Max\_Current\_Option = 1, below is the table that shows IMAX variation with respect to the RSET.

| $R_{SET}(K\Omega)$ | I <sub>MAX</sub> (mA) | K <sub>IREF</sub> |
|--------------------|-----------------------|-------------------|
| 2.1(Recommended)   | 39                    | 117               |
| 14.7               | 5.57                  | 117               |
| 36.5               | 2.24                  | 117               |

Table 4. IMAX variation w.r. to Rset

Similarly, the below table shows IMAX range using global dimming at different RSET values

| $R_{SET}(K\Omega)$ | I <sub>MAX</sub> (mA) |         |     |
|--------------------|-----------------------|---------|-----|
| T(SET(T(32)        | MIN                   | DEFAULT | MAX |
| 2.1(Recommended)   | 7                     | 39      | 70  |
| 14.7               | 1                     | 5.57    | 10  |
| 36.5               | 0.4                   | 2.24    | 4   |

Table 5. IMAX range using global dimming at different Rset values.

For more information on current setting refer to the datasheet.



### 14.3 Brightness and Color register:

The below table shows various values of brightness and color register with respect to duty cycle.

| Duty Cycle | Brightness Register (Hex) | Color Register (Hex) |
|------------|---------------------------|----------------------|
| 10         | 2D                        | 92                   |
| 20         | 5F                        | 8A                   |
| 30         | 75                        | A9                   |
| 40         | 81                        | CC                   |
| 50         | 96                        | DC                   |
| 60         | B8                        | D6                   |
| 70         | C0                        | EF                   |
| 80         | EF                        | DC                   |
| 90         | F3                        | F3                   |
| 100        | FF                        | FF                   |

Table 6. Brightness and Color Register Values



### Software

### **System Requirements**

Emulator is a stand-alone application developed using LabVIEW 2019 to support AL5887 testing. Features of AL5887 are controlled via SPI/I2C interface. Minimum system requirements for execution of emulator software are given below.

| # | Description         | Specification/Requirement |
|---|---------------------|---------------------------|
| 1 | OS                  | Windows 7/10              |
| 2 | RAM                 | 4GB or above              |
| 3 | Required Disk space | 250 MB approx.            |

Table 7. Minimum System Requirements

#### 1. Installation Instructions

- 1. Download the latest Emulator software package from the Diodes Server.
- 2. Unzip Emulator\_Installer.zip

The extracted folder will have the following files and folders.



Figure 10. Emulator Installer folder

3. Click the Setup.bat and follow the on-screen instructions to complete the installation of FTDI Drivers.



Figure 11. FTDI Driver Installation



 Next Microsoft Visual C++ 2010 x86 Redistributable installation will begin automatically. Follow the on-screen instructions to complete the installation.

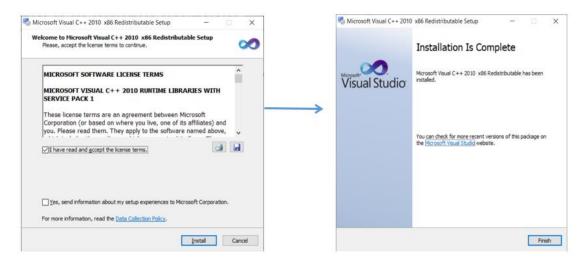



Figure 12. Microsoft Visual C++ 2010 x 86 Redistributable Installation

5. **Emulator setup** will be installed following Microsoft Visual C++ 2010 x 86 Redistributable. Follow on screen instructions and complete the installation and **restart the system** when prompted.

