Basics

- Basics
- Design considerations
- Driver selection
- Design examples
- PCB Layout
- Switching Testing results

Latest update Apr 26th, 2016
Please visit http://www.gansystems.com/whitepapers.php for latest version of this document
GaN Enhancement mode High Electron Mobility Transistor (E-HEMT):

- Lateral 2DEG (2-dimensional electron gas) channel formed between AlGaN and GaN layers
- Positive gate bias opens up 2DEG channel
- 0V or negative gate voltage shuts off 2DEG and blocks forward conduction
- Voltage driven: Gate driver charges/discharges ($C_{GD} + C_{GS}$)
- No DC gate driving current needed: gate leakage current only (I_{GSS})
Gate Characteristics GaN E-HEMT vs. other technologies

- Similar gate drive requirement to Silicon MOSFET/IGBT
- Much Smaller gate charge – Lower drive loss, faster rise & fall time
- **Lower gate voltage – Select right gate driver UVLO**
- Easy 5 to 6.5V gate drive with maximum rating +7V and +10V transient
- 0V to turn off, typical $V_{GTH}=1.5V$.
- Negative voltage improves gate drive robustness **but is optional**
- Easy slew rate control using gate resistor

<table>
<thead>
<tr>
<th>Gate drive voltage level</th>
<th>GaN Systems GaN E-HEMT</th>
<th>Si MOSFET</th>
<th>IGBT</th>
<th>SIC MOSFET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum rating</td>
<td>-10/+7V</td>
<td>+/-20V</td>
<td>+/-20V</td>
<td>-8/+18V</td>
</tr>
<tr>
<td>Transient maximum</td>
<td>-20/+10V*</td>
<td></td>
<td>+/-30V</td>
<td></td>
</tr>
<tr>
<td>Typical operational values</td>
<td>0 or -3/+5-6.5V</td>
<td>0/+10-12V</td>
<td>0 or -9/+15V</td>
<td>-4/+15V</td>
</tr>
</tbody>
</table>

[*] pulse width < 1μS
GaN E-HEMT Reverse Conduction

- No parasitic body diode: **Zero** Q_{RR} Loss & very **high** dv/dt ruggedness
- GaN E-HEMT is naturally capable of reverse conduction, **without external diode**
- Unlike MOSFETs/IGBT, reverse current flow through same 2DEG channel as forward conduction
- “Diode” like reverse behavior is V_{GS} dependent

Drain-source forward bias:

When $V_{GS} \leq 0V$: no channel conduction

Reverse bias $V_{GS}=0V$:

- One can consider D/S swapped in reverse bias mode
- 2DEG channel starts to conduct when $V_{SD} = V_{GS'} (V_{GD}) > V_{GTH} = \sim 1.5V$
- Reverse current flows in 2DEG

Reverse bias with $-V_{GS}$:

- 2DEG starts to conduct when $V_{SD} = V_{GTH} + V_{GS_OFF}$
- $-V_{GS}$ increases reverse voltage drop V_{SD}
Reverse Conduction Loss model

GS66508T reverse I/V characteristics

$V_{GS} = 6V$ (on-state):
- 2-quadrant bidirectional current flow in 2DEG channel
- Reverse $R_{ds(on)}$ same as forward conduction
- $P_{loss_rev} = I_{SD}^2 \times R_{DS(ON)}, T_j$

$V_{GS} \leq 0V$ (off-state):
- Modeled as “diode” with V_F + channel resistance R_{rev_on} that is higher than $R_{DS(ON)}$ in forward conduction
- V_{SD} increases with the negative gate voltage applied
- $P_{loss_rev} = I_{SD}^2 \times R_{REV(ON)} + I_{SD} \times (V_{GTH} + V_{GS_OFF})$

How does it affect the design:
- No external anti-parallel diode required
- No Q_{RR} Loss (Q_{OSS} loss only), perfect fit for half bridge where hard commutation is required – Higher efficiency and more robust without body diode
- Higher reverse conduction loss, for optimal efficiency:
 - Minimize dead time and utilize synchronous drive
 - Prefer $0V$ for turn-off
Reduce Losses using Dead time & Synchronous driving

