

TAS5722L SLOS946A -MAY 2016-REVISED DECEMBER 2016

TAS5722L 15-W Digital Input Mono Class-D Audio Amplifier

Features

- Mono Class-D Amplifier
 - 15 W @ 0.02% THD Continuous into 4 Ω, 17 V
- >90% Efficient Class-D Operation Eliminates Need for Heat Sinks
- Audio performance(PVDD = 16.5 V, RSPK = 4Ω)
 - Idle Channel Noise = 45 μVRMS (A-Wtd)
 - THD+N = 0.04% (at 1 W, 1 kHz)
 - SNR=106 dB A-Wtd (Ref.to THD+N = 1%)
- I²S input: 32 kHz to 96 kHz
- **TDM Audio Input**
 - Up to 8 Channels (32-bit, 96 kHz)
- I²C Control with 8 Selectable I²C Address
- **Power Supplies**
 - Power Amplifier: 4.5 V to 17 V
 - Digital I/O: 1.8 V
- Robustness features
 - Clock Error Detector, DC Offset and Short-Circuit Protection
 - Over Voltage, Under Voltage and Over **Temperature Protection**

2 Applications

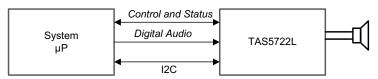
- Sub Woofers, Boom Boxes, Sound Bars, Building Automation
- Powered Speakers, Personal Computers
- Surround Sound Systems, 1-channel Audio

3 Description

The TAS5722L device is a high-efficiency mono Class-D audio power amplifier which includes integrated digital output clipper, several gain options, and a wide power supply operating range. It operates with a nominal supply voltage from 4.5 V to 17 VDC.

TAS5722L is optimized for high transient power capability to utilize the dynamic power headroom of small loudspeakers. It is capable of delivering more than 15 W of continuous power into a 4- Ω speaker.

The digital time division multiplexed (TDM) interface enables up to 8 devices to share the same bus.


The TAS5722L device is available in a 4 mm x 4 mm, 32-pin QFN package.

Device Information (1)

DEVICE NAME	PACKAGE	BODY SIZE				
TAS5722L	QFN (32)	4 mm × 4 mm				

For all available packages, see the orderable addendum at the end of the document.

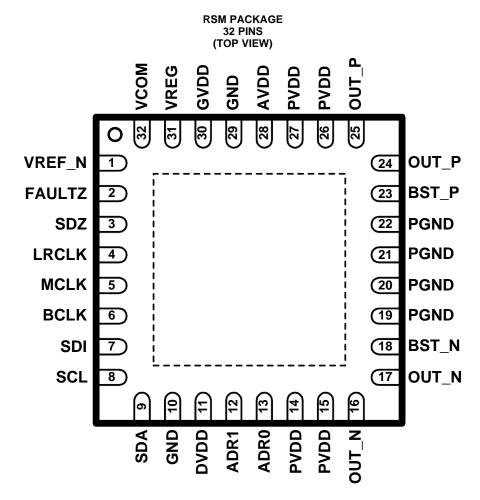
Simplified Schematic

Copyright © 2016, Texas Instruments Incorporated

Table of Contents

1	Features 1	7.3 Feature Description	17
2	Applications 1	7.4 Device Functional Modes	29
3	Description 1	7.5 Register Maps	31
4	Revision History2	8 Applications and Implementation	39
5	Pin Configuration and Functions	8.1 Application Information	39
	G	8.2 Typical Application	39
0	Specifications 5	9 Power Supply Recommendations	
	6.1 Absolute Maximum Ratings	10 Layout	
	6.2 ESD Ratings	10.1 Layout Guidelines	
	6.4 Thermal Information	10.2 Layout Example	
	6.5 Electrical Characteristics	11 Device and Documentation Support	
	6.6 Timing Requirements	11.1 Trademarks	
	6.7 Typical Characteristics	11.2 Electrostatic Discharge Caution	
7	Detailed Description	11.3 Glossary	
′	7.1 Overview	12 Mechanical, Packaging, and Orderable	
		Information	44
	7.2 Functional Block Diagram	12.1 Package Option Addendum	
		.	

4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (May 2016) to Revision A

Page

5 Pin Configuration and Functions

Pin Functions⁽¹⁾

PI	N	I/O/P ⁽²⁾	DESCRIPTION
NAME	NO.	I/O/F · /	DESCRIPTION
ADR1	12	I	1^2 C address inputs. Each pin can detect a short to DVDD, a short to GND, a 22-k Ω connection to GND
ADR0	13	I	and a 22-k Ω connection to DVDD.
AVDD	28	Р	Analog power supply input. Connect directly to PVDD.
BCLK	6	I	TDM Interface serial bit clock.
BST_N	18	Р	Class-D Amplifier negative bootstrap. Connect a capacitor between BST_N and OUT_N.
BST_P	23	Р	Class-D Amplifier positive bootstrap. Connect a capacitor between BST_P and OUT_P.
DVDD	11	Р	Digital power supply. Connect to 1.8-V supply with external decoupling capacitor.
FAULTZ	2	0	Open drain active low fault flag. Pull up on PCB with resistor to DVDD.
GND	10	Р	Ground. Connect to PCB ground plane.
GND	29	Г	Ground. Connect to PCB ground plane.
GVDD	30	0	Class-D amplifier gate drive regulator output. Connect decoupling cap to PCB ground plane.
LRCLK	4	I	TDM interface left/right clock.
MCLK	5	I	Device master clock.

⁽¹⁾ Connect exposed thermal pad to PCB ground plane

⁽²⁾ I = input, O = output, P = power, I/O = bi-directional

Pin Functions⁽¹⁾ (continued)

PI	N	I/O/P ⁽²⁾	DESCRIPTION			
NAME	NO.	., 0,1				
	19					
PGND	20	Р	Power ground. Connect to PCB ground plane.			
TOND	21	'	ower ground. Connect to 1 GB ground plane.			
	22					
	14					
PVDD	15	Р	Class-D amplifier power supply input. Connect to PVDD supply and decouple externally.			
I VDD	26	'	Class-D amplifier power supply input. Confident to 1 VDD supply and decouple externally.			
	27					
OUT_N	16	0	Class-D amplifier negative output.			
001_N	17		Class-D amplifier negative output.			
OUT_P	24	0	Class-D amplifier positive output.			
001_1	25	U	Class-D amplifier positive output.			
SCL	8	1	I^2 C clock Input. Pull up on PCB with a 2.4-k Ω resistor.			
SDA	9	I/O	l ² C bi-directional data. Pull up on PCB with a 2.4-kΩ resistor.			
SDI	7	1	TDM interface data input.			
SDZ	3	1	Active low shutdown signal. Assert low to hold device inactive.			
VCOM	32	0	Common mode reference output. Connect decoupling capacitor to the VREF_N pin.			
VREF_N	1	Р	Negative reference for analog. Connect to VCOM and VREG capacitor negative pins.			
VREG	31	0	Analog regulator output. Connect decoupling capacitor to the VREF_N pin.			

Product Folder Links: TAS5722L

Submit Documentation Feedback

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽²⁾	PVDD, AVDD	-0.3	20	V
	Supply voltage V	DVDD	-0.3	2.25	
	Digital input voltage	Digital inputs referenced to DVDD supply	-0.5	V _{DVDD} + 0.5	V
T _A	Ambient operating temperature		-25	85	°C
T _{stg}	Storage temperature range		-40	125	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)	±2000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	±750	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	TYP	MAX	UNIT
PVDD AVDD	Power supply voltage	4.5		17	V
DVDD	Power supply voltage	1.65	1.8	2	V
$V_{IH(DR)}$	High-level digital input voltage		V_{DVDD}		V
$V_{IL(DR)}$	Low-level digital input voltage		0		V
R _{SPK}	Minimum speaker load	3.2			Ω
T _A	Operating free-air temperature	-25		85	°C
T_{J}	Operating junction temperature	-25		150	°C

⁽²⁾ All voltages are with respect to network ground pin.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

		TAS5722L	
	THERMAL METRIC ⁽¹⁾	RSM (QFN)	UNIT
		32 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance (2)	37.3	
$R_{\theta JCtop}$	Junction-to-case (top) thermal resistance (3)	30.4	
$R_{\theta JB}$	Junction-to-board thermal resistance (4)	7.9	°C/\/
ΨЈТ	Junction-to-top characterization parameter (5)	0.4	°C/W
ΨЈВ	Junction-to-board characterization parameter (6)	7.7	
$R_{\theta JCbot}$	Junction-to-case (bottom) thermal resistance (7)	2.5	

- (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
- The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
- The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
- (5) The junction-to-top characterization parameter, ψ, IT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining $R_{\theta JA}$, using a procedure described in JESD51-2a (sections 6 and 7). The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted
- from the simulation data for obtaining $R_{\theta JA}$, using a procedure described in JESD51-2a (sections 6 and 7). The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