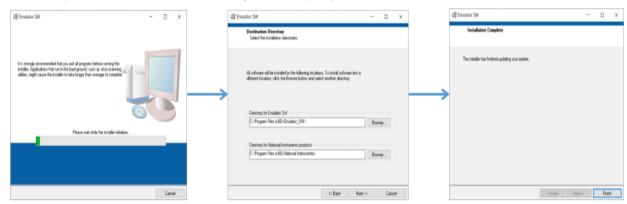



Figure 13. Emulator SW Installation

### 2. Getting Started

Run the Emulator software Emulator\_SW\_V2.5.exe.

a) From Start menu by selecting the below icon



Figure 14. Emulator SW EXE Icon

b) From C:\Program Files (x86)\Emulator\_SW\ Emulator\_SW\_V2.5.exe



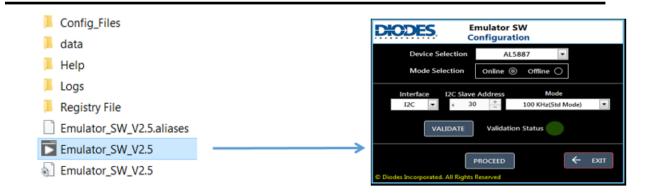



Figure 15. Emulator SW Execution

Note: It is recommended to run the executable file in Administrator Mode

#### 3. Software Features

Emulator SW has two major modules namely Configuration Screen and Emulator Screen

- Configuration Screen allows users to
  - Select the Device under test and configure its Interface parameters
  - Perform Device Validation based on device and Interface Configuration
  - Mode Selection Either Online or Offline Mode

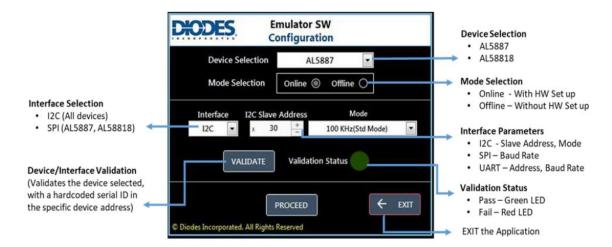



Figure 16. Emulator Configuration Screen



- 2. Emulator Screen has the following major features.
  - Display the parameters configured in CONFIGURATION Screen
  - LED Test Tab to support.
    - Display the Device Connection Status
    - Display the LED Annunciation in 2 different modes.
      - 1. RGB Modules and
      - 2. Individual LEDs
    - Configure the LEDs to adjust the color and intensity in 2 different modes.
      - 1. Sliders (Independent Mode and Bank Mode)
      - 2. Registers
    - Display following Lighting Patterns in RGB Modules Annunciation Mode
      - 1. Breathing effect
      - 2. Mono color chasing effect
      - 3. Dual color chasing effect and
      - 4. Multi-color chasing effect
    - Engineering Tab to guide user on current settings and compute the OUTx Voltage



Figure 17. Emulator Screen

#### 4. Execution Instructions - Configuration

- 1. Click the Emulator\_SW\_V2.5.exe to run the Emulator Application.
- 2. In the Configuration Screen, Select AL5887 under Device Selection.
- If AL5887 chip and test hardware are available, select Mode as Online. Else, if hardware is not available, then skip to step 6.
- 4. Select the Interface (I2C/SPI), Address, Mode based on the hardware in use.
- 5. Once Configuration is complete, Select VALIDATE button.



Emulator SW verifies specific bits in the AL5887 Device Register.

- If values match, SW displays the validation status as PASS and navigates to the Emulator Screen
- If values do not match, SW displays the validation Status as FAIL and alerts user with a message as given below.

Note: If Validation Failed, user shall choose among one of the below options

- User shall select MODIFY in the pop-up and re-visit step 4
- User shall select PROCEED to continue using Emulator SW in OFFLINE Mode
- User shall select ABORT to Quit the Application & to verify the Hardware.

