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Abstract
Phased-array radar systems utilize many transmit and receive channels to  
function. Historically, these platforms were built using separate transmit and  
receive integrated circuits (ICs). These systems used separate chips for digital-
to-analog converters (DACs) in the transmit (Tx) circuitry and analog-to-digital  
converters (ADCs) in the receive (Rx) circuitry. This separation has led to many  
large footprint, high cost, high power consumption systems in order to realize  
the channel count necessary to achieve the desired function. These systems 
also generally require long time-to-market due to manufacturing and 
calibration complexities. However, a recent approach utilizing integrated 
transceivers combines many functions once considered disparate into 
single ICs. Using these ICs enables small form factor, lower power cons
umption and cost, high channel-count phased-array radar platforms with 
a quicker time-to-market.

Introduction to Integrated Transceivers
Integrated transceivers, such as the one shown in Figure 1, combine multiple  
functions onto a single IC. For example, the new transceiver integrates 
DACs, ADCs, local oscillator (LO) synthesizers, microprocessors, mixers, and  
more into a single 12 mm × 12 mm monolithic product. In addition, this 
product combines two receive channels and two transmit channels, as 
well as digital signal processing (DSP) components to achieve the desired 
instantaneous bandwidths required for the system. An application program 
interface (API) is also provided to operate the transceiver on a customer 
platform. Gain and attenuation control can be achieved by utilizing the 
on-chip front-end networks. Built-in initialization and tracking calibration 
routines are offered to provide the performance required for many com-
munication and military applications.
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Figure 1. The ADRV9009 is an example of an integrated transceiver that combines many functions into a single IC.
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These integrated transceivers are capable of creating all the clock signals 
needed for the transmitters and receivers by injecting a single reference 
clock signal known as REF_CLK. On-chip phase-locked loops (PLLs) then 
synthesize all required clocks for the DAC/ADC sampling, LO generation, 
and microprocessor clock. If the internal LO phase noise is not sufficient 
for a customer’s application, the user can alternatively inject their own low 
phase noise external LO.

Data from the part is offloaded via a standardized JESD204b multigigabit 
serial data interface. This interface enables large amounts of simultaneous 
data reception and transmission. The new integrated transceiver solution 
can help to provide the interface IP to streamline a customer’s time-to-
market. If deterministic latency and data synchronization is needed, the user  
can utilize the built-in multichip synchronization (MCS) feature and issue 
a SYS_REF signal to act as a master timing reference for an initial lane align-
ment sequence (ILAS).1

Additionally, the LO phase of a Tx or Rx channel can be made deterministic 
with respect to a master reference phase using the built-in RFPLL phase 
sync feature. By utilizing both the MCS and the RFPLL phase sync features, 
phase alignment can be replicated when either initializing the part, frequency 
tuning, or toggling the radio on and off in software. An example of the new 
integrated transceiver providing deterministic phase with these features 
enabled is shown in Figure 2.

Using Multiple Integrated Transceivers
If more than two receivers and two transmitters are required for a system, 
the user can still benefit from the small size achieved with monolithic Rx and  
Tx channels by using multiple integrated transceivers. An example of this  
technique is shown in Figure 3. It is possible to synchronize multiple integrat-
ed transceivers by utilizing concurrent SYS_REF pulses to trigger internal 
dividers for all ICs at the same time. These SYS_REF pulses can be issued 
by either clock chips or baseband processors with programmable delays 
to account for any length mismatches between routes to the various ICs.  
Both the data paths and the multiple LOs across the multiple chips are 
capable of being deterministic.

Integrated Transceivers As the Backbone of 
Phased-Array Radar Platforms
Increasing channel counts by using synchronized integrated transceivers  
then allows these devices to serve as the backbone of phased-array radar  
platforms. When combining phase- and amplitude-aligned Tx and Rx  
channels, using multiple integrated transceivers has demonstrated 
system-level dynamic range, spurious, and phase noise improvements. 