6.5 Electrical Characteristics

 V_{PVDD} = 16.5 V, V_{DVDD} = 1.8 V, R_L = 4 Ω + 33 μ H, f_{PWM} = 576 kHz, 22-Hz to 20- kHz Bandwidth, AP AUX-0025 + AES17 Filter (unless otherwise noted)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
DIGITAL INP	UT AND OUTPUT					
V_{IH}	High-level digital input logic voltage threshold	All digital pins	70%			
V _{IL}	Low-level digital input logic voltage threshold	All digital pins			30%	
I _{IH}	Input logic "high" leakage for digital inputs	All digital pins, excluding SDZ			15	μΑ
I _{IL}	Input logic "low" leakage for digital inputs	All digital pins, excluding SDZ			-15	μΑ
I _{IH(SDZ)}	Input logic "high" leakage for SDZ inputs	SDZ			1	μΑ
I _{IL(SDZ)}	Input logic "low" leakage for SDZ inputs	SDZ			-1	μΑ
V _{OL}	Output logic "low" for FAULTZ open drain Output	I _{OL} = -2 mA			$V_{\rm DVDD}$	
C _{IN}	Input capacitance for digital inputs	All digital pins		5		pF
MASTER CLO	эск					
D _{MCLK}	Allowable MCLK duty cycle		45%	50%	55%	
	MCLK input frequency				25	MHz
f _{MCLK}	Supported single-speed MCLK frequencies	values: 64, 128, 256 and 512	2.8		24.6	MHz
	Supported double-speed MCLK frequencies values: 64, 128 and 256 5.6 2	24.6	MHz			
SERIAL AUD	IO PORT					
D_{BCLK}	Allowable BCLK duty cycle		45%	50%	55%	
	BCLK input frequency				50% 55% 25	MHz
f _{BCLK}	Supported single-speed BCLK frequencies	values: 64, 96, 128, 192 and 256	2.8		12.3	MHz
	Supported double-speed BCLK frequencies	values: 64, 96, 128, 192 and 256	5.6		24.6	MHz
£	Supported single-speed input sample rates	values: 44.1 and 48	44.1		48	kHz
f _S	Supported double-speed input sample rates	values: 88.2 and 96	88.2		96	kHz
I ² C CONTRO	L PORT					
C _{L(I2C)}	Allowable load capacitance for each I ² C Line				400	pF
f _{SCL}	SCL frequency	No wait states			400	kHz
PROTECTION	N					
OTE _{THRESH}	Over-temperature error (OTE) threshold			150		°C
OTE _{HYST}	Over-temperature error (OTE) hysteresis			15		°C
OCE _{THRESH}	overcurrent error (OCE) threshold	V _{PVDD} = 16.5 V, T _A = 25°C		5		Α
DCE _{THRESH}	DC error (DCE) threshold	V _{PVDD} = 16.5V, TA = 25°C		2.6		V

Electrical Characteristics (continued)

 V_{PVDD} = 16.5 V, V_{DVDD} = 1.8 V, R_L = 4 Ω + 33 μ H, f_{PWM} = 576 kHz, 22-Hz to 20- kHz Bandwidth, AP AUX-0025 + AES17 Filter (unless otherwise noted)

	PARAMETER	CONDITIONS	MIN TYP	MAX	UNIT
AMPLIFIER	PERFORMANCE				
		R_L = 8 Ω +33 μ H, 1% THD+N, V_{PVDD} = 12 V, f_{IN} = 1 kHz	8.2		
P _{OUT}	Continuous average power	R_L = 8 $\Omega + 33~\mu H,~1\%$ THD+N, V_{PVDD} = 16.5 V, f_{IN} = 1 kHz	15.25		W
1 001	Continuous average power	R_L = 4 $\Omega + 33~\mu H,~1\%$ THD+N, V_{PVDD} = 12 V, f_{IN} = 1 kHz	14.25		VV
		R_L = 4 $\Omega + 33~\mu H,~1\%$ THD+N, V_{PVDD} = 16.5 V, f_{IN} = 1 kHz	16		
		R_L = 8 Ω+33 μH, V_{PVDD} = 12 V, P_{OUT} = 4.25 W, 20 Hz ≤ f_{IN} ≤ 20 kHz	0.05%		
THD+N	Total harmonic distortion plus	R_L = 8 Ω+33 μH, V_{PVDD} = 16.5 V, P_{OUT} = 4.25 W, 20 Hz ≤ f_{IN} ≤ 20 kHz	0.05%		
ПОТІ	noise	R_L = 4 Ω+33 μH, V_{PVDD} = 12 V, P_{OUT} = 8.25 W, 20 Hz ≤ f_{IN} ≤ 20 kHz	0.05%		
		R_L = 4 Ω+33 μH, V_{PVDD} = 16.5 V, P_{OUT} = 8.25 W, 20 Hz ≤ f_{IN} ≤ 20 kHz	0.06%		
P _{EFF}	Power efficiency	R_L = 8 Ω +33 μ H, V_{PVDD} = 16.5 V, P_{OUT} = 10 W	90%		
FEFF	rower emclericy	R_L = 4 Ω +33 μ H, V_{PVDD} = 16.5 V, P_{OUT} = 14 W	87%		
V_N	Integrated noise floor voltage	A-Weighted, Gain = 20.7dBV, R_L = 8 Ω +33 μH	50		μVrms
KCP	Click-pop performance	Into and out of HW reset, into and out of SW shutdown, when SAIF clocks are applied or removed and during power rail cycling. Measured using Maxim click-pop measurement method.	-60		dB
Ф СС	Channel-to-channel phase shift	Output phase shift between multiple devices from 20 Hz to 20 kHz. Across all sample frequencies and SAIF operating modes.	0.2		deg
		AC, $5.5 \text{ V} \le \text{V}_{\text{PVDD}} \le 16.5 \text{ V}$, DVDD = 1.8 V+200 mV _{P-P} , f_{RIPPLE} from 20 Hz to 20 kHz	69		
PSRR	Power supply rejection ratio	AC, V_{PVDD} = 16.5 V+200 mV _{P-P} , f_{RIPPLE} from 20 Hz to 5 kHz	64		dB
		AC, V_{PVDD} = 16.5 V+100 mV _{P-P} , f_{RIPPLE} from 5 kHz to 20 kHz	60		
AV_{00}		ANALOG_GAIN[1:0] register bits set to "00"	19.2		dBV
AV ₀₁	Amplifier analog gain (1)	ANALOG_GAIN[1:0] register bits set to "01"	20.7		dBV
AV ₁₀	Amplition analog gain	ANALOG_GAIN[1:0] register bits set to "10"	23.5		dBV
AV ₁₁		ANALOG_GAIN[1:0] register bits set to "11"	26.3		dBV
AV _{ERROR}	Amplifier analog gain error			±0.15	dB
V _{OS}	DC output offset voltage	Measured between OUTP and OUTN	1.5		mV
A _{RIPPLE}	Frequency response	Maximum deviation above or below passband gain.	±0.15		dB
f_{LP}	-3 dB Output Cutoff Frequency		0.47×f _S		Hz
R _{DS(on)FET}	Power stage FET on-resistance	T _A = 25°C	120		mΩ

⁽¹⁾ When PVDD is less than 5.5 V, the voltage regulator that operates the analog circuitry does not have enough headroom to maintain the nominal 5.4-V internal voltage. The lack of headroom causes a direct reduction in gain (approximately –0.8 dB at 5 V and –1.74 dB at 4.5 V), but the device functions properly down to V_{PVDD} = 4.5 V. For operation below 5.5V, the VREG_LVL bit (register 0x14, bit 2) can be set high, which reduces the internal voltage regulator output voltage to prevent variation in gain. When the bit is set high, all gain settings are reduced by 3dB.

Electrical Characteristics (continued)

 $V_{PVDD} = 16.5 \text{ V}, V_{DVDD} = 1.8 \text{ V}, R_L = 4 \Omega + 33 \mu\text{H}, f_{PWM} = 576 \text{ kHz}, 22\text{-Hz to } 20\text{- kHz Bandwidth}, AP AUX-0025 + AES17 \text{ Filter (unless otherwise noted)}$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
R _{DS(on)TOT}	Power stage total on-resistance (FET+bond+package)	T _A = 25°C		150		mΩ
I _{P-P}	Peak output current	T _A = 25°C		5		Α
f _{PWM}	PWM switching frequency	values: 6, 8, 10, 12, 14, 16, 20 and 24	6		24	MHz

6.6 Timing Requirements

			MIN	NOM	MAX	UNIT
t _{ACTIVE}	Shutdown to Active Time	From deassertion of SDZ (both pin and I ² C register bit) until the Class-D amplifier begins switching.		25		ms
t _{WAKE}	Wake Time	From the deassertion of SLEEP until the Class-D amplifier starts switching.		1		ms
t _{SLEEP}	Sleep Time	From the assertion of SLEEP until the Class-D amplifier stops switching.		t _{vrmp} +1		ms
t _{MUTE}	Play to Mute Time	From the assertion of MUTE until the volume has ramped to the minimum.		t_{vrmp}		ms
t _{PLAY}	Un-Mute to Play Time	From the deassertion of MUTE until the volume has returned to its current setting.		t_{vrmp}		ms
t _{SD}	Active to Shutdown Time	From the assertion of SDZ (pin or I ² C register bit) until the Class-D amplifier stops switching.		t _{vrmp} +1		ms

Timing Requirements (continued)

			MIN	NOM	MAX	UNIT
SERIAL AU	DIO PORT					
t _{H_L}	Time High/Low, BCLK, LRCLK, SDI inputs		10			ns
		Input t _{RISE} ≤ 1 ns, input t _{FALL} ≤ 1 ns	5			
t _{SU} / t _{HLD}	Setup and hold time. LRCLK, SDI input to BCLK edge.	Input t _{RISE} ≤ 4 ns, input t _{FALL} ≤ 4ns	8			ns
	input to DoLit dago.	Input t _{RISE} ≤ 8 ns, input t _{FALL} ≤ 8ns	12			
t _{RISE}	Rise-time BCLK, LRCLK, SDI inputs				8	ns
t _{FALL}	Fall-time BCLK, LRCLK, SDI inputs				8	ns
I ² C CONTRO	OL PORT		*		*	
t _{BUF}	Bus free time between start and stop conditions		1.3			μs
t _{H1(I2C)}	Hold Time, SCL to SDA		0			ns
t _{H2(I2C)}	Hold Time, start condition to SCL		0.6			μs
t _{START(I2C)}	I2C Startup Time after DVDD Power On Reset				12	ms
t _{R(I2C)}	Rise Time, SCL and SDA				300	ns
t _{F(I2C)}	Fall Time, SCL and SDA				300	ns
t _{SU1(I2C)}	Setup, SDA to SCL		100			ns
t _{SU2(I2C)}	Setup, SCL to start condition		0.6			μs
t _{SU3(I2C)}	Setup, SCL to stop condition		0.6			μs
$t_{W(H)}$	Required pulse duration, SCL "HIGH"		0.6			μs
$t_{W(L)}$	Required pulse duration, SCL "LOW"		1.3			μs
PROTECTIO	ON					
	American facilitation and marks to	DC detect error		650		ms
t _{FAULTZ}	Amplifier fault time-out period	OTE or OCE fault		1.3		S