- Synchronous driving with minimum dead time is recommended for optimum efficiency
- Dead time can be selected by considering the worst case gate driver propagation delay skewing + turn-off delay time + fall time
 - For 650V GS66508T/P: typical 50-100ns
 - For 100V GS61008P: typical 15-20ns

25ns Delay difference for Si8261 Isolated gate driver

<table>
<thead>
<tr>
<th>Propagation Delay Difference</th>
<th>PDD</th>
<th>t_{PHLMAX} - t_{PHMIN}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1</td>
<td>-25ns</td>
</tr>
</tbody>
</table>

Total switching time 26ns for GS66508T (R_G=10Ω, T_J=125°C)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on delay time</td>
<td>t_{d(on)}</td>
<td>4.5</td>
<td>ns</td>
<td>V_{DD}=400V, V_{GS}=6V, I_D=16A, R_G=10Ω</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td>6.3</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{d(off)}</td>
<td>9.3</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td>5.4</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>
Design Considerations

- Basics
 - Design considerations
- Driver selection
- Design examples
- PCB Layout
- Switching Testing results
Optimizing Gate Resistors

Select right gate resistance

- E-HEMT switching speed can be controlled by gate resistors
- R_G is critical for optimum switching performance and gate drive stability
- Separate R_G for turn-on and off is recommended

Turn-on gate resistor R_{GON}:

- Control the turn-on slew rate dv/dt
- For GS66508x: Recommended to start with $R_{GON} = 10\text{–}20\Omega$
- Too small R_{GON}: High dv/dt; drain current and V_{GS} ringing
 - Higher switching loss due to gate ringing
 - Risk of miller turn-on and gate oscillation

Turn-off gate resistor R_{GOFF}:

- R_{GOFF} smaller than R_{GON} is recommended:
 - Provide strong pull-down for robust gate drive
- Typical value $R_{GOFF} = 1\text{–}3\Omega$

For driver with single output

For driver with separate pull-up/down outputs
Effect of R_{GOFF} on power loss

- Smaller R_{GOFF} reduce E_{OFF}.
- Too small R_{GOFF} may create V_{GS} undershoot and ringing:
 - Higher switching and dead time conduction loss
 - Potential gate oscillation
- Recommended to start with 1-3Ω and adjust empirically

Wide range of near zero E_{OFF} can be easily achieved with GaN:

- Extreme low $Q_G \rightarrow$ 2DEG channel turns off fast enough \rightarrow gate no longer controls turn-off V_{DS} dv/dt (no plateau period)
- Turn-off dv/dt solely determined by how fast load current (L_{OUT}) charges C_{OSS}.
- Measured E_{OFF} includes E_{OSS}, which is NOT part of E_{OFF} and will be dissipated at next turn-on transient.

GS66508P: $E_{OSS} @ 400V = 7\mu J$
Minimum turn-off loss when Id < 15A ($R_{GOFF} = 1\Omega$)

$T_j = 25^\circ C$

GS66508P Measured E_{ON}/E_{OFF} ($V_{DS} = 400V$, $R_{GON} = 10\Omega$, $R_{GOFF} = 1\Omega$)
Effect of V_{GS} undershoot on dead time loss:

- Example 48-12V Sync Buck $I_{SW} = 20$A (GS61008P)
- LS V_{GS} turn-off undershoot adds to the V_{SD} drop during dead time → higher dead time loss
- Optimize R_{GOFF} to balance between E_{OFF} and dead time loss → more critical for VHF application and 100V device
Eon and Eoff vs Current vs Gate Resistance

GS66508P Switching Loss measurements

Switching energy loss tested on half bridge with inductive load:
$V_{DS} = 400V$, $V_{GS} = 6V$, $R_{G(ON)} = 10\Omega$, $L_p = 10nH$, $L = 40uH$, Gate driver IXDN609SI.

