

GN001 Application Brief How to drive GaN Enhancement mode HEMT

Updated on Apr-26-2016 GaN Systems Inc.

Basics

- Design considerations
- Driver selection
- Design examples
- PCB Layout
- Switching Testing results

Latest update Apr 26th, 2016

Please visit <u>http://www.gansystems.com/whitepapers.php</u> for latest version of this document

Fundamentals of GaN Systems E-HEMT

GaN Enhancement mode High Electron Mobility Transistor (E-HEMT):

- Lateral 2DEG (2-dimensional electron gas) channel formed between AlGaN and GaN layers
- Positive gate bias opens up 2DEG channel
- OV or negative gate voltage shuts off 2DEG and block forward conduction
- Voltage driven: Gate driver charges/discharges (C_{GD} + C_{GS})
- No DC gate driving current needed: gate leakage current only (I_{GSS})

Gate Characteristics GaN E-HEMT vs. other technologies

- Similar gate drive requirement to Silicon MOSFET/IGBT
- Much Smaller gate charge Lower drive loss, faster rise & fall time
- Lower gate voltage Select right gate driver UVLO
- Easy **5 to 6.5V** gate drive with maximum rating +7V and +10V transient
- 0V to turn off, typical V_{GTH} =1.5V.
- Negative voltage improves gate drive robustness <u>but is optional</u>
- Easy slew rate control using gate resistor

Gate drive voltage level	GaN Systems GaN E-HEMT	Si MOSFET	IGBT	SIC MOSFET
Maximum rating	-10/+7V	+/-20V	+/-20V	-8/+18V
Transient maximum	-20/+10V*		+/-30V	
Typical operational values	0 or -3/+5-6.5V	0/+10-12V	0 or -9/+15V	-4/+15V

[*] pulse width < 1uS

GaN E-HEMT Reverse Conduction

No parasitic body diode: Zero Q_{RR} Loss & very high dv/dt ruggedness

(D')

- GaN E-HEMT is naturally capable of reverse conduction, without external diode
- Unlike MOSFETs/IGBT, reverse current flow through same 2DEG channel as forward conduction

Reverse bias V_{GS}=0V:

VSD

 $V_{GS'}$

2DEG

GaN

↓ (S')

• "Diode" like reverse behavior is V_{GS} dependent

When $V_{GS} \le 0V$: no channel conduction

- One can consider D/S swapped in reverse bias mode
- 2DEG channel starts to conduct when $V_{SD} = V_{GS'} (V_{GD}) > V_{GTH} = ~1.5V$
- Reverse current flows in 2DEG

Reverse bias with -V_{GS}:

- 2DEG starts to conduct when $V_{SD} = V_{GTH} + V_{GS_OFF}$
- -V_{GS} increases reverse voltage drop V_{SD}

Reverse Conduction Loss model

GS66508T reverse I/V characteristics

V_{GS} = 6V (on-state):

٠

- 2-quadrant bidirectional current flow in 2DEG channel
- Reverse Rds(on) same as forward conduction

•
$$P_{loss_rev} = I_{SD}^2 x R_{DS(ON), Tj}$$

V_{GS} ≤ 0V (off-state):

- Modeled as "diode" with V_F + channel resistance R_{rev_on} that is higher than $R_{DS(ON)}$ in forward conduction
- V_{sD} increases with the negative gate voltage applied

$$P_{loss_rev} = I_{SD}^2 X R_{REV(ON)} + I_{SD} X (V_{GTH} + V_{GS_OFF})$$

How does it affect the design:

- No external anti-parallel diode required
- No Q_{RR} Loss (Q_{OSS} loss only), perfect fit for half bridge where hard commutation is required – Higher efficiency and more robust without body diode
- Higher reverse conduction loss, for optimal efficiency:
 - Minimize dead time and utilize synchronous drive
 - Prefer **OV** for turn-off

Reduce Losses using Dead time & Synchronous driving

- Synchronous driving with minimum dead time is recommended for optimum efficiency
- Dead time can be selected by considering the worst case gate driver propagation delay skewing + turn-off delay time + fall time
 - For 650V GS66508T/P: typical **50-100ns**
 - For 100V GS61008P: typical **15-20ns**