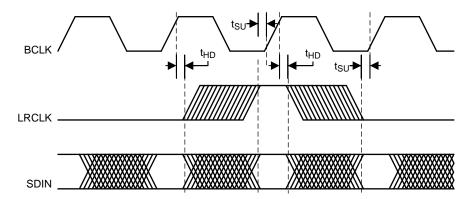


Figure 1. SAIF Timing

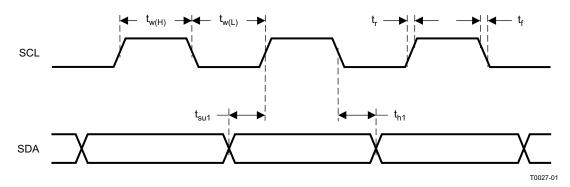


Figure 2. SCL and SDA Timing

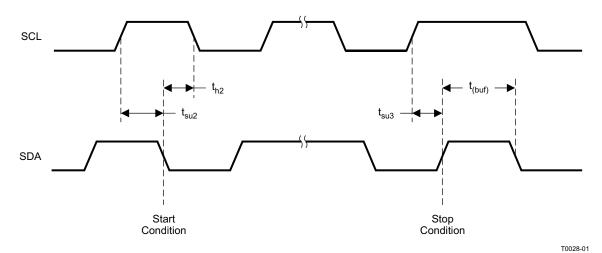
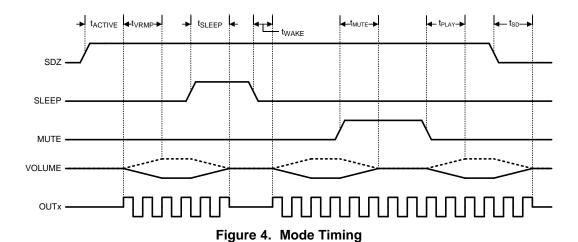
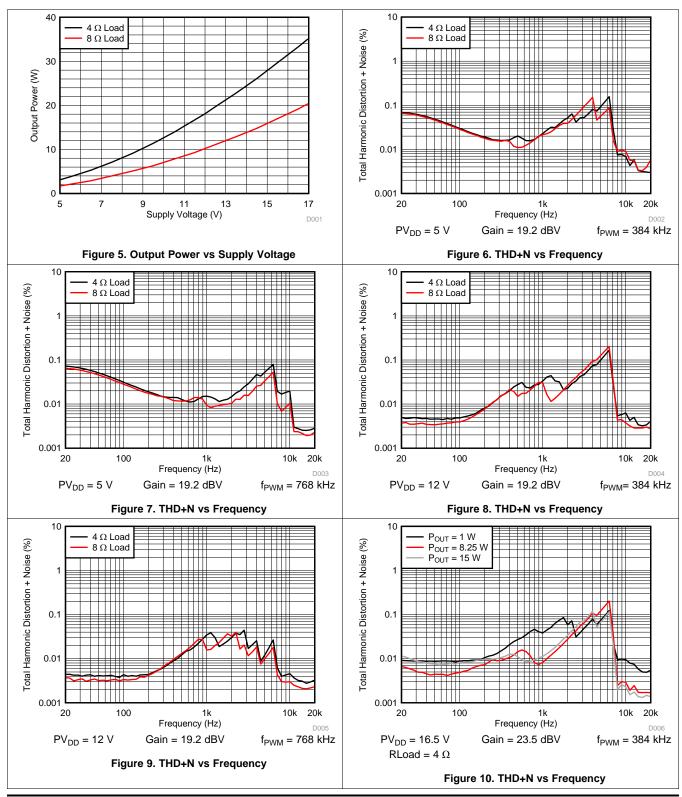
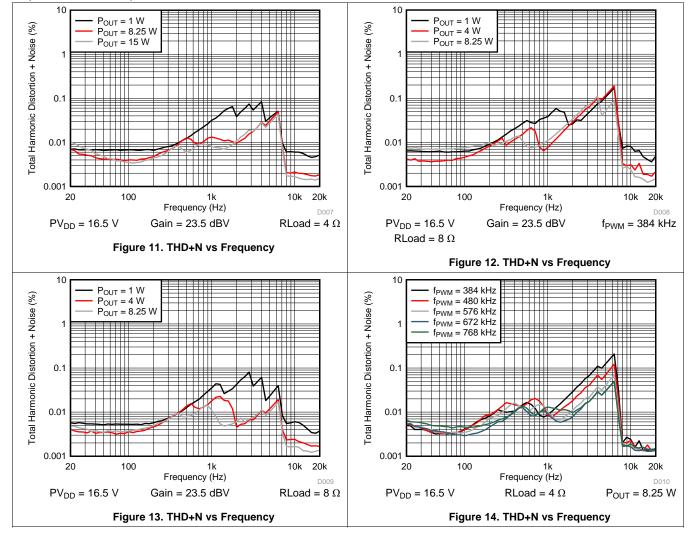



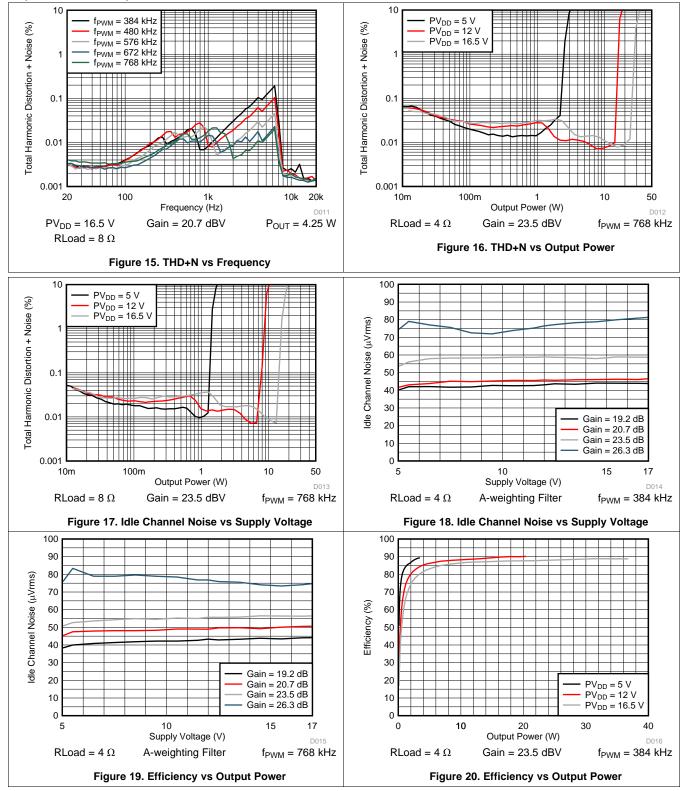
Figure 3. Start and Stop Conditions Timing



Copyright © 2016, Texas Instruments Incorporated

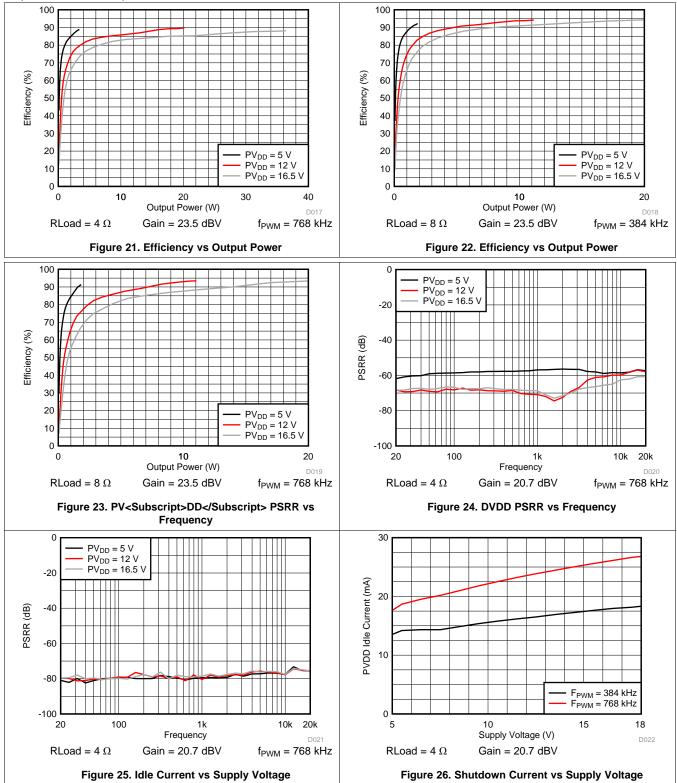

6.7 Typical Characteristics

 T_A = 25°C, V_{DVDD} = 1.8 V, f_{IN} = 1 kHz, f_{PWM} 768 kHz, f_s = 48 kHz, Gain = 20.7 dBV, SDZ = 1, Measured using TAS5722LEVM with an Audio Precision SYS-2722 and AUX-0025 filter with 22-Hz-to-20- kHz un-weighted bandwidth using the 20- kHz pre-analyzer filter + 20- kHz brick-wall filter (unless otherwise specified). 33 μ H inductors were added in series with 4 Ω loads and 68 μ H inductors were placed in series with 8 Ω loads due to the ferrite bead filters.



 $T_A = 25^{\circ}C$, $V_{DVDD} = 1.8$ V, $f_{IN} = 1$ kHz, f_{PWM} 768 kHz, $f_s = 48$ kHz, Gain = 20.7 dBV, SDZ = 1, Measured using TAS5722LEVM with an Audio Precision SYS-2722 and AUX-0025 filter with 22-Hz-to-20- kHz un-weighted bandwidth using the 20- kHz pre-analyzer filter + 20- kHz brick-wall filter (unless otherwise specified). 33 μ H inductors were added in series with 4 Ω loads and 68 μ H inductors were placed in series with 8 Ω loads due to the ferrite bead filters.