<table>
<thead>
<tr>
<th>I_D (A)</th>
<th>E_{ON} 25°C</th>
<th>E_{OFF} 25°C</th>
<th>E_{OFF} 25°C</th>
<th>E_{ON} 125°C</th>
<th>E_{OFF} 125°C</th>
<th>E_{OFF} 125°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$R_{G(ON)}=10\Omega$</td>
<td>$R_{G(ON)}=1\Omega$</td>
<td></td>
<td>$R_{G(ON)}=10\Omega$</td>
<td></td>
<td>$R_{G(ON)}=1\Omega$</td>
</tr>
<tr>
<td>5</td>
<td>27.8</td>
<td>7.1</td>
<td>7.0</td>
<td>30.0</td>
<td>7.2</td>
<td>7.1</td>
</tr>
<tr>
<td>10</td>
<td>36.7</td>
<td>12.7</td>
<td>7.3</td>
<td>42.1</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td>15</td>
<td>47.5</td>
<td>21.5</td>
<td>7.5</td>
<td>57.6</td>
<td>9.7</td>
<td>9.3</td>
</tr>
<tr>
<td>20</td>
<td>68.0</td>
<td>37.5</td>
<td>8.3</td>
<td>84.7</td>
<td>14.7</td>
<td>10.0</td>
</tr>
<tr>
<td>25</td>
<td>92.7</td>
<td>48.8</td>
<td>14.2</td>
<td>117.2</td>
<td>21.6</td>
<td>13.6</td>
</tr>
<tr>
<td>30</td>
<td>114.8</td>
<td>66.4</td>
<td>23.2</td>
<td>163.0</td>
<td>28.3</td>
<td>19.0</td>
</tr>
</tbody>
</table>

* - Parasitic loop inductance

Notes:
- Measured E_{OFF} includes the energy that charges the output capacitance (E_{OSS}), which will be dissipated during turn-on at next switching cycle for hard switching application.
- For resonant soft-switching topology, Energy stored in C_{OSS} is recycled and should not be included in switching loss calculation. The actual E_{OFF} can be calculated by:
 $$E_{OFF} = E_{OFF\ Measured} - \frac{1}{2}C_{O(\ er)}V_{DS}^2$$
 Where $C_{O(\ er)}$ is energy related capacitance @$V_{DS}=400V$ and can be found on datasheet.
Preventing Miller turn-on

Miller turn-on – how to prevent it

1) Design for low pull-down impedance on the gate:
 - Select driver with low source R_{OL}
 - Optimize R_{GON} in half bridge
 - Use small R_{GOFF} for turn-off
 - Reduce gate loop inductance L_G

2) Adding external C_{GS}?
 - Provides additional miller current shunt path
 - Be careful when adding C_{GS} to the gate:
 - Slow down switching; increases gate drive loss
 - *Potential gate oscillation combined with parasitic inductance → Ext. C_{GS} provides low Z path for high-frequency gate current ringing*

2) Negative gate voltage?
 - Increase noise immunity against miller turn-on
 - Typical -2 to -3V is recommended
 - Reduce turn-off loss
 - Higher reverse conduction loss -> design trade-off
Clamping Diode

For gate driver with single output, a clamping diode is recommended

- High dV/dt at the Drain induces Miller Current flow (Source-to-Gate)
- \(R_{G_OFF} \) does not help with high dV/dt (i.e., blocked by series Diode)
- Negative voltage spike increases with higher \(R_{G_ON} \)
- Use a fast schottky diode or zener between G and S:
 - Be careful with gate ringing induced by zener diode

Miller Current flow, \(-dV/dt\) (No Diode)

With Clamping Diode
High side gate drive

- GaN enables fast switching $dv/dt > 100kV/us$:
 - Minimize Coupling capacitance C_{IO}
 - CM current via C_{IO} limits CMTI
- **Full Isolated gate drive:**
 - Best performance
 - Isolation power supply – Minimize inter-winding Capacitance
- **Bootstrap:**
 - Lower cost, simpler design
 - Post-regulation or voltage clamping is required after bootstrap

Note:
Watch for bootstrap HV diode power loss limit and recovery time for High-Frequency operation. Choose the HV diode with low C_J and fast recovery time. For switching frequency application > 500kHz-800kHz, isolated gate drive is recommended.
Bootstrap Design

Bootstrap circuit design

Bootstrap with post-regulation

Using Zener for clamping

Bootstrap Design Example

Bootstrap voltage not tightly regulated: biased by $V_{SD} + V_{SW}$ noise
Preventing Oscillations

Gate drive stability – parasitic oscillation

What causes the gate oscillation?