25ns Delay difference for Si8261 Isolated gate driver

Propagation Delay Difference ⁵	PDD	t _{PHLMAX} — t _{PLHMIN}	-1	-	25	ns	

Total switching time **26ns** for GS66508T ($R_G=10\Omega$, $T_J=125$ °C)

GS6	5508T T _J =125°C			
Parameters	Symbol	Value	Unit	Conditions
Turn-on delay time	t _{d(on)}	4.5	ns	V _{DD} =400V, V _{GS} =6V,
Rise time	t _r	6.3	ns	I _D =16A, R _G =10Ω
Turn-off delay time	t _{d(off)}	9.3	ns	
Fall time	t _f	5.4	ns	

- Basics
- Design considerations
- Driver selection
- Design examples
- PCB Layout
- Switching Testing results

Optimizing Gate Resistors

Select right gate resistance

- E-HEMT switching speed can be controlled by gate resistors
- R_G is critical for optimum switching performance and gate drive stability
- Separate R_G for turn-on and off is recommended Turn-on gate resistor R_{GON} :
- Control the turn-on slew rate dv/dt
- For GS66508x: Recommended to start with $R_{GON} = 10-20\Omega$
- Too small R_{GON}: High dv/dt; drain current and V_{GS} ringing
 - Higher switching loss due to gate ringing
 - Risk of miller turn-on and gate oscillation

Turn-off gate resistor R_{GOFF}:

- R_{GOFF} smaller than R_{GON} is recommended:
 - Provide strong pull-down for robust gate drive
- Typical value R_{GOFF} = 1-3Ω

For driver with single output

For driver with separate pullup/down outputs

Preferred Approach

R_{GOFF} Effects on power loss

Effect of R_{GOFF} on power loss

- Smaller R_{GOFF} reduce E_{OFF}.
- Too small R_{GOFF} may create V_{GS} undershoot and ringing :
 - Higher switching and dead time conduction loss
 - Potential gate oscillation
- Recommended to start with **1-3Ω** and adjust empirically

Wide range of near zero E_{OFF} can be easily achieved with GaN:

- Extreme low Q_G → 2DEG channel turns off fast enough
 → gate no longer controls turn-off V_{DS} dv/dt (no plateau period)
- Turn-off dv/dt solely determined by how fast load current (L_{OUT}) charges C_{OSS}.
- Measured E_{OFF} includes E_{OSS}, which is NOT part of E_{OFF} and will be dissipated at next turn-on transient.

GS66508P Measured E_{ON}/E_{OFF} (V_{DS}=400V, R_{GON} =10 Ω , R_{GOFF} =1 Ω)

GS66508P: Eoss@400V = 7uJ Minimum turn-off loss when Id <15A ($R_{GOFF} = 1\Omega$)

R_{GOFF} effects on reverse losses

Effect of V_{GS} undershoot on dead time loss:

- Example 48-12V Sync Buck I_{SW} = 20A (GS61008P)
- LS V_{GS} turn-off undershoot adds to the V_{SD} drop during dead time \rightarrow higher dead time loss
- Optimize R_{GOFF} to balance between E_{OFF} and dead time loss \rightarrow more critical for VHF application and 100V device

Eon and Eoff vs Current vs Gate Resistance

GS66508P Switching Loss measurements

Switching energy loss tested on half bridge with inductive load: $V_{DS} = 400V$, $V_{GS} = 6V$, $R_{G(ON)} = 10\Omega$, $L_P = 10nH^*$, L = 40uH, Gate driver IXDN609SI.

	T _J = 25°C			T _J = 125°C				
I _D (A)	E _{on} 25°C	E _{OFF} 25°C R _{G(OFF)} =10Ω	E _{OFF} 25°C R _{G(OFF)} =1Ω	E _{ON} 125°C	E _{OFF} 125°C R _{G(OFF)} =10Ω	E _{OFF} 125°C R _{G(OFF)} =1Ω		
5	27.8	7.1	7.0	30.0	7.2	7.1		
10	36.7	12.7	7.3	42.1	8.7	8.7		
15	47.5	21.5	7.5	57.6	9.7	9.3		
20	68.0	37.5	8.3	84.7	14.7	10.0		
25	92.7	48.8	14.2	117.2	21.6	13.6		
30	114.8	66.4	23.2	163.0	28.3	19.0		