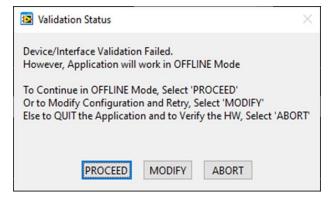



Figure 18. Validation Status

6. If hardware is not available and if user prefers to use the SW in Offline Mode, select Mode as OFFLINE

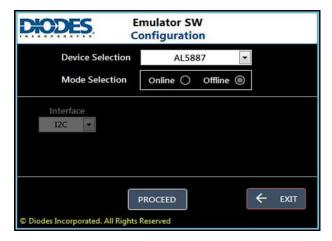



Figure 19. Offline Mode Selection

7. Select PROCEED button to navigate/access the **Emulator Screen** 



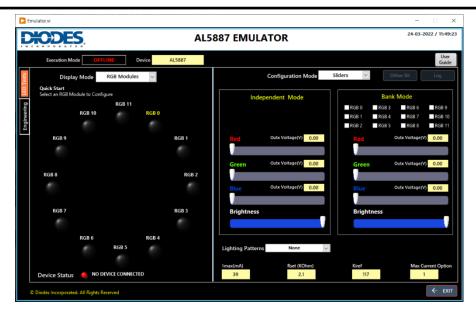



Figure 20. Emulator Screen in Offline Mode

#### 5. Execution Instructions - LED Test Tab

### 8.1 Configuring LEDs in RGB Modules & Independent Mode

- 1. Select Display Mode as RGB Modules
- Select an RGB Module (Example: RGB8) and Adjust the Red/Green/Blue Sliders in Independent Mode to adjust the color and Intensity.

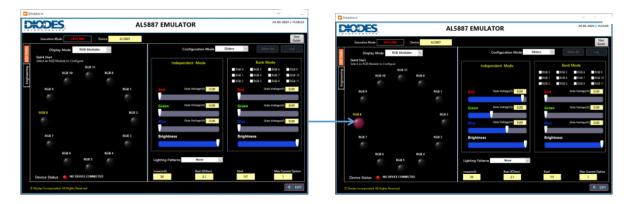



Figure 21. Configuring LEDs in RGB Modules & Independent Mode

Each RGB module can be configured to different Red/Blue/Green settings in independent Mode. For instance, RGB1 to RED, RGB2 to GREEN and RGB8 to combination of RED+GREEN+BLUE and so on

### 8.2 Configuring LEDs in RGB Modules & Bank Mode

- 1. Select Display Mode as RGB Modules
- 2. Enable One/More Banks to enable RGBs in Bank Mode
- 3. Move the Red/Green/Blue Slides under Bank Mode to adjust the colour and Intensity of the RGB Modules selected in Bank Mode

**AL5887EV1** 21 of 35 **0477/2023**Rev. 1 www.Diodes.com






Figure 22. Configuring LEDs in RGB Modules & Bank Mode

All RGBs selected in Bank Mode can be adjusted only to same color adjustment.

### 8.3 Configuring LEDs in Individual LEDs & Independent Mode

- 1. Select Display Mode as Individual LEDs
- 2. Select an **Individual LED** (Example G2). Only Green Slider will be enabled in independent mode while Red and Blue will be greyed Out.
- 3. Adjust the Green Slider to vary the color and Intensity of G2 LED

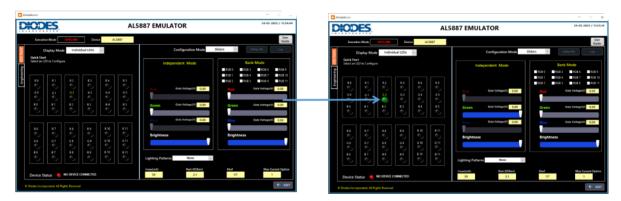



Figure 23. Configuring LEDs in Individual LEDs & Independent Mode

Each LED can be configured to different Red/Blue/Green settings in independent Mode.

### 8.4 Configuring LEDs in Individual LEDs & Bank Mode

- 1. Select Display Mode as Individual LEDs
- 2. Enable One/More Banks to enable RGBs in Bank Mode
- 3. Move the Red/Green/Blue Slides under Bank Mode to adjust the color and Intensity of the RGB Modules selected in Bank Mode

**AL5887EV1** 22 of 35 **047/2023**Rev. 1 22 of 35 www.Diodes.com



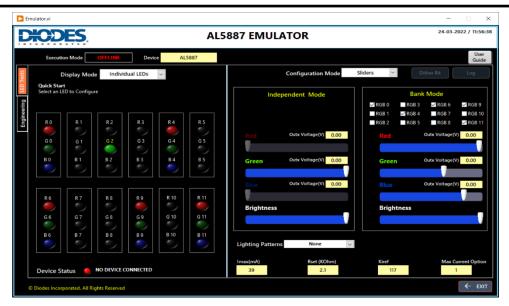



Figure 24. Configuring LEDs in in Individual LEDs & Bank Mode

All LEDs selected in Bank Mode can be adjusted by the bank Mode sliders.