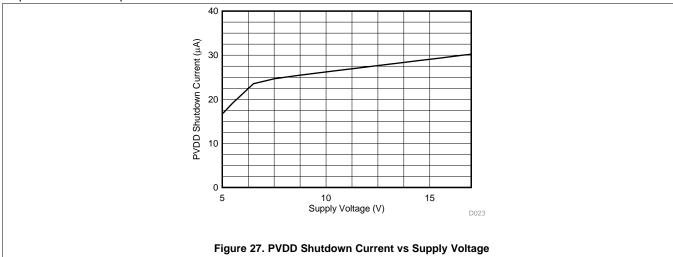
 T_A = 25°C, V_{DVDD} = 1.8 V, f_{IN} = 1 kHz, f_{PWM} 768 kHz, f_s = 48 kHz, Gain = 20.7 dBV, SDZ = 1, Measured using TAS5722LEVM with an Audio Precision SYS-2722 and AUX-0025 filter with 22-Hz-to-20- kHz un-weighted bandwidth using the 20- kHz pre-analyzer filter + 20- kHz brick-wall filter (unless otherwise specified). 33 μ H inductors were added in series with 4 Ω loads and 68 μ H inductors were placed in series with 8 Ω loads due to the ferrite bead filters.



Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

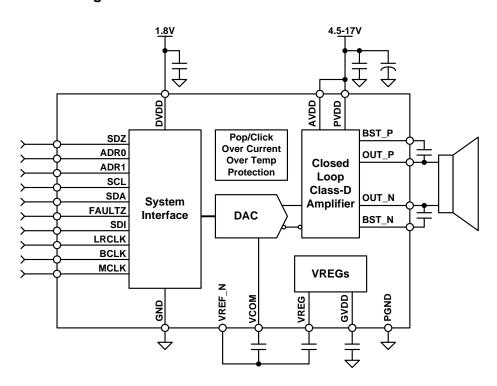
 $T_A = 25^{\circ}\text{C}$, $V_{\text{DVDD}} = 1.8 \text{ V}$, $f_{\text{IN}} = 1 \text{ kHz}$, f_{PWM} 768 kHz, $f_s = 48 \text{ kHz}$, $G_{\text{ain}} = 20.7 \text{ dBV}$, SDZ = 1, Measured using TAS5722LEVM with an Audio Precision SYS-2722 and AUX-0025 filter with 22-Hz-to-20- kHz un-weighted bandwidth using the 20- kHz pre-analyzer filter + 20- kHz brick-wall filter (unless otherwise specified). 33 μ H inductors were added in series with 4 Ω loads and 68 μ H inductors were placed in series with 8 Ω loads due to the ferrite bead filters.



Copyright © 2016, Texas Instruments Incorporated

Submit Documentation Feedback

 T_A = 25°C, V_{DVDD} = 1.8 V, f_{IN} = 1 kHz, f_{PWM} 768 kHz, f_s = 48 kHz, Gain = 20.7 dBV, SDZ = 1, Measured using TAS5722LEVM with an Audio Precision SYS-2722 and AUX-0025 filter with 22-Hz-to-20- kHz un-weighted bandwidth using the 20- kHz pre-analyzer filter + 20- kHz brick-wall filter (unless otherwise specified). 33 μ H inductors were added in series with 4 Ω loads and 68 μ H inductors were placed in series with 8 Ω loads due to the ferrite bead filters.



7 Detailed Description

7.1 Overview

The TAS5722L device is a high-efficiency mono Class-D audio power amplifier optimized for high-transient power capability to utilize the dynamic power headroom of small loudspeakers. The TAS5722L device is capable of delivering more than 14 W continuously into a $4-\Omega$ speaker.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Adjustable I²C Address

The TAS5722L device has two address pins, which allow up to 8 I^2C addressable devices to share a common TDM bus. Table 1 lists each I^2C Device ID setting.

NOTE

The I^2C Device ID is the 7 most significant bits of the 8-bit address transaction on the bus (with the read/write bit being the least significant bit). For example, a Device ID of 0x6C would be read as 0xD8 when the read/write bit is 0.

Table 1. I²C Device Identifier (ID) Generation

ADR1	ADR0	I2C_DEV_ID	DEFAULT TDM SLOT
	Short to GND	0x6C	0
Short to GND	22-k Ω to GND	0x6D	1
Short to GND	22-kΩ to DVDD	0x6E	2
	Short to DVDD	0x6F	3

ADR1	ADR0	I2C_DEV_ID	DEFAULT TDM SLOT
22-kΩ to GND	Short to GND	0x70	4
	22-k Ω to GND	0x71	5
	22-kΩ to DVDD	0x72	6
	Short to DVDD	0x73	7

Use a 22-k Ω resistor with a 5% (or better) tolerance as a pull-up or pull-down resistor. By default, the device uses the TDM time slot equal to its offset from the base I²C Device ID (see Table 1). The TDM slot can also be manually configured by setting the TDM_CFG_SRC bit high (bit 6, reg 0x02) and programming the TDM SLOT SELECT[3:0] bits to the desired slot (bits 0-3, reg 0x03).

For 2-channel, I²S operation, TDM slot 0 and 1 correspond to the right and left channels respectively. For left and right justified formats, TDM slot 0 and 1 correspond to left and right channels respectively.

7.3.2 I²C Interface

The TAS5722L device has a bidirectional I²C interface that is compatible with the Inter-Integrated Circuit (I²C) bus protocol and supports both 100 kHz and 400 kHz data transfer rates. The slave-only device does not support a multi-master bus environment or wait-state insertion. The control interface is used to program the registers of the device and to read device status.

The I²C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a system. Data is transferred on the bus serially, one bit at a time. The address and data can be transferred in byte (8-bit) format, with the most-significant bit (MSB) transferred first. In addition, each byte transferred on the bus is acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the master device driving a start condition on the bus and ends with the master device driving a stop condition on the bus. The bus uses transitions on the data pin (SDA) while the clock (SCL) is "HIGH" to indicate start and stop conditions. A high-to-low transition on SDA indicates a start and a low-to-high transition indicates a stop. Normal data-bit transitions must occur within the low time of the clock period. These conditions are shown in Figure 28. The master generates the 7-bit slave address and the read/write (R/W) bit to open communication with another device and then waits for an acknowledge condition. The TAS5722L device holds SDA "LOW" during the acknowledge clock period to indicate an acknowledgment. When the hold occurs, the master transmits the next byte of the sequence. All compatible devices share the same signals via a bidirectional bus using a wired-AND connection. An external pull-up resistor must be used for the SDA and SCL signals to set the "HIGH" level for the bus.

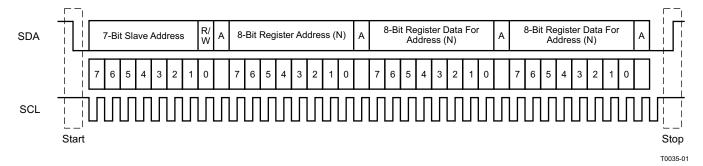


Figure 28. Typical I²C Timing Sequence

The number of bytes that can be transmitted between start and stop conditions is unlimited. When the last word transfers, the master generates a stop condition to release the bus. A generic data transfer sequence is shown in Figure 28.

7.3.2.1 Writing to the f^2 C Interface

As shown Figure 29, a single-byte data-write transfer begins with the master device transmitting a start condition followed by the I²C bit and the read/write bit. The read/write bit determines the direction of the data transfer. For a data-write transfer, the read/write bit is a 0. After receiving the correct I²C bit and the read/write bit, the TAS5722L device responds with an acknowledge bit. Next, the master transmits the address byte corresponding to the TAS5722L device register being accessed. After receiving the address byte, the TAS5722L device again responds with an acknowledge bit. Next, the master device transmits the data byte to be written to the memory address being accessed. After receiving the data byte, the TAS5722L device again responds with an acknowledge bit. Finally, the master device transmits a stop condition to complete the single-byte data-write transfer.

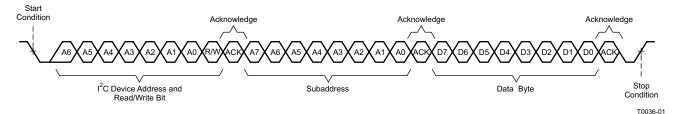


Figure 29. Single Byte Write Transfer Timing

A multi-byte data write transfer is identical to a single-byte data write transfer except that multiple data bytes are transmitted as shown in Figure 30. After receiving each data byte, the TAS5722L device responds with an acknowledge bit. Sequential data bytes are written to sequential addresses.

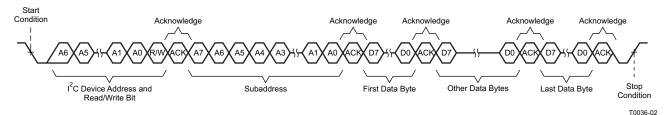


Figure 30. Multi-Byte Write Transfer Timing

7.3.2.2 Reading from the PC Interface

As shown in Figure 30, a data-read transfer begins with the master device transmitting a start condition, followed by the I² device address and the read/write bit. For the data read transfer, both a write followed by a read are actually done. Initially, a write is done to transfer the address byte of the internal register to be read. As a result, the read/write bit becomes a 0. After receiving the TAS5722L device address and the read/write bit, TAS5722L device responds with an acknowledge bit. In addition, after sending the internal memory address byte or bytes, the master device transmits another start condition followed by the TAS5722L device address and the read/write bit again. Then the read/write bit becomes a 1, indicating a read transfer. After receiving the address and the read/write bit, the TAS5722L device again responds with an acknowledge bit. Next, the TAS5722L device transmits the data byte from the register being read. After receiving the data byte, the master device transmits a not-acknowledge followed by a stop condition to complete the data-read transfer.