* - Parasitic loop inductance

Notes:

- Measured E_{OFF} includes the energy that charges the output capacitance (E_{OSS}), which will be dissipated during turn-on at next switching cycle for hard switching application.
- For resonant soft-switching topology, Energy stored in C_{OSS} is recycled and should not be included in switching loss calculation. The actual E_{OFF} can be calculated by:

$$OFF = E_{OFF_Measured} - \frac{1}{2} C_{O(er)} V_{DS}^{2}$$

Where $C_{O(er)}$ is energy related capacitance @V_{DS}=400V and can be found on datasheet

Preventing Miller turn-on

Miller turn-on – how to prevent it

1) Design for low pull-down impedance on the gate:

- Select driver with low source R_{OL}
- Optimize R_{GON} in half bridge
- Use small R_{GOFF} for turn-off
- Reduce gate loop inductance L_G

2) Adding external C_{GS}?

- Provides additional miller current shunt path
- Be careful when adding C_{GS} to the gate:
 - Slow down switching; increases gate drive loss
 - Potential gate oscillation combined with parasitic inductance →Ext. C_{GS} provides low Z path for high-frequency gate current ringing

2) Negative gate voltage?

- Increase noise immunity against miller turn-on
- Typical -2 to -3V is recommended
- Reduce turn-off loss
- Higher reverse conduction loss -> design trade-off

Miller current path

Using Clamping Diode

Clamping Diode

Gate Driver (OFF)

VDRV

For gate driver with single output, a clamping diode is recommended

Gate Driver (OFF)

- High dV/dt at the Drain induces Miller Current flow (Source-to-Gate)
- R_{G OFF} does not help with high dV/dt (i.e., blocked by series Diode)
- Negative voltage spike increases with higher R_{G ON}
- Use a fast schottky diode or zener between G and S:

V_{DS}

• Be careful with gate ringing induced by zener diode

Miller Current flow, –dV/dt (No Diode)

With Clamping Diode

G

CGS

 R_{G_ON}

High side driver considerations

High side gate drive

- GaN enables fast switching dv/dt >100kV/us:
 - Minimize Coupling capacitance C_{IO}
 - CM current via C_{IO} limits CMTI
- Full Isolated gate drive:
 - Best performance
 - Isolation power supply Minimize interwinding Capacitance
- Bootstrap:
 - Lower cost, simpler design
 - Post-regulation or voltage clamping is required after bootstrap

Note:

Watch for bootstrap HV diode power loss limit and recovery time for High-Frequency operation. Choose the HV diode with low C_J and fast recovery time. For switching frequency application > 500k-800kHz, isolated gate drive is recommended

Bootstrap Design

Bootstrap circuit design

Bootstrap Design Example

Preventing Oscillations

Gate drive stability – parasitic oscillation

What causes the gate oscillation?

- Common Source Inductance (CSI) L_{cs} Feedback path from power loop to gate loop (di/dt)
- Capacitive coupling via miller capacitor C_{GD} (dv/dt)
- Uncontrolled oscillation if feedback phase shift is -180deg
- L_{cs} and power loop Inductance should be minimized

How to prevent parasitic oscillation

- Reduce L_{CS}, L_G and minimize external C_{GD}
- Slow down turn-on to reduce dv/dt and gate ringing
- Reduce additional C_{GS} -> high frequency path for gate current ringing
- Add small ferrite bead in series with R_G if oscillation observed:
 - Damp high frequency current ringing
 - Use a small SMD ferrite bead (Z=10-20)

Parasitic oscillation in half bridge

- Use double pulse tester as example: Q1 is synchronous and Q2 is active control device
- Q2 gate affects the Q1 gate stability with the presence of parasitic inductances
- Q2 switching noise couples to Q1 gate loop by parasitic inductance Ls1 (L*di/dt)
- Q1 Gate is OFF when Q2 is switched: Potential uncontrolled oscillation on half bridge if Q1 gate high frequency current ringing is not damped properly (Too low Z in turn-off drive path)
- Adding drive pull-down impedance Z_{GATE} (Increasing R_{GOFF} and/or inserting a small ferrite bead) damps the gate current ringing and improves the half bridge switching stability