• Common Source Inductance (CSI) L_{CS} Feedback path from power loop to gate loop ($\frac{di}{dt}$)
• Capacitive coupling via miller capacitor C_{GD} ($\frac{dv}{dt}$)
• Uncontrolled oscillation if feedback phase shift is -180deg
• L_{CS} and power loop Inductance should be minimized

How to prevent parasitic oscillation

• Reduce L_{CS}, L_G and minimize external C_{GD}
• Slow down turn-on to reduce $\frac{dv}{dt}$ and gate ringing
• Reduce additional $C_{GS} \rightarrow$ high frequency path for gate current ringing
• Add small ferrite bead in series with R_G if oscillation observed:
 • Damp high frequency current ringing
 • Use a small SMD ferrite bead ($Z=10-20$)
Preventing Oscillations – half bridge

Parasitic oscillation in half bridge

• Use double pulse tester as example: Q1 is synchronous and Q2 is active control device
• Q2 gate affects the Q1 gate stability with the presence of parasitic inductances
• Q2 switching noise couples to Q1 gate loop by parasitic inductance L_{s1} ($L\frac{di}{dt}$)
• Q1 Gate is OFF when Q2 is switched: Potential uncontrolled oscillation on half bridge if Q1 gate high frequency current ringing is not damped properly (Too low Z in turn-off drive path)
• Adding drive pull-down impedance Z_{GATE} (Increasing R_{GOFF} and/or inserting a small ferrite bead) damps the gate current ringing and improves the half bridge switching stability
Ferrite bead can prevent oscillations

Parasitic oscillation in half bridge

GS66504B 400V/10A Turn-off gate oscillation
Q1: \(R_{\text{GOFF}} = 3.3\Omega \); Q2: \(R_G = 15\Omega / 3.3\Omega \)

No oscillation observed at 400V/10A switching
Q1: \(R_{\text{GOFF}} = 3.3\Omega \) + Ferrite bead; Q2: \(R_G = 15\Omega / 3.3\Omega \)
Driver Selection

- Basics
- Design considerations
 - Driver selection
- Design examples
- PCB Layout
- Switching Testing results
Select right gate driver for GaN E-HEMT

Minimum requirement:
- Must operate at **5-6.5V** gate drive
- Low pull-down output impedance: **$R_{OL} \leq 2\Omega$**
- **2A** or higher peak drive current for robust turn-off
- Low inductance SMT package

Preferred:
- Separate pull-up/down drive output pins
- **$\leq 1\Omega$** pull-down impedance
- Propagation delay **< 20ns**
- Integrated LDO for regulated 5-6V gate drive
- High frequency capability (**)1MHz**

Isolator / Isolated gate driver

CMTI rating:
- GaN switches fast: 50-100kV/us dv/dt at switching node is common
- High CMTI is required for 650V: 50kV/us is typical, 100-200kV/us preferred.

High F_{SW} and minimum dead time:
- Good delay matching between high and low sides:
 - **650V application w/ isolated driver: 50-100ns**, **≤ 50ns** preferred
 - 100V application w/o isolated: **<20ns** preferred.
Recommended gate drivers - 650V GaN E-HEMT

GaN Systems 650V E-HEMTs can be driven by many standard gate drivers

Non-isolated low side single gate drivers:
- **Recommend** LM5114/UCC27511/MAX5048C:
 - Separate source/sink outputs
 - Footprint compatible
 - Low T_{prod} and low pull-down resistance
- Other lab tested compatible gate drivers:
 - FAN3122
 - FAN3224/FAN3225 (dual)
 - MCP1407/TC4422/IXDN609SI/LTC4441

Integrated isolated gate drivers
- half bridge gate drivers (footprint compatible):
 - SiLab **Si8273/4** (Use 4V UVLO for 6V drive, **Recommended for high CMTI rating 200kV/us**)
 - SiLab **Si8233AD** (UVLO= 6V for 6.5V gate drive)
 - Analog device **ADuM4223A** (UVLO = 4.1V)
- Isolated single gate driver:
 - **Recommended**: SiLab **Si8271** (4V UVLO for 6V drive, 200kV/us CMTI rating)
 - SiLab **Si8261BAC** (6.3V UVLO for 6.5V gate drive)