#### 8.5 Notes on Display mode.

Adjustments made to LEDs in RGB Modules Mode will be reflected in Individual LEDs mode and vice versa.

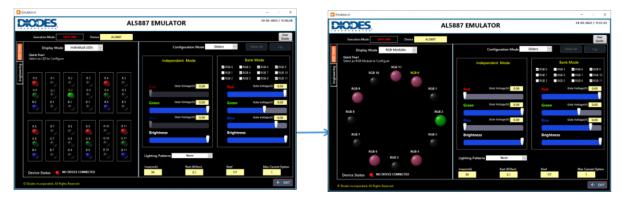



Figure 25. LED Changes in Individual LEDs & RGB Modules

### 8.6 Lighting Patterns

Emulator SW displays following Lighting Patterns in RGB Modules Annunciation Mode

- Breathing effect Displays LEDs in Red color with a breathing effect.
- Mono color chasing effect Displays LEDs in one color those cycles from RGB0-RGB11.
- Dual color chasing effect Displays LEDs in two colors that cycles from RGB0-RGB11
- Multi-color chasing effect Displays LEDs in multiple colors that cycles from RGB0-RGB11
- None LED lighting Pattern is disabled.

Except in the breathing effect pattern, the colors keep changing during each cycle.

Select a lighting pattern from the drop down to simulate the pattern.



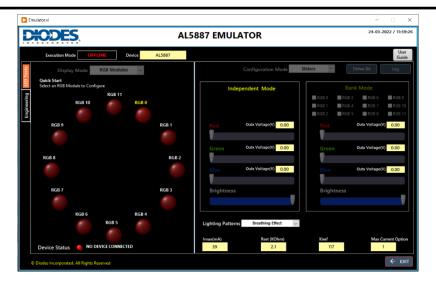



Figure 26. Breathing Effect

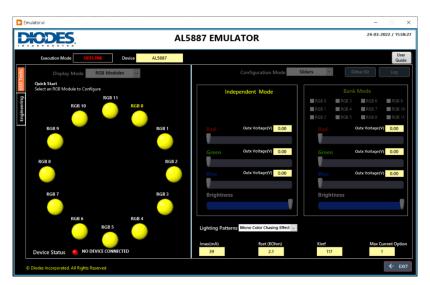



Figure 27. Mono Color Chasing Effect



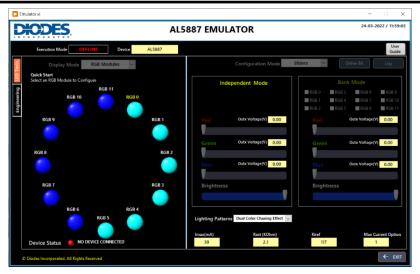



Figure 28. Dual Color Chasing Effect

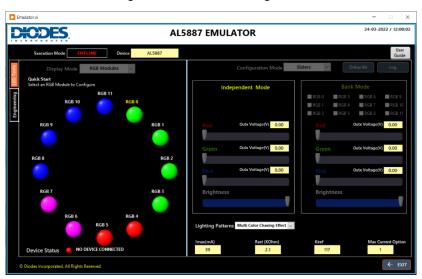



Figure 29. Multi-Color Chasing Effect

### 8.7 Register Configuration Mode

- 1. Select Configuration Mode as Registers
- 2. Modify the Register Value(s) in the Table either bits D0-D7 or Hex data (For Instance: LED\_CONFIG1 (0x03). This register enables/disables BANK mode of RGB8 to RGB11. Let us here enable RGB10 and RGB11)
- When values of a register are modified, the applicable Register(s) will be highlighted in blue color indicating the value change. But these values are yet to be applied to the device and GUI.