Ferrite bead can prevent oscillations

Parasitic oscillation in half bridge

GS66504B 400V/10A Turn-off gate oscillation Q1: R_{GOFF} =3.3 Ω ; Q2: R_{G} =15 Ω /3.3 Ω

No oscillation observed at 400V/10A switching Q1 R_{GOFF} =3.3 Ω + Ferrite bead; Q2: R_{G} =15 Ω /3.3 Ω

- Basics
- Design considerations
- Driver selection
- Design examples
- PCB Layout
- Switching Testing results

Select right gate driver for GaN E-HEMT

Non-isolated single gate driver:

Minimum requirement:

- Must operate at **5-6.5V** gate drive
- Low pull-down output impedance: $R_{OL} \leq 2\Omega$
- **2A** or higher peak drive current for robust turn-off
- Low inductance SMT package

Preferred:

- Separate pull-up/down drive output pins
- $\leq 1\Omega$ pull-down impedance
- Propagation delay < 20ns
- Integrated LDO for regulated 5-6V gate drive
- High frequency capability (>1MHz)

Isolator / Isolated gate driver

CMTI rating:

- GaN switches fast: 50-100kV/us dv/dt at switching node is common
- High CMTI is required for 650V: 50kV/us is typical, 100-200kV/us preferred. **High F**_{sw} and minimum dead time:
- Good delay matching between high and low sides:
 - 650V application w/ isolated driver: 50-100ns, ≤ 50ns preferred
 - 100V application w/o isolated: **<20ns** preferred.

GaN Systems 650V E-HEMTs can be driven by many standard gate drivers

Non-isolated low side single gate drivers:

- Recommend LM5114/UCC27511/MAX5048C:
 - Separate source/sink outputs
 - Footprint compatible
 - Low T_{prod} and low pull-down resistance
- Other lab tested compatible gate drivers:
 - FAN3122
 - FAN3224/FAN3225 (dual)
 - MCP1407/TC4422/IXDN609SI/LTC4441

Integrated isolated gate drivers

half bridge gate drivers (footprint compatible):

- SiLab Si8273/4 (Use 4V UVLO for 6V drive, Recommended for high CMTI rating 200kV/us)
- SiLab Si8233AD (UVLO= 6V for 6.5V gate drive)
- Analog device ADuM4223A (UVLO = 4.1V) Isolated single gate driver:
- Recommended: SiLab Si8271 (4V UVLO for 6V drive, 200kV/us CMTI rating)
- SiLab Si8261BAC (6.3V UVLO for 6.5V gate drive)

Isolators (use with low side gate drivers):

- SiLab Si8610: Recommended for High CMTI (lab tested 150V/ns) and low Tprod, requires 5V VCC
- New SiLab Si862xxT features >100kV/us CMTI rating
- Avago High CMR opto-coupler **ACPL-W483**: No 5V needed / Longer propagation delay and lower CMTI rating / 5kVrms reinforced insulation: for industrial application inverter, 3ph motor drive

New Silicon Labs Si827x series isolated gate driver offers high CMTI dv/dt rating and low UVLO for GaN E-HEMTs:

- 4V UVLO for 5-6V optimum gate drive
- Separate Source/sink drive outputs (Si8271)
- 4A peak current
- High dv/dt immunity: 200kV/us CMTI, 400kV/us latch-up

Recommended P/N for GaN E-HEMT (4V UVLO):

- Si8271BG-IS: Single, split drive outputs
- Si8273GB-IS1/IM: High Side / Low Side
- Si8274GB1-IS1/IM: PWM with DT Adj.
- Si8275GB-IS1/IM: Dual

Gate driver for 100V Application:

Single/dual gate driver:

- Recommend: LM5114/FAN3122/FAN3225
- Any standard MOSFET driver that supports 5-6V gate drive
- Secondary Synchronous Rectification

Half bridge gate driver:

- For 48V Sync Buck, motor drive / inverter
- No isolation required
- Dead time loss is critical: Minimize dead time
- TI LM5113 (5V VCC, recommended for good propagation delay matching)
- Linear Tech LTC4444-5 (Synchronous MOSFET driver, 5-6V VCC)

Compatible Controllers:

- LTC3890/LTC3891 (60V Synchronous step-down controller, dual/single phase)
- TPS40490 (5-60V Synchronous PWM Buck Controller)