Isolators (use with low side gate drivers):
- SiLab **Si8610**: Recommended for High CMTI (lab tested 150V/ns) and low Tprod, requires 5V VCC
- New SiLab **Si862xxT** features >100kV/us CMTI rating
- Avago High CMR opto-coupler **ACPL-W483**: No 5V needed / Longer propagation delay and lower CMTI rating / 5kVrms reinforced insulation: for industrial application inverter, 3ph motor drive
SiLabs Si827x Series for 650V GaN E-HEMT

New Silicon Labs Si827x series isolated gate driver offers high CMTI dv/dt rating and low UVLO for GaN E-HEMTs:

- 4V UVLO for 5-6V optimum gate drive
- Separate Source/sink drive outputs (Si8271)
- 4A peak current
- High dv/dt immunity: 200kV/us CMTI, 400kV/us latch-up

Recommended P/N for GaN E-HEMT (4V UVLO):

- Si8271BG-IS: Single, split drive outputs
- Si8273GB-IS1/IM: High Side / Low Side
- Si8274GB1-IS1/IM: PWM with DT Adj.
- Si8275GB-IS1/IM: Dual
Gate driver for 100V Application:

Single/dual gate driver:
- Recommend: **LM5114/FAN3122/FAN3225**
- Any standard MOSFET driver that supports 5-6V gate drive
- Secondary Synchronous Rectification

Half bridge gate driver:
- **For 48V Sync Buck, motor drive / inverter**
- No isolation required
- Dead time loss is critical: Minimize dead time
- TI **LM5113** (5V VCC, recommended for good propagation delay matching)
- Linear Tech **LTC4444-5** (Synchronous MOSFET driver, 5-6V VCC)

Compatible Controllers:
- **LTC3890/LTC3891** (60V Synchronous step-down controller, dual/single phase)
- **TPS40490** (5-60V Synchronous PWM Buck Controller)
Design Examples

- Basics
- Design considerations
- Driver selection
- Design examples
- PCB Layout
- Switching Testing results
NOTE - UNLESS OTHERWISE SPECIFIED
1 - ALL SMD CAPACITORS AND RESISTORS ARE 0603 SIZE
2 - SMD CAPACITORS ARE 25V RATED 10%
650V Gate Drive Design Example 2

650V Half bridge gate driver design using Si8273GB (footprint compatible with ADuM4223)

U1
SI8273GB / ADUM4223
VIA1
VIB2
VDDI3
GNDI4
DISABLE5
DT6
NC17
VDDI_28
GNDB 9
VOB 10
VDDB 11
NC2 12
NC3 ...
...

NOTES - UNLESS OTHERWISE SPECIFIED
1 - SMD CAPACITORS AND RESISTORS ARE 0603 SIZE
650V Gate Drive Design Example 3

650V Half bridge gate driver design (Si8271GB-IS w/ Isolated DC/DC)
650V Gate Drive Design Example 4

650V Half bridge power stage design based on Si8261BAC (GS66508T Eval Board)

FB1: 15ohm@100MHz
D1: PMEG2010
D2: 6.8V 200mW Zener diode SOD323 (MMSZ5235BS-7-F)

Full schematics and Gerber files can be found at:
http://www.gansystems.com/gs66508t-evbhb.php
100V Gate Drive Example

LM5113-based half bridge power stage (GS61008P), VDRV=+5V
For half bridge-based application: Sync. Buck, motor drive/inverter

Recommended Gate resistor:
- R1/R3 = 4.7 -10Ω
- R2/R4 = 2Ω
Gate drive with negative gate bias

- For higher power and paralleled design, a small negative gate bias can be used to ensure safe turn-off.
- Use a zener to create negative gate drive rail: +6/-3V
PCB Layout

- Basics
- Design considerations
- Driver selection
- Design examples
- PCB Layout
- Switching Testing results
Impact of PCB Layout Parasitics

- \(C_{DG}\): drain-to-gate coupling capacitance
 - Capacitive noise coupling
 - Avoid overlapping between drain and gate drive copper pour/track