On-chip DSP features such as numerically-controlled oscillators (NCOs) 
and digital upconverters (DUCs) or digital downconverters (DDCs) enable  
system-level spurious decorrelation methods now within a single IC.2

Combining receiver channels using multiple integrated transceivers has 
demonstrated both improved system-level noise spectral densities (NSDs) 
and improved spurious performance. This has improved the dynamic range  
of a phased-array radar system by lowering the effective noise floor of the  
system but maintaining the channel full-scale power. Figure 4 shows 
measured system-level results when combining up to eight integrated 
transceiver Rx channels to effectively increase the number of bits achieved  
in a phased-array system. Note that the NSD, and the calculated noise floor  
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Figure 2. The built-in RFPLL phase sync feature provides a system with a deterministic phase relationship with respect to a master reference source.
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Figure 3. Multiple integrated transceivers can be used to increase the channel 
count of a system.
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as indicated by the red line in each plot, is improved by ~6 dB when going 
from one channel to eight channels. This is because, although there are eight  
channels total, there are only four distinct, uncorrelated LOs (that is, NLO  = 4) 
among the four integrated transceivers used to create those eight channels. 
This leads to an improvement of

	 NSD Improvement = 10log10(NLO) = 10log10(4) ≈ 6 dB

which comes close to the experimental results provided by the integrated 
transceiver. Additionally, undesired image frequencies sum in an uncorrelated 
manner to achieve system-level spurious performance improvements. With  
increased channel counts, this improvement can be further enhanced, leading  
to a scalable system.

Additionally, after phase aligning and combining multiple integrated tran-
sceiver channels, the phase noise of the phased-array system can be  
improved. The top three traces of Figure 5 show measured results indicat-
ing improved phase noise performance when combining eight transmit 
channels using the internal LOs of four integrated transceiver ICs. Once again,  
in the case when there are four distinct and uncorrelated LOs (that is, NLO = 4), 
the phase noise is improved by ~6 dB when going from one Tx channel to  

eight Tx channels. Increasing channel count can further improve the phase  
noise of the phased-array radar system. Alternatively, one could inject an 
external LO to each subarray composed of NTRx integrated transceivers and  
improve the starting phase noise at the subarray level, as is shown with the  
blue trace in Figure 5. However, this is at the expense of each element within 
that subarray being correlated since they all share the same LO source, 
and they are thereby not capable of providing channel summing improve-
ments within the subarray itself. For the external LO phase noise data shown in 
Figure 5, a Rohde and Schwarz SMA100B signal generator is used for the 
external LO source.

Integrated DSP features such as NCOs, digital phase shifters, and DUCs/DDCs 
allow for baseband phase- and frequency-shifting in the digital domain, 
thereby enabling digital beamforming in a multichannel, integrated-trans-
ceiver-based, phased-array radar system. Due to this bundling of functions 
on a single IC, a system is now capable of achieving antenna lattice spacings 
with the integrated transceivers in many pertinent phased-array applications. 
Increasing channel counts with more transceivers can generally result in 
narrower beams, but at the expense of increasing system footprint. However,  
with the multiple functions now in a single monolithic IC, this increase 
in footprint is now smaller than in the past. After simulating radiation patterns 
using MATLAB®, Figure 6 shows how increasing from N = 23 to N = 210 
channels results in a narrowing of the beam and a deeper theoretical lobe 
amplitude. The power nulls in practice will be dictated by the antenna design.

Conclusion
The integration of multiple digital and analog functions within a single IC 
allows for smaller form factor phased-array radar systems. These systems 
can enable both digital beamforming and hybrid beamforming, depending on  
the system specifications. System-level performance improvements using  
Analog Devices’ ADRV9009 have been demonstrated. These integrated 
devices enable a new variety of systems which serve multiple applications 
with the same hardware.
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Figure 4. Combining Rx channels using the ADRV9009 integrated transceiver leads to lowering noise spectral densities and improved dynamic range.
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Figure 5. Combining Tx channels of multiple ADRV9009s when using the internal 
LO leads to improved system-level phase noise performance. External LO injection 
provides an improved starting phase noise for the subarray.
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Figure 6. DSP features now enable digital phase shifting using the on-chip NCOs 
and DDCs/DUCs. Increasing channel count and optimum phase shifting can result 
in a narrowing of the beam formed by the integrated transceivers.