- Basics
- Design considerations
- Driver selection
- Design examples
- PCB Layout
- Switching Testing results

650V Half bridge fully isolated gate driver design reference (LM5114 + Si8610)

NOTE - UNLESS OTHWISE SPECIFIED 1 - ALL SMD CAPACITORS AND RESISTORS ARE 0603 SIZE 2 - SMD CAPACITORS ARE 25V RATED 10% Systems

Gan Systems

650V Half bridge gate driver design using Si8273GB (footprint compatible with ADuM4223)

650V Half bridge gate driver design (Si8271GB-IS w/ Isolated DC/DC)

650V Half bridge power stage design based on Si8261BAC (GS66508T Eval Board)

FB1: 15ohm@100MHz D1: PMEG2010 D2: 6.8V 200mW Zener diode SOD323 (MMSZ5235BS-7-F)

Full schematics and Gerber files can be found at: http://www.gansystems.com/gs66508t-evbhb.php

100V Gate Drive Example

LM5113-based half bridge power stage (GS61008P), VDRV=+5V For half bridge-based application: Sync. Buck, motor drive/inverter

Recommended Gate resistor:

- R1/R3 = 4.7 -10Ω
- $R2/R4 = 2\Omega$

- For higher power and paralleled design, a small negative gate bias can be used to ensure safe turn-off
- Use a zener to create negative gate drive rail: +6/-3V

Systems

- Basics
- Design considerations
- Driver selection
- Design examples
- PCB Layout
- Switching Testing results

Impact of PCB Layout Parasitics

1. Reduce common source inductance

- Reference gate return ground to the source pad using Kelvin connection. For GS6xxx8P and GS66508B package use "SS" pin.
- Increase R_G or use ferrite bead on gate if gate oscillation is observed
- 2. Optimize gate drive loop:
 - Place driver close to GaN FET
 - Minimize the gate drive loop area and length
- 3. Optimize power loop inductance:
 - Use tight layout to minimize power loop length
 - Place decoupling capacitors as close as possible.
- 4. Design for high dv/dt
 - Minimize noise coupling due to PCB parasitic capacitance
 - Minimize overlapping between drain side power connection and gate drive signal track.
- 5. Optimize thermal performance (B&P type package):
 - Design for low thermal resistance using thermal vias and Cu. Pours

GaN*px*[™] Optimized for Switching, Thermals, & PCB Layout

No Wire Bonds: ultra-low Inductance and much higher Manufacturing Reliability

Thick RDL & top Copper: extremely low R_{ON}

Embedded Package using high-T_G material

Overall design achieves optimized Thermals

B & P Type GaN_{PX} PCB Layout

Bottom side **GaN***Px*[™] "P" & "B" Packages

- B package: create kelvin source on PCB
- P package: use SS pin
- Thermal pad connect to Source
- Use thermal vias for PCB cooling

GS66508P

For P package:

Always connect thermal pad to Source for optimum performance

GS66508P Half Bridge Layout Examples

Half bridge Layout Examples 1

GS66508P Half bridge – (Si8261)

Component Side

Bottom Side

Solder Mask pulled-back:

- Improves thermal performance
- Allows Heat Sink attachment

Half bridge Layout Examples 2

GS66508P Half bridge daughter board (isolated gate drive)

Top (component) layer

Internal Layer 1

Half bridge Layout Examples 2

GS66508P Half bridge daughter board

Internal layer 2

Bottom layer

GaNpx T-Type: Additional Optimization for Power Density

GaNpx[™] "T" designed for higher-power Applications with Top-Side Heat-Sinking and lower Θ_{JA}

GaN Systems - 40

GaN*px* T type PCB Layout

Top side cooled **GaN***px*[™] "T" series packages

- low inductance package design with excellent thermal performance
- Dual gate (symmetric, internally connected) for easier layout
- Use the gate on driver side and keep the other floating, or
- Connect both gates for lower L_{gate} if layout allows

GS61008P 100V Half Bridge Layout Example

Paralleling

Optimum Gate drive layout for Paralleling

- GaNPx is easy to parallel thanks to its low package inductance
- Star connection and equal gate length if possible (minimize current imbalance caused by L_G)
- Insert small distributed R_{G2} on each gate to minimize the gate current circulation and ringing among all paralleled devices.
- Minimize Kelvin source connection inductance L_{KS} and equal gate return length if possible
- If needed, a small negative gate drive (+6/-3V) can be used to improve gate drive robustness