4. Select WRITE REGISTRY to apply the values to the AL5887 and GUI. Once applied, the highlight is disabled.



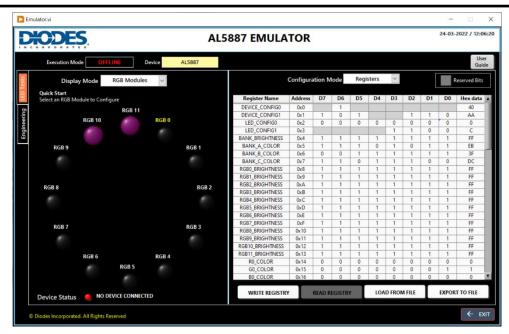



Figure 30. Register Configuration Mode

#### Notes:

- Reserved Bits are greyed out in the Register Table
- Please refer to datasheet for register and bit details

Write Registry - Write Register values to Device.

Read Registry - Read Register Values from Device.

Load from File - Load Register data from \*.csv File

Export to File - Save Register data to \*.csv File (File Name/Path are of user Choice)

### 9 Emulator LED Test Tab - Engineering Tab

### 9.1 Features

Serves as a guide in computing the Current configuration and Outx Voltage



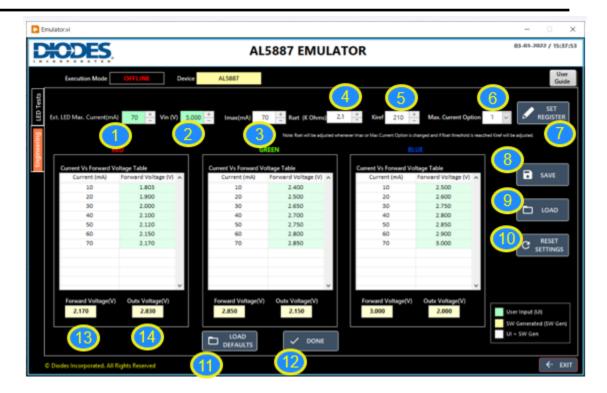



Figure 31. Engineering Tab Features

#### 1. Ext.LED Max Current(mA):

As per LED forward current from datasheet and recommended Value <= 70 mA SW Alerts user when value entered is > 70 mA.

#### 2. Input Voltage:

Vin (V) - Default is 5 V

#### 3. Imax Value:

The channel LED current amplitude when PWM control is turned on

#### 4. External Dimming Resistor/Rset

2.1K to 36K discrete values based on standard resistor chart

### 5. Kiref - Current Multiplication Factor:

Default value is 117. Acceptable values 21-210

### 6. Max. Current Option:

Either 0 (3/4th of Current) or 1

### 7. Set Register:

Write/Update Global Dimming Register and Max Current Option

### 8. **Save:**

Save Configuration to \*.ini File of User Choice

#### 9. **Load:**

Load Configuration from \*.ini File of User Choice

### 10. Reset Settings:

Resets all fields to initial condition.

### 11. Load Defaults:

Updates Forward Voltage Value as 1 in Current Vs Forward Voltage Table

### 12. **Done:**

Enables the Current Configuration parameters.

### 13. Forward Voltage:

Computed based on interpolation from Current Vs Forward Voltage Table defined by the Use.

#### 14. Outx Voltage:

Computed as Vin – Forward Voltage. This is auto updated by SW whenever Imax is adjusted.

#### 9.2 Using Default File to populate the parameters.

- Select Engineering Tab.
- 2. Ext LED Max. Current(mA) and LOAD Button will be enabled by default.





Figure 32. Engineering Tab, default screen

- 3. Select LOAD button and choose 'default.ini' file.
- 4. Emulator will display a pop-up indicating 'Configuration Uploaded.'
- 5. All the fields will be auto populated by the Emulator as shown below.



Figure 33. Engineering Tab, default values loaded.

Notes: By Default, once, file is loaded,

Imax, Rset, Kiref, Max Current are set to 70, 2.1, 210, 1 respectively. Also, Forward Voltage and Outx Voltages
are calculated for current Imax values.