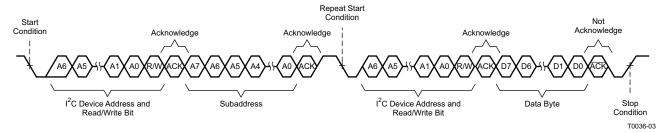


Figure 31. Single Byte Read Transfer Timing

A multiple-byte data read transfer is identical to a single-byte data read transfer except that multiple data bytes are transmitted by the TAS5722L to the master device as shown Figure 32. Except for the last data byte, the master device responds with an acknowledge bit after receiving each data byte.

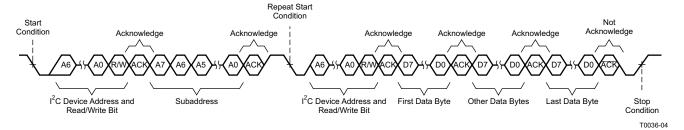


Figure 32. Multi-Byte Read Transfer Timing

7.3.3 Serial Audio Interface (SAIF)

The TAS5722L device SAIF supports a variety of standard stereo serial audio formats including I²S, Left Justified and Right Justified. It also supports a time division multiplexed (TDM) format that is capable of transporting up to 8 channels of audio data on a single bus. LRCLK and SDIN are sampled on the rising edge of BCLK.

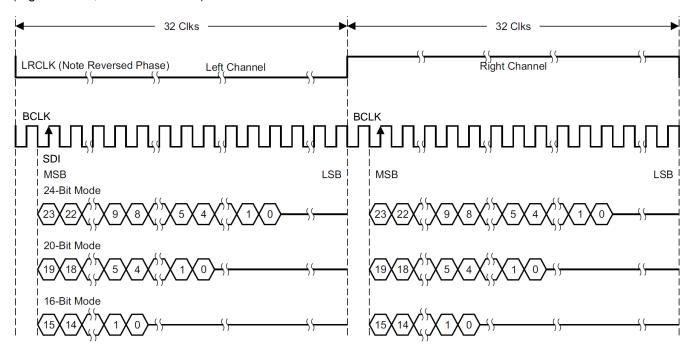
For the stereo formats (I²S, Left Justified and Right Justified), the TAS5722L device supports BCLK to LRCLK ratios of 32, 48 and 64. If the BCLK to LRCLK ratio is 64, MCLK can be derived from BCLK internally. The MCLK_PIN_CFG bit (register 0x13, bit 1) controls the source of MCLK and by default derives MCLK from an internal version of BCLK. In this case connect the MCLK pin to a valid logic low value.

If the BCLK to LRCLK ratio is 32 or 48, MCLK must be externally driven. The valid MCLK to LRCLK ratios are 64, 128, 256 and 512 as long as the frequency of MCLK is 37 MHz or less. If the BCLK to LRCLK ratio is 64, it is also acceptable to connect BCLK to MCLK and set the MCLK_PIN_CFG bit high.

For TDM operation, the TAS5722L device supports 4 and 8 times slots at both single speed (44.1 kHz or 48 kHz) and double speed (88.2/96 kHz) sample rates. Table 2 lists the supported TDM frame configurations. For 16 and 32-bits per TDM slot, MCLK can be connected to BCLK internally by leaving the MCLK_PIN_CFG bit (register 0x13, bit 1) to its default value of 0. For 24-bit time slot operation, MCLK must be externally driven with a valid ratio of 64, 128, 256 or 512 as long as MCLK is less than 37 MHz.

SAMPLE RATE (kHz)	TDM SLOTS	BITS PER TDM SLOT	SUPPORTED	MCLK = BCLK	TDM_SLOT_16B
		16	Yes	Yes	1
	4	24	Yes	No	0
44.1/48		32	Yes	Yes	0
44.1/46	8	16	Yes	Yes	1
		24	Yes	No	0
		32	Yes	Yes	0
	4	16	Yes	Yes	1
		24	Yes	No	0
00.0/06		32	Yes	Yes	0
88.2/96		16	Yes	Yes	1
	8	24	Yes	No	0
		32	Yes	Yes	0

Table 2. TDM Frame Configurations


If 16-bit time slots are utilized, set the TDM_SLOT_16B register bit (register 0x13, bit 2) to a 1. The SAIF auto detects 24-bit vs. 32-bit time slot widths if TDM_SLOT_16B is set to a 0.

The TAS5722L device selects the channel for playback based on either its I^2C base address offset or based on a dedicated time slot selection register. See the *Adjustable f^2C Address* section for more information.

7.3.3.1 Stereo & Format Timing

illustrates the timing of the stereo I^2S format with 64 BCLK per LRCLK. Two's complement data is transmitted MSB to LSB with the left channel word beginning one BCLK after the falling edge of LRCLK and the right channel beginning one BCLK after the rising edge of LRCLK. Since data is MSB aligned to the beginning of word transmission, data precision does not need to be configured. Set the SAIF_FORMAT[2:0] register bits to I^2S (register 0x02, bits 2:0 = 3'b100).

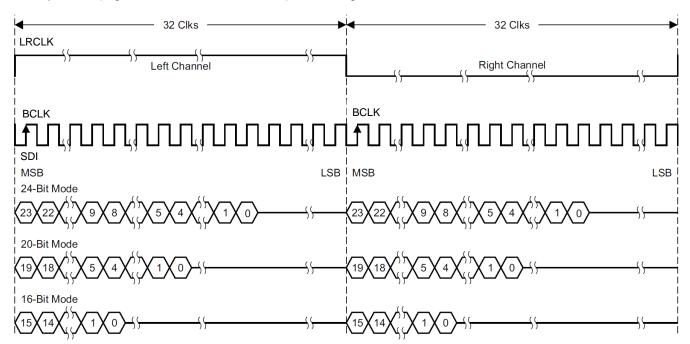

A. Data presented in two's-complement form with most significant bit (MSB) first.

Figure 33. I²S 64-f_S Format

7.3.3.2 Stereo Left-Justified Format Timing

The stereo left justified format is very similar to the I^2S format timing, except the data word begins transmission at the same cycle that LRCLK toggles (when it is shifted by one bit from I^2S). The phase of LRCLK is also opposite of I^2S . The left channel begins transmission when LRCLK transitions from low to high and the right channel begins transmission when LRCLK transitions from high-to-low. Set the SAIF_FORMAT[2:0] register bits to left-justified (register 0x02, bits 2:0 = 3'b101). The timing is illustrated in .

A. Data presented in two's-complement form with most significant bit (MSB) first.

Figure 34. Left-Justified 64-f_S Format

7.3.3.3 Stereo Right-Justified Format Timing

The stereo right justified format aligns the LSB of left channel data to the high to low transition of LRCLK and the LSB of the right channel data to the low to high transition of LRCLK. To insure data is received correctly, the SAIF must be configured for the proper data precision. The TAS5722L supports 16, 18, 20 and 24-bit data precision in right justified format. Set the SAIF_FORMAT[2:0] register bits (register 0x02, bits 2:0) to the appropriate right-justified setting based on bit precision (value = 3'b000 for 24-bit, 3'b001 for 20-bit, 3'b010 for 18-bit and 3'b011 for 16-bit). The timing is illustrated in .

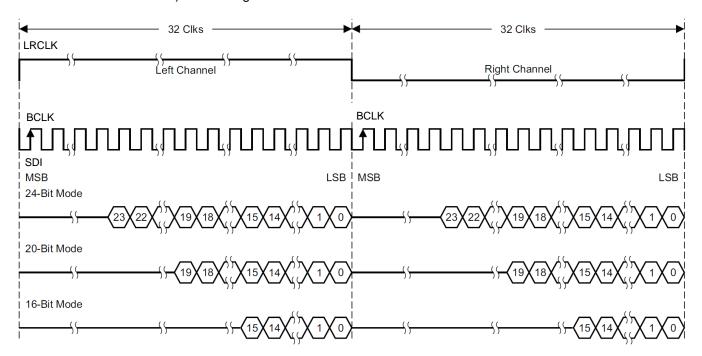


Figure 35. Right-Justified 64-f_S Format

7.3.3.4 TDM Format Timing

A TDM frame begins with the low to high transition of LRCLK. As long as LRCLK is high for at least one BCLK period and low for one BCLK period, duty cycle is irrelevant. The SAIF automatically detects the number of time slots as long as valid BCLK to LRCLK ratios are utilized (see SAIF introduction above).

For I^2S aligned TDM operation (when time slot 0 begins, one clock cycle after the low to high transition of LRCLK), set SAIF_FORMAT[2:0] register bits to I^2S (register 0x02, bits 2:0 = 3'b100). Data is MSB aligned within the 32-bit time slots, so data precision does not need to be configured. The TDM format timing is illustrated in .

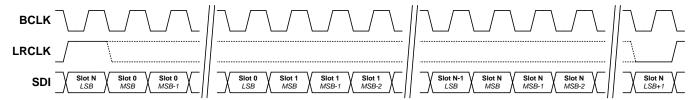
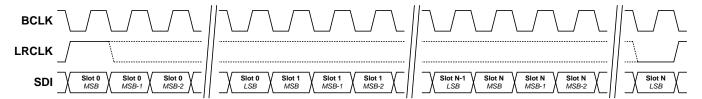
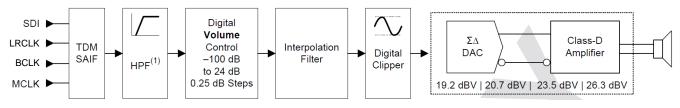


Figure 36. TDM I²S Format

For left-justified TDM operation (when time slot 0 begins the cycle LRCLK transitions from low to high), set $SAIF_FORMAT[2:0]$ register bits to left-justified(register 0x02, bits 2:0 = 3'b101). As with I^2S , data is MSB aligned. The timing is illustrated in .