- \(L_{DRAIN}/L_{SOURCE}\): Power Loop Inductance:
 - Drain voltage overshoot
 - Turn-on/off drain voltage/current ringing
 - Minimize power loop length and place decoupling Cap close to power device

- \(L_{GATE}\): Gate loop inductance
 - Gate signal over/undershoot
 - Miller turn-on
 - Place driver close to GaN FET to minimize gate loop

- \(L_{CS}\): Common source Inductance:
 - Gate ringing / oscillation
 - Slow down switching
 - Critical for gate drive stability
 - Use kelvin connection to source

- \(L_{SOURCE}\)

- \(C_{DG}\)

- GaN FET

- Gate Drive Loop

- Power Loop
Layout best practice checklist

1. **Reduce common source inductance**
 - Reference gate return ground to the source pad using Kelvin connection. For GS6xxx8P and GS66508B package use “SS” pin.
 - Increase R_G or use ferrite bead on gate if gate oscillation is observed

2. **Optimize gate drive loop:**
 - Place driver close to GaN FET
 - Minimize the gate drive loop area and length

3. **Optimize power loop inductance:**
 - Use tight layout to minimize power loop length
 - Place decoupling capacitors as close as possible.

4. **Design for high dv/dt**
 - Minimize noise coupling due to PCB parasitic capacitance
 - Minimize overlapping between drain side power connection and gate drive signal track.

5. **Optimize thermal performance (B&P type package):**
 - Design for low thermal resistance using thermal vias and Cu. Pours
GaN Systems

GaNpx™ Optimized for Switching, Thermals, & PCB Layout

No Wire Bonds: ultra-low Inductance and much higher Manufacturing Reliability

Thick RDL & top Copper: extremely low R_{ON}

Embedded Package using high-T_G material

Overall design achieves optimized Thermals

- Thick Top Copper
- 180°C T_G material w/ multiple Via’s
- Fully-embedded Die with thick RDL
- 0.5°C/W (650V, 30A)
- Copper Pillars, no Wire Bonds; 500pH L_{SRC} & L_{DRN}
- *Other GaNpx™ are Pad-on-Top, or Pads on both Top & Bottom, for Modules or Heat Sinking*

Substrate (Heat Pad) Connect to Source

SS (Source Sense) for differential $V_{GS} \rightarrow$ minimizes Gate ringing at higher F_{SW}

Z-Axis Height 0.54mm
Bottom side GaNpx™ “P” & “B” Packages

- B package: create kelvin source on PCB
- P package: use SS pin
- Thermal pad connect to Source
- Use thermal vias for PCB cooling

For P package:
Always connect thermal pad to Source for optimum performance
Half bridge Layout Examples 1

GS66508P Half bridge – (Si8261)

Component Side

- Decoupling Capacitors
- Thermal Vias

Bottom Side

- Solder Mask pulled-back:
 - Improves thermal performance
 - Allows Heat Sink attachment

Spacing for HV isolation
GS66508P Half bridge daughter board (isolated gate drive)

Top (component) layer

- Isolation
- LMS114
- LS gate drive
- HS gate drive
- Decoupling Caps
- PGND

For LS drain current sensing (shorted)

VDC RTN, VOUT, VDC IN

Internal Layer 1

- GDGNDL
- GDGNDH
- VSW
- PGND
Half bridge Layout Examples 2

GS66508P Half bridge daughter board

Internal layer 2

Bottom layer
GaNpx™ “T” designed for higher-power Applications with Top-Side Heat-Sinking and lower Θ_{JA}
Top side cooled GaNpx™ “T” series packages

- low inductance package design with excellent thermal performance
- Dual gate (symmetric, internally connected) for easier layout
- Use the gate on driver side and keep the other floating, or
- Connect both gates for lower L_{gate} if layout allows
100V GS61008P Half bridge Layout
TI LM5133 half bridge gate driver
Paralleling

Optimum Gate drive layout for Paralleling

- GaNPx is easy to parallel thanks to its low package inductance
- Star connection and equal gate length if possible (minimize current imbalance caused by L_G)
- **Insert small distributed R_{G2} on each gate to minimize the gate current circulation and ringing among all paralleled devices.**
- Minimize Kelvin source connection inductance L_{KS} and equal gate return length if possible
- If needed, a small negative gate drive (+6/-3V) can be used to improve gate drive robustness
Centralized vs distributed R_g:

- Ltspice simulation shows that using series R_g on each device significantly reduces gate ringing and improve switching stability.