- Now, User shall make modifications to the current parameters to check how the changes impact other associated parameters.
- SET REGISTER will update Global Dimming Bits (Kiref) and Max Current Option in
  - a) Register Table in LED Tests
  - b) Brightness of selected LEDs in LED Tests and
  - c) AL5887 HW if connected in Online Mode

#### 9.3 Instructions to compute Outx Voltage

Select Engineering Tab

Note: Ext LED Max. Current(mA) and LOAD Button will be enabled by default.

2. Enter the Ext LED Max. Current Value

To be updated based on datasheet and is recommended to be less than 70 mA. When entered, multiple fields are enabled automatically as in the screenshot below.



Figure 34. Engineering Tab, LED Current Updated

- 3. Update Vin if the values used are different from the default 5V.
- 4. Manually Enter the Forward Voltage(s) for each current Value based on real LED I-V characteristics for RED, GREEN, and BLUE Table

Note:

- ${f LOAD\ DEFAULTS}$  button auto populates the table fields with a default value 1.00 V
- RESET SETTINGS will reset all the fields to Step #1





Figure 35. Engineering Tab, default Forward voltages loaded

- Once the Current Vs Forward Voltage Table values have been entered, select DONE button. Note: Current Configuration Parameters will be disabled until DONE is selected
- 6. All the fields namely Imax, Rset, Kiref and max. Current Option will be enabled now.

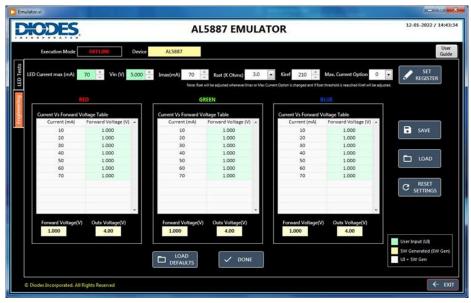



Figure 35. Engineering Tab, all the fields enabled

### Notes:

- Imax will be set to a value equivalent LED Current Max or to a max 70 mA by default. Rset and Kiref will be adjusted based on the Imax Value. Max. Current Option will be set to 0 by default.
- Now, User shall make modifications to the current parameters to check how the changes impact other associated parameters.
- SET REGISTER will update Global Dimming Bits (Kiref) and Max Current Option in:
  - a) Register Table in LED Tests
  - b) Brightness of selected LEDs in LED Tests and
  - c) AL5887 HW if connected in Online Mode
- 7. Select **SAVE** and provide a new file name to save current configuration for future use.

**AL5887EV1** 30 of 35 **0477/2023**Rev. 1 www.Diodes.com



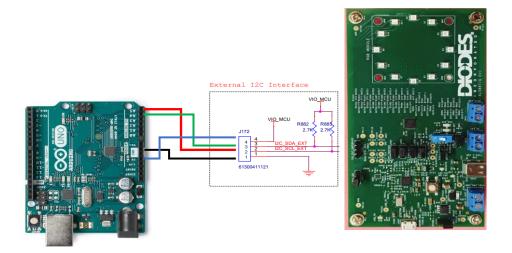
### 10 Using DEMO board with external I2C interface

Step#1: Resistors R904, R905 should be DNP.

Step#2: Enable the jumper settings as below.

| Pin 1-2 short | J304, J305, J237, J30, J284, J98, J285, J289, J7, J313 to J348 |
|---------------|----------------------------------------------------------------|
| Pin 3-2 short | J306, J307, J27                                                |

### Step#3: Select the I2C address.


| I2C Address selection |   |               |               |  |  |
|-----------------------|---|---------------|---------------|--|--|
| Logic Level           |   | J308          | J309          |  |  |
| 0                     | 0 | Pin 3-2 Short | Pin 3-2 Short |  |  |
| 0                     | 1 | Pin 3-2 Short | Pin 1-2 Short |  |  |
| 1                     | 0 | Pin 1-2 Short | Pin 3-2 Short |  |  |
| 1                     | 1 | Pin 1-2 Short | Pin 1-2 Short |  |  |