Figure 37. TDM Left- and Right-Justified Format

For right-justified TDM operation (when time slot 0 begins the cycle LRCLK transitions from low to high), data is LSB aligned to the 32-bit time slot. As with stereo right-justified formats, the TAS5722L must have the data precision configured. Set the SAIF_FORMAT[2:0] register bits (register 0x02, bits 2:0) to the appropriate right-justified setting based on bit precision (value = 3'b000 for 24-bit, 3'b001 for 20-bit, 3'b010 for 18-bit and 3'b011 for 16-bit). The timing shown in is the same as left-justified TDM, with the data LSB aligned.

7.3.4 Audio Signal Path

illustrates the audio signal flow from the TDM SAIF to the speaker.

(1) See Table 3 for frequency options.

Figure 38. Audio Signal Path

7.3.4.1 High-Pass Filter (HPF)

Excessive DC in audio content can damage loudspeakers, so the amplifier employs a DC detect circuit that shuts down the power stage and issues a latching fault if this condition occurs. A high-pass filter is provided in the TAS5722L device to remove DC from incoming audio data to prevent this from occurring. Table 3 shows the high-pass, –3 dB corner frequencies for each sample rate. The filter can be bypassed by writing a 1 into bit 7 of register 0x02. The high pass corner frequency can be adjusted by setting the HPF_CORNER bits in the Digital Control 3 register (B[5:7], register 0x13).

Table 3. High-Pass Filter -3 dB Corner Frequencies by Sample Rate

SAMPLE RATE	-3dB CORNER FREQUENCY (Hz) vs. HPF_CORNER [2:0]							
(kHz)	000	001	010	011	100	101	110	111
44.1	3.675	7.35	14.7	29.4	58.8	117.6	235.2	470.4
48	4	8	16	32	64	128	256	512
88.2	7.35	14.7	29.4	58.8	117.6	235.2	470.4	940.8
96	8	16	32	64	128	256	512	1024

7.3.4.2 Amplifier Analog Gain and Digital Volume Control

The gain from TDM SAIF to speaker is controlled by setting the amplifier's analog gain and digital volume control. Amplifier analog gain settings are presented as the output level in dBV (dB relative to 1 Vrms) with a full scale serial audio input (0 dBFS) and the digital volume control set to 0 dB. It should be noted that these levels may not be achievable because of analog clipping in the amplifier, so they should be used to convey gain only.

Table 4 outlines each gain setting expressed in dBV and V_{PK}.

Table 4. Amplifier Gain Settings

ANALOG_GAIN [1:0]	FULL SCALE OUTPUT		
SETTING	dBV	V _{PEAK} (V)	
00	19.2	12.9	
01	20.7	15.3	
10	23.5	21.2	
11	26.3	29.2	

Equation 1 calculates the amplifiers output voltage.

$$V_{AMP} = Input + A_{dvc} + A_{AMP} dBV$$

where

- V_{AMP} is the amplifier output voltage in dBV
- Input is the digital input amplitude in dB with respect to 0 dBFS
- A_{dvc} is the digital volume control setting, -100 dB to 24dB in 0.25-dB steps
- A_{AMP} is the amplifier analog gain setting (19.2, 20.7, 23.5, or 26.3) in dBV

(1)

Clipping in the digital domain occurs if the input level (in dB relative to 0 dBFS) plus the digital volume control setting (in dB) are greater than 0 dB. The signal path has approximately 0.5 dB of headroom, but TI does not recommend utilizing it.

The digital volume control (DVC) can be adjusted from -100 dB to 24 dB in 0.25-dB steps. Equation 2 illustrates how to set the 9-bit volume control bits. The top 8 MSBs of the DVCvalue are stored in Volume Control register (register 0x04) and the LSB is stored in the Digital Control 3 register (register 0x13, bit 0).

$$DVC_{value} = 0x19E + \frac{A_{dvc}}{0.25}$$
(2)

For example, digital volume settings of 0 dB, 24 dB and -100 dB map to 0x19E, 0x1FE and 0x0E respectively. Values below 0x0E are equivalent to mute (the amplifier continues to switch with no audio). When a change in digital volume control occurs, the device ramps the volume to the new setting in 0.25 dB steps either every LRCLK or every 8 LRCLK depending on the value of the VOL_RAMP_RATE bit (bit 6, reg 0x03).

The Class-D amplifier uses a closed-loop architecture, so the gain does not depend on the supply input (V_{PVDD}). The approximate threshold for the onset of analog clipping is calculated in Equation 3.

$$V_{PK\left(max,preclip\right)} = V_{PVDD} \times \left(\frac{R_L}{2 \times R_{DS\left(on\right)} + R_{int\,erconnect} + R_L}\right) V$$

where

- ullet $V_{PK(max,preclip)}$ is the maximum peak unclipped output voltage in V
- V_{PVDD} is the power supply voltage
- R_I is the speaker load in Ω
- $R_{interconnect}$ is the additional resistance in the PCB (such as cabling and filters) in Ω
- $R_{DS(on)}$ is the power stage total on resistance (FET+bonding+packaging) in Ω

The effective on-resistance for the device (including FETs, bonding and packaging leads) is approximately 150 mΩ at room temperature and increases by approximately 1.6 times over +100°C rise in temperature. Table 5 shows approximate maximum unclipped peak output voltages at room temperature (excluding interconnect resistances).

Table 5. Approximate Maximum Unclipped Peak **Output Voltage at Room Temperature**

SUPPLY VOLTAGE V _{PVDD} (V)	MAXIMUM UNCLIPPED PEAK VOLTAGE V _{PK} (V)		
	$R_L = 4 \Omega$	$R_L = 8 \Omega$	
12	11.16	11.57	
17	15.81	16.39	

7.3.4.3 Digital Clipper

The digital clipper hard limits the maximum DAC sample value, which provides a simple hardware mechanism to control the largest signal applied to the speaker. Because the block resides in the digital domain, the actual maximum output voltage also depends on the amplifier gain setting and the supply voltage (VPVDD) limited amplifier voltage swing (For example, analog clipping may occur before digital clipping).

The maximum amplifier output voltage (excluding limitation due to swing) is calculated in Equation 4.

$$V_{AMP(max,dc)} = 20 \times log_{10} \left(\frac{DC_{level}}{0xFFFFF} \right) + 0.5 + A_{AMP}$$

where

- V_{AMP(max,dc)} is the amplifier maximum output voltage in dBV
- DC_{level} is the digital clipper level
- A_{AMP} is the amplifier analog gain setting (19.2, 20.7, 23.5, or 26.3) in dBV

(4)

Configure the digital clipper by writing the 20-bit DC_{level} to registers 0x01, 0x10 and 0x11. Set the DC_{level} to 0xFFFFF effectively bypasses the digital clipper.

Product Folder Links: TAS5722L

(3)

7.3.4.4 Class-D Amplifier Settings

The PWM switching rate of the Class-D amplifier is a phase locked multiple of the input audio sample rate. Table 6 lists the PWM switching rate settings as programmed in bit 4 through bit 6 in register 0x06. The double-speed sample rates (for example 88.2 kHz, 96 kHz) have the same PWM switching frequencies as their equivalent single-speed sample rates.

Table 6. PWM Switching Rates

PWM_RATE [2:0]	SINGLE-SPEED PWM RATE (× f _{LRCLK})	DOUBLE-SPEED PWM RATE × f _{LRCLK})	44.1 kHz, 88.2 kHz f _{PWM} (kHz)	48 kHz, 96 kHz f _{PWM} (kHz)
000	6	3	264.6	288
001	8	4	352.8	384
010	10	5	441	480
011	12	6	529.2	576
100	14	7	617.4	672
101	16	8	705.6	768
110	20	10	882	960
111	24	12	1058.4	1152

The Class-D power stage overcurrent detector issues a latching fault if the load current exceeds the safe limit for the device. This threshold can be proportionately adjusted if desired by programming bits 4-5 of register 0x08. Table 7 shows the relative setting for each overcurrent setting.

Table 7. Overcurrent Threshold Settings

OC_THRESH [1:0]	OVERCURRENT THRESHOLD (%)
00	100
01	75
10	50
11	25

7.4 Device Functional Modes

This section describes the modes of operation for the TAS5722L device.

Table 8. Typical Current Consumption⁽¹⁾

INPUT VOLTAGE V _{PVDD} (V)	MODE	PWM FREQUENCY f _{PWM} (kHz)	I _{PVDD} +I _{AVDD} (mA)	INPUT CURRENT I _{DVDD} (mA)
		384	11.45	
		480	12.21	
	Idle and Mute	576	12.94	1.30
5		672	13.70	
		768	14.41	
	Sleep	_	8.48	0.32
	Shutdown	_	0.021	0.046
		384	13.06	
		480	14.46	
	Idle and Mute	576	15.79	1.30
12.5		672	17.18	
		768	18.49	
	Sleep	_	7.49	0.32
	Shutdown	_	0.042	0.046
		384	14.00	
		480	15.60	
	Idle and Mute	576	17.10	1.30
16.5		672	18.66	
		768	20.15	
	Sleep	_	7.61	0.32
	Shutdown	_	0.045	0.046

⁽¹⁾ T_A = 25°C, PVDD pin tied to AVDD pin, V_{DVDD} = 1.8 V, R_{LOAD} = 4Ω + 33 μ H, f_{IN} = Idle, f_S = 48 kHz, Gain = 20.7 dBV, PWR_TUNE bit = 1

7.4.1 Shutdown Mode (SDZ)

The device enters shutdown mode if either the SDZ pin is asserted low or the I²C SDZ register bit is set low (bit 0, reg 0x01). In shutdown mode, the device consumes the minimum quiescent current with most analog and digital blocks powered down. The Class-D amplifier power stage powers down and the output pins are in a Hi-Z state. I²C communication remains possible in shutdown mode and register bits states are retained.