Effect of series Rg on each gate in paralleling operation

Centralized vs distributed Rg:

- Ltspice simulation shows that using series Rg on each device significantly reduces gate ringing and improve switching stability
- Gate ringing/oscillation is caused by high-frequency current ringing among gates triggered by imbalanced current across Lcs.
- R1 current show no ringing in both cases

п

1nH

20.1nH

1nH

S

Q1

I(L1)

Gale

0.5nH K

R2 1nH

V_{GS}

V(DRAIN)

R3 1.2nH

Gate

V(S2) 0.5nH |KS Drain

₹1nH

Q1

30.1nH

1nH

S

Source

R4 1.4nH

_mh

Gate

0.5nH

I(L2)

Paralleling for T package

T type package is designed for easy paralleling

- Symmetric gate design allows short and equal gate length
- Easy dual side placement with optimum layout
- Use individual gate resistors and star connection for gate drive

Gate drive example for paralleling

Gate drive design for paralleling GS66516T

- Use a small distributed R_G on each gate
- +6/-3V gate drive

- Basics
- Design considerations
- Driver selection
- Design examples
- PCB Layout
- Switching Testing results

Switching Tests - Double Pulse Test Waveforms

Double pulse Switching Test

- Gate Drive design:
 - GS66508T in half bridge
 - Si8610 plus LM5114
 - Isolated Gate Drive supply
 - $R_{ON} = 10\Omega / R_{OFF} = 2\Omega$
- Tested at 400V, 35A Hard-Switching

Low inductance GaNPx T package achieves minimum V_{DS} overshoot and V_{GS} ringing (No kelvin source)

	Jun	, , , , , , , , , , , , , , , , , , ,	in a contract								V _{PK} = 4	28V —	
						$\langle 1 \rangle = 1$	ja na series de la compación de					~~~	-/
			T _{fall} = 55V/r	7.3ns าร						T _{rise} ~9(_e = 4.6 0V/ns	ns	
						- Manunation							
V _{GS_L}			· · · ·		, jinii J	W							Man
Turn-or	n (400'	V/30A)		· · · · · · · ·		Turn-of	ff (400	V/35A	\)			
(<u>1</u> 5.00 V	2 100	V V		(4)↓	10.0 A)	(1) 5.00 V	2 100	V		4	10.0 A	
1 Max 2 Max	Value 7.40 V 408 V 7.260m	Mean 7.40 408 7.2600	Min 7.40 408 7.260p	Max 7.40 408	Std Dev 0.00 0.00	Z 20.0ns 1 →▼7.98040µs	1 Max 2 Max	Value 7.60 V 428 V	Mean 7.60 428	Min 7.60 428	Max 7.60 428	Std Dev 0.00 0.00	Z 10.0ns ∎→▼7.98040µs
2 Rise Time 4 Max	s 30.0 A	No valid 30.0	2.360n edge 30.0	30.0	0.00		2 Fall Time 2 Rise Time 4 Max	4.607ns 36.0 A	No valid 4.607n 36.0	4.607n 36.0	4.607n 36.0	0.000 0.00	

GaN Systems - 49

Gate drive waveforms

Gate Drive Switching Waveforms

- Inductive load pulse testing to verify gate driver stability over the current range
- Si8261BAC Gate driver (EVAL BOARD)
- R_{ON}=25Ω / R_{OFF}=0Ω
- Use Ferrite bead 15R@100MHz
- No oscillation and minimum drain voltage overshoot

Clean waveforms – controlled Miller voltage

Clean turn-on and off switching waveforms with well controlled gate ringing and miller voltage

Measuring Eon and Eoff

GS66508P E_{ON}/E_{OFF} measurement waveforms (half bridge)

Current shunt: T&M research SDN-414-10

400V/25A Turn-on switching loss energy E_{ON} = 93uJ $R_{GON}\text{=}10\Omega$

400V/25A Turn-off switching loss energy $E_{OFF} = 49$ uJ $R_{GOFF} = 10\Omega$

Tomorrow's power today[™]

www.gansystems.com • North America • Europe • Asia