Step#4: Connect External I2C interface signals to Demo Board's J1 connector as below.

| SN | External I2C Interface | Demo Board's J1 Connector |
|----|------------------------|---------------------------|
| 1  | SDA signal             | Pin 10                    |
| 2  | SCL Signal             | Pin 8                     |
| 3  | GND                    | Pin 12                    |



- 15. Micro Controller setup Using the Arduino board as an example
  - 15.1.The AL5887 Demo board can easily be connected to a  $\mu C$  of your choice. Below is an example of an Arduino setup.
  - 15.2 Wiring diagram: connecting the Arduino I2C pins to the AL5887 Demo board.



| Signal | Arduino UNO R3 | AL5887 DEMO |
|--------|----------------|-------------|
| SCL    | A5             | J172 pin 2  |
| SDA    | A4             | J172 pin 3  |
| VIO    | 5V             | J172 pin 4  |
| GND    | GND            | J172 pin 1  |

Table 8. Table for Arduino I2C connections



```
15.3 Example code:
Author: Diodes INC */
      Date: 5/19/2023
/* Company: Diodes Incorporated */
/****************************/
#include<Wire.h>
#define I2C_Addr 0x30 // I2C address
// main function that allows us to communicate with the chip
void writeByte(uint8_t deviceAddress, uint8_t registerAddress, uint8_t registerData) {
 Wire.beginTransmission(deviceAddress); // sends device address and starts communication
 Wire.write(registerAddress);
                                   // sends register address
 Wire.write(registerData);
                                  // sends register data
 Wire.endTransmission();
                                   // stops communication
// put your setup code here, to run once:
void setup() {
 Wire.begin();
 Wire.setClock(200000); // set I2C to run at 200kHz
// put your main code here, to run repeatedly:
void loop() {
 mode1(); // change this to whatever mode is desired
void initialize() { // setup the board
 writeByte(I2C_Addr, 0x00, 0x40); // write a 1 to CHIP_EN
 writeByte(I2C_Addr, 0x38, 0xFF); // write a 1 to CHIP_EN
 writeByte(I2C_Addr, 0x00, 0x40); // write a 1 to CHIP_EN
 for (uint8_t i = 0x08; i <= 0x13; i++) { // start at first brightness register and go to the last
  writeByte(I2C_Addr, i, 0x80); // write all brightness to half
}
 for (uint8_t i = 0x14; i <= 0x37; i++) { // start at first color register and go to the last
  writeByte(I2C_Addr, i, 0x00); // write all color to 0
}
/* Spin and Fade */
void mode1() {
 for (uint8_t i = 0; i < 12; i++) {
  writeByte(I2C_Addr, 0x14 + i * 3, 0x80); // write half color to red leds
  delay(100); // add a 0.1s delay before turning on the next LED
 for (uint8_t j = 0; j < 12; j++) {
  writeByte(I2C_Addr, 0x16 + j * 3, 0x80); // write half color to blue leds
  delay(100);
```



```
}
 for (uint8_t k = 0; k < 12; k++) {
  writeByte(I2C_Addr, 0x15 + k * 3, 0x80); // write half color to green leds
  delay(100);
 }
 for (uint8_t m = 1; m <= 16; m++) {
  uint8_t brightness = 128 - m * 8; // start decreasing the brightness
  for (uint8_t n = 0x08; n <= 0x13; n++) {
   writeByte(I2C_Addr, n, brightness);// write updated brightness to brightness registers
  delay(100);
 }
 for (uint8_t p = 0x14; p <= 0x37; p++) {
  writeByte(I2C_Addr, p, 0x00);
 for (uint8_t q = 0x08; q \le 0x13; q++) {
  writeByte(I2C_Addr, q, 0x80);
 }
 delay(500);
}
```



#### IMPORTANT NOTICE

- DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- products are provided subject to Diodes' Standard Terms and Conditions of Diodes' Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing. Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- 9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/termsand-conditions/important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners. © 2023 Diodes Incorporated. All Rights Reserved.

www.diodes.com

AL5887EV1