If a latching fault condition has occurred (Over Temperature, Over Current or DC detect), the SDZ pin or I²C bit must toggle low before the fault register can be cleared. For more information on faults and recovery, see the *Faults and Status* section.

When the device exits shutdown mode (either by releasing the SDZ pin high or setting the I^2C SDZ register bit high), the device powers up the internal analog and digital blocks required for operation. If the I^2C SLEEP bit is set low (bit 1, reg 0x01), the device powers up the Class-D amplifier and begins the switching of the power stage. If the I^2C MUTE bit is set low (bit 4, reg 0x03), the device ramps up the volume to the current setting and begins playing audio.

If shutdown mode is asserted while audio is playing, the device ramps down the volume on the audio, stops the Class-D switching, puts the Class-D power stage output pins in a Hi-Z state and powers down the analog and digital blocks.

7.4.2 Sleep Mode

Sleep mode is similar to shutdown mode, except analog and digital blocks required to begin playing audio quickly remain powered up. Sleep mode operates as a *hard mute* where the Class-D amplifier stops switching, but the device does not power down completely. Entering sleep mode does not clear latching faults.

7.4.3 Mode Timing

When SDZ is deasserted (and the device is not in sleep mode), the amplifier begins to switch after a period of t_{ACTIVE} . At this point, the volume ramps from -100 dB to the programmed digital volume control (DVC) setting in a length of time t_{VRMP} . t_{VRMP} is determined by the DVC setting, sample rate and volume ramp rate bit, VOL_RAMP_RATE (bit 6 of register 0x03). Ramping the volume prevents audible artifacts that can occur if discontinuous volume changes are applied while audio is being played back. This period, t_{VRMP} , depends on the DVC setting and sample rate. Typical values for t_{VRMP} for a DVC of 0 dB are shown in Timing Requirements. Figure 4 illustrates mode timing.

The time to enter or exit sleep or mute and the time to enter shudown are dominated by t_{VRMP} . Table 9 lists the timing parameters based on t_{VRMP} .

	71	•
SAMPLE		s) FROM -100 dB to 0 (ms)
RATE (kHz)	VOL_RAMP_RATE = 0	VOL_RAMP_RATE = 1
44.1	72.6	9.1
48	66.7	8.3
88.2	36.3	4.5
96	33.3	4.2

Table 9. Typical DVC Ramp Times

7.4.4 Auto Sleep Mode

Auto sleep mode is an optional feature that automatically moves the amplifier from active mode to sleep mode when the device presents an idle audio input (i.e. zero value) to the SAIF for a prescribed number of samples. The device automatically returns to active mode when the device presents a non-idle audio input sample to the SAIF. Auto sleep mode takes advantage of the TAS5722L device's ability to rapidly enter and exit sleep mode from active mode. Because the device applies idle audio samples to the SAIF before entering sleep mode, a volume ramp can be avoided. When exiting sleep mode, the amplifier can resume switching before input sample has propagated through the signal path, which avoids any audible artifacts when resuming playback. AUTO_SLEEP[1:0] (bits 4:3 in register 0x13) configures the number of idle samples required to enter auto sleep.

7.4.5 Active Mode

If shutdown mode and sleep mode are not asserted, the device is in active mode. During active mode, audio playback is enabled.

7.4.6 Mute Mode

When the I^2C_MUTE bit is set high (bit 4, reg 0x03) and the device is in active mode, the volume is ramped down and the Class-D amplifier continues to operate with an idle audio input.

7.4.7 Faults and Status

During the power-up sequence, the power-on-reset circuit (POR) monitoring the DVDD pin domain releases all registers from reset (including the I²C registers) once DVDD is valid. The device does not exit shutdown mode until the PVDD pin has a valid voltage between the undervoltage lockout (UVLO) and overvoltage lockout (OVLO) thresholds. If DVDD drops below the POR threshold the device transitions into shutdown mode with all registers held in reset. If UVLO or OVLO thresholds are violated by PVDD, the device transitions into sleep mode, but registers are not forced into reset. Both of these conditions are non-latching and the device operates normally once supply voltages are valid again. The device can be reset only by reducing DVDD below the POR threshold.

The device transitions into sleep mode if it detects any faults with the SAIF clocks such as

- Invalid MCLK to LRCLK and BCLK to LRCLK ratios
- Invalid MCLK and LRCLK frequencies
- Halting of MCLK, BCLK or LRCLK clocks

Upon detection of a SAIF clock error, the device transitions into sleep mode as quickly as possible to limit the possibility of audio artifacts. Once all SAIF clock errors are resolved, the device volume ramps back to its previous playback state. During an SAIF clock error, the FAULTZ pin asserts low and the CLKE bit asserts high (register 0x08, bit 3).

While operating in shutdown mode, the SAIF clock error detect circuitry powers down and the CLKE bit reads high. This reading is not an indication of a SAIF clock error. If the device has not entered active mode after a power-up sequence or after transitioning out of shutdown mode, the FAULTZ pin pulses low for only approximately 10 µs every 350 µs. This action prevents a possible locking condition if the FAULTZ is connected to the SDZ pin to accomplish automatic recovery. Once the device has entered active mode one time (after power up or deassertion of shutdown mode), the SAIF clock errors pull the FAULTZ pin low continuously until the fault has cleared.

The device also monitors die temperature, power stage load current and amplifier output DC content and issues latching faults if any of these conditions occur. A die temperature of approximately 150°C causes the device to enter sleep mode and issue an over-temperature error (OTE) readable via I²C (bit 0, reg 0x08).

Sustained excessive DC content at the output of the Class-D amplifier can damage loudspeakers via voice coil heating. The amplifier has an internal circuit to detect significant DC content that forces the device into sleep mode. The device issues a DC detect error (DCE) readable via I²C (bit 1, reg 0x08).

If the Class-D amplifier load current exceeds the threshold set by the OC_THRESH register bits (bits 5-4, reg 0x08), the device enters sleep mode and issues an overcurrent error (OCE) that is readable via I²C (bit 2, reg 0x08).

During OTE, DCE and OCE, the FAULTZ pin asserts low until the latched fault is cleared. FAULTZ is an open drain pin and requires a pull-up resistor to the DVDD pin to achieve a logic high level when no faults exist. This can be accomplished either with an internal pull up asserting FAULTZ_PU high (register 0x14, bit 3) or with an external pull up resistor to DVDD.

Latched faults can be cleared only by toggling the SDZ pin or SDZ I²C bit (bit 0, reg 0x01). This toggle does not clear I²C registers (except the fault status of OTE, OCE and DCE). If it is desirable for the device to attempt automatic recovery after latching faults, implement a circuit like the one shown in . The device waits approximately 650 ms after a DCE fault has cleared and 1.3 s after an OTE or OCE fault has cleared before releasing FAULTZ high and allowing the device to enter active mode.

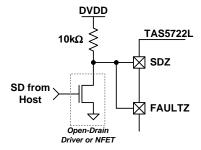


Figure 39. Auto Recovery Circuit

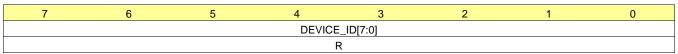
7.5 Register Maps

When writing to registers with reserved bits, maintain the values shown in Table 10 to ensure proper device operation. Default register values are loaded during the power-up sequence or any time the DVDD voltage falls below the power-on-reset (POR) threshold and then returns to valid operation.

7.5.1 I²C Register Map Summary

Table 10. I²C Register Map Summary

ADDR	ADDR	REGISTER				REG	STER BITS				DEFAULT	
(Dec)	(Hex)	NAME	B7	В6	B5	B4	В3	B2	B1	В0	(Hex)	
0	000	Davies ID				DE	VICE_ID				040	
0	0x00	Device ID	0	0	0	1	0	0	1	0	0x12	
1	0x01	Power Control		DIGIT	AL_CLIP_LE	VEL [19:14]			SLEEP	SDZ	0xFD	
'	UXU1	Power Control	1	1	1	1	1	1	0	1	UXFD	
2	0x02	Digital Control	HPF_BYPASS	TDM_CFG_SRC	R	SV	SSZ/DS		SAIF_FORMAT		0x04	
2	0x02	1	0	0	0	0	0	1	0	0	0X04	
3	0x03	Digital Control	RSV	VOL_RAMP_RATE	RSV	MUTE	RSV	TE	/_SLOT_SELECT[2:0]		0.00	
3	0x03	2	1	0	0	0	0	0	0	0	0x80	
4	0x04	Volume Control		VOLUME_CONTROL [8:1]		VOLUME,		E_CONTROL [8:1]		0 0 1 1 RSV		
4	0X04	volume Control	1	1	0	0	1	1	1	1	0xCF	
6	0x06	Analag Cantral	RSV	PWN	M_RATE		ANA	LOG_GAIN	F	RSV	0x51	
b	0000	Analog Control	0	1	0	1	0	0	0	1	UXST	
		Fault Config		RSV	OC_TH	HRESH	CLKE	OCE	DCE	OTE		
8	0x08	and Error Status	0	0	0	0	0	0	0	0	0x00	
40	0x10	Digital Clipper				DIGITAL_C	LIP_LEVEL[1	3:6]			0	
16	UX1U	2	1	1	1	1	1	1	1	1	0xFF	
47	044	Digital Clipper		DIG	ITAL_CLIP_L	EVEL[5:0]	•		F	RSV	0E0	
17	0x11	1	1	1	1	1	1	1	0	0	0xFC	
19	040	Digital Control		HPF_CORNER		AUTO_	SLEEP	TDM_SLOT_16B	MCLK_PIN_CFG	VOL_CONTROL[0]	000	
19	0x13	3	0	0	0	0	0	0	0	0	0x00	
20	0x14	Analog Control		RSV			FAULTZ_P U	VREG_LVL	RSV	PWR_TUNE	0x02	
		2	0	0	0	0	0	0	1	0		


Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated

7.5.2 Register Maps

7.5.2.1 Device Identification Register (0x00)

Figure 40. Device Identification Register

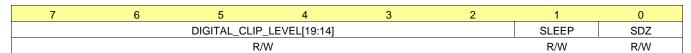

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 11. Device Identification Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	DEVICE_ID[7:0]	R	0	This register returns a value of 0x12 when read.