- Gate ringing/oscillation is caused by high-frequency current ringing among gates triggered by imbalanced current across L_c.

- R_1 current show no ringing in both cases.

Effect of series R_g on each gate in paralleling operation:

Scenario #1: Centralized
- $R_1 = 2\Omega$, $R_2 = R_3 = R_4 = 0$

Scenario #2: Series R_g
- $R_1 = 0$, $R_2 = R_3 = R_4 = 3\Omega$

- Significantly reduced gate ringing with 3Ω in series.

- Much reduced peak source voltage.

- Improved current balancing.

- Significantly reduced gate drive current.

- Significantly reduced gate ringing.

- Improved turn-on performance.

- Improved current balancing.
Paralleling for T package

T type package is designed for easy paralleling

- Symmetric gate design allows short and equal gate length
- Easy dual side placement with optimum layout
- Use individual gate resistors and star connection for gate drive

Device paralleling with dual side device placement and cooling

An example showing symmetric gate design with GaNPx T
Gate drive example for paralleling

Gate drive design for paralleling GS66516T

- Use a small distributed R_G on each gate
- $+6/-3V$ gate drive
Switching Test Results

- Basics
- Design considerations
- Driver selection
- Design examples
- PCB Layout

Switching Testing results
Double pulse Switching Test

- **Gate Drive design:**
 - GS66508T in half bridge
 - Si8610 plus LM5114
 - Isolated Gate Drive supply
 - $R_{ON} = 10 \Omega$ / $R_{OFF} = 2 \Omega$

- **Tested at 400V, 35A Hard-Switching**
Turn-off and Turn-on waveforms

Low inductance GaNPx T package achieves minimum V_{DS} overshoot and V_{GS} ringing (No kelvin source)

V_{DS}

$T_{\text{fall}} = 7.3\,\text{ns}$

$55\,\text{V/ns}$

V_{GS}

$V_{PK} = 428\,\text{V}$

$T_{\text{rise}} = 4.6\,\text{ns}$

$\sim90\,\text{V/ns}$

Turn-on (400V/30A)

Turn-off (400V/35A)
Gate drive waveforms

Gate Drive Switching Waveforms

- Inductive load pulse testing to verify gate driver stability over the current range
- Si8261BAC Gate driver (EVAL BOARD)
- $R_{ON}=25\Omega$ / $R_{OFF}=0\Omega$
- Use Ferrite bead 15R@100MHz
- No oscillation and minimum drain voltage overshoot
Clean waveforms – controlled Miller voltage

Clean turn-on and off switching waveforms with well controlled gate ringing and miller voltage

Hard Switching HS Turn-on (400V/25A)

- V\text{miller} \approx 1.0\text{V}
- V_{\text{GSL}}
- I_{\text{L}}
- V_{\text{DS}}
- V_{\text{DS}}\text{ tr} = 8.6\text{ns} (~47\text{V/ns})

Hard Switching HS Turn-off (400V/31A)

- V_{\text{DS}}\text{ tr} = 4.5\text{ns} (~90\text{V/ns})

Zoom Factor: 50 X
Zoom Position: 12.1\mu s
Zoom Factor: 50 X
Zoom Position: 13.8\mu s
Measuring Eon and Eoff

GS66508P E_{ON}/E_{OFF} measurement waveforms (half bridge)

- Current shunt: T&M research SDN-414-10

E_{ON} measurement waveform:

- Current shunt: T&M research SDN-414-10
- $E_{ON} = 93 \mu J$
- $R_{GON} = 10 \Omega$

E_{OFF} measurement waveform:

- $E_{OFF} = 49 \mu J$
- $R_{GOFF} = 10 \Omega$

400V/25A Turn-on switching loss energy $E_{ON} = 93 \mu J$

400V/25A Turn-off switching loss energy $E_{OFF} = 49 \mu J$