7.5.2.2 Power Control Register (0x01)

Figure 41. Power Control Register

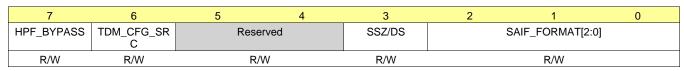

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 12. Power Control Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-2	DIGITAL_CLIP_LEVEL[19:14]	R/W	1	This register holds the top 6-bits of the 20-bit Digital Clipper level. The Digital Clipper limits the magnitude of the sample applied to the DAC. See the <i>Digital Clipper</i> section for more information.
1	SLEEP	R/W	0	When the device enters SLEEP mode, volume ramps down and the Class-D output stage powers down to a Hi-Z state. The rest of the blocks maintain a state such that audio playback can be restarted as quickly as possible. This mode has lower dissipation than MUTE, but higher than SHUTDOWN. For more information see the <i>Device Functional Modes</i> section. 0: Exit Sleep (default). 1: Enter Sleep.
0	SDZ	R/W	1	The device enters SHUTDOWN mode if either this bit is set to a 0 or the SDZ pin is pulled low externally. In SHUTDOWN, the device holds the lowest dissipation state. I ² C communication remains functional and all registers are retained. For more information see the <i>Device Functional Modes</i> section. 0: Enter SHUTDOWN. 1: Exit SHUTDOWN (default).

7.5.2.3 Digital Control Register 1 (0x02)

Figure 42. Digital Control Register 1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13. Digital Control Register 1 Field Descriptions

Bit	Field	Туре	Reset	Description
7	HPF_BYPASS	R/W	0	The high-pass filter removes any DC component in the audio content that could trip the DC detect protection feature in the amplifer, which is a latching fault. Setting this bit bypasses the high-pass filter. See the "High-Pass Filter" section under "Audio Signal Path" for more information.
				0: Enable high-pass filter (default).
				1: Bypass high-pass filter.
6	TDM_CFG_SRC	R/W	0	This bit determines how the device selects which audio channel direct to the playback stream. See the <i>Serial Audio Interface</i> (<i>SAIF</i>) section for more information.
				0: Set TDM Channel to I ² C Device ID (default).
				1: Set TDM Channel to TDM_SLOT_SELECT in register 0x03.
5-4	Reserved	R/W	0	These bits are reserved and should be set to 00 when writing to this register.
3	SSZ/DS	R/W	0	This bit sets the sample rate to single speed or double speed operation. See the <i>Serial Audio Interface (SAIF)</i> section for more information.
				0: Single speed operation (44.1 kHz/48 kHz) - default.
				1: Double speed operation (88.2 kHz/96 kHz)
2-0	SAIF_FORMAT[2:0]	R/W	100	These bits set the Serial Audio Interface format. See the Serial Audio Interface (SAIF) section for more information.
				000: Right justified, 24-bit
				001:Right justified, 20-bit
				010: Right justified, 18-bit
				011: Right justified, 16-bit
				100: I ² S (default)
				101: Left Justified, 16-24 bits
				110: Reserved. Do not select this value.
				111: Reserved. Do not select this value.

7.5.2.4 Register Name (offset =) [reset =] or (address =) [reset =]

Figure 43. 8-bit, 1 Row

7	6	5	4	3	2	1	0
Reserved	VOL_RAMP_R ATE	Reserved	MUTE	Reserved	TDM	1_SLOT_SELECT	[2:0]
R/W	R/W	R/W	R/W	R/W		R/W	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14. (For example, CONTROL_REVISION Register) Field Descriptions

Bit	Field	Туре	Reset	Description
7	Reserved	R/W	1	This bit is reserved and should be set to 1 when writing to this address
6	VOL_RAMP_RATE	R/W	0	This bit determines the volume ramp rate when entering or exiting Mute, Shutdown or Sleep
				0: Ramp 0.25 dB every 8 LRCLK periods (default)
				1: Ramp 0.25 dB every LRCLK period
5	Reserved	R/W	0	This bit is reserved and should be set to 1 when writing to this address

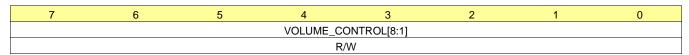


Table 14. (For example, CONTROL_REVISION Register) Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
4	MUTE	R/W	0	When set the device ramps down volume and play idle audio. See the <i>Amplifier Analog Gain and Digital Volume Control</i> section for more information.
				0: Exit mute mode (default).
				1: Enter mute mode.
3	Reserved	R/W	0	This bit is reserved and should be set to 0 when writing to this address
2-0	TDM_SLOT_SELECT[2:0]	R/W	0	When the TDM_CFG_SRC bit is set to 1 in register 0x02, these bits select which TDM channel is directed to audio playback. See the Serial Audio Interface (SAIF) section for more information.

7.5.2.5 Volume Control Register (0x04)

Figure 44. Volume Control Register

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 15. Volume Control Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	VOLUME_CONTROL[8:1]	R/W	11001111	This register sets the top 8 bits of the 9-bit Digital Volume Control (DVC), The DVC ranges from –100 dB to +24 dB in 0.25 dB steps and has a default setting of 0 dB. Register settings of less than 0x008 are equivalent to MUTE. Register 0x13 bit 0 sets the LSB value. See the <i>Amplifier Analog Gain and Digital Volume Control</i> for more information.

7.5.2.6 Analog Control Register (0x06)

Figure 45. Analog Control Register

7	6	5	4	3	2	1	0
Reserved		PWM_RATE[2:0]		ANALOG	_GAIN[1:0]	Rese	erved
R/W	R/W		R	/W	R/W		

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 16. Analog Control Register Field Descriptions

Bi	t Field	Туре	Reset	Description
7	Reserved	R/W	0	This bit is reserved and should be set to 0 when writing to this address
6-4	4 PWM_RATE[2:0]	R/W	101	These bits set the PWM switching rate, which is a locked ratio of LRCLK. For more information see the <i>Class-D Amplifier Settings</i> section.
				000: 6 x LRCLK (single speed), 3 x LRCLK (double speed)
				001: 8 x LRCLK (single speed), 4 x LRCLK (double speed)
				010: 10 x LRCLK (single speed), 5 x LRCLK (double speed)
				011: 12 × LRCLK (single speed), 6 × LRCLK (double speed)
				100: 14 x LRCLK (single speed), 7 x LRCLK (double speed)
				101: 16 x LRCLK (single speed), 8 x LRCLK (double speed) - default
				110: 20 x LRCLK (single speed), 10 x LRCLK (double speed)
				111: 24 x LRCLK (single speed), 12 x LRCLK (double speed)

Table 16. Analog Control Register Field Descriptions (continued)

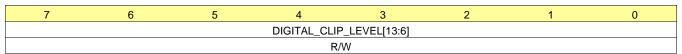
Bit	Field	Туре	Reset	Description
3-2	ANALOG_GAIN[1:0]	R/W	01	These bits set the analog gain of the Class-D amplifer. The values shown indicate the output level with digital volume control set to 0 dB and a full scale digital input (0 dBFS). This level may not be acheivable because of analog clipping. See the <i>Amplifier Analog Gain and Digital Volume Control</i> section for more information.
				00: 19.2 dBV (default)
				01: 20.7 dBV
				10: 23.5 dBV
				11: 26.3 dBV
1-0	Reserved	R/W	01	These bits are reserved and should be set to 01 when writing to this address

7.5.2.7 Fault Configuration and Error Status Register (0x08)

Figure 46. Fault Configuration and Error Status Register

7	6	5	4	3	2	1	0
Rese	erved	OC_THR	ESH[1:0]	CLKE	OCE	DCE	OTE
R/W		R/	W	R	R	R	R

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset


Table 17. Fault Configuration and Error Status Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	Reserved	R/W	00	These bits are reserved and should be set to 00 when writing to this address.
5-4	OC_THRESH[1:0]	R/W	00	This register sets the Over Current detector threshold. For more information see the <i>Class-D Amplifier Settings</i> section.
				00: 100% of overcurrent limit (default)
				01: 75% of overcurrent limit
				10: 50% of overcurrent limit
				11: 25% of overcurrent limit
3	CLKE	R	0	This bit indicates the status of the SAIF clock error detector. This is a self clearning value.
				0: No SAIF clock errors.
				1: SAIF clock errors are present.
2	OCE	R	0	This bit indicates the status of the overcurrent error detector. This is a latching value.
				0: The Class-D output stage has not experienced an over current event.
				1: The Class-D output stage has experienced an over current event.
1	DCE	R	0	This bit indicates the status of the DC detector. This is a latching value.
				0: The Class-D output stage has not experienced a DC detect error.
				1: The Class-D output stage has experienced a DC detect error.
0	OTE	R	0	This bit indicates the status of the over temperature detector. This is a latching value.
				0: The Class-D output stage has not experienced an over temperature error.
				1: The Class-D output stage has experienced an over temperature error.

7.5.2.8 Digital Clipper 2 Register (0x10)

Figure 47. Digital Clipper 2 Register

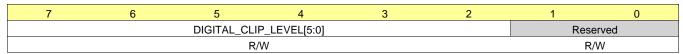

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 18. Digital Clipper 2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	DIGITAL_CLIP_LEVEL[13:6]	R/W	1	This register holds the bits 13 through 6 of the 20-bit Digital Clipper level. The Digital Clipper limits the magnitude of the sample applied to the DAC. See the <i>Digital Clipper</i> section for more information.

7.5.2.9 Digital Clipper 1 Register (0x11)

Figure 48. Digital Clipper 1 Register

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 19. Digital Clipper 1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-2	DIGITAL_CLIP_LEVEL[5:0]	R/W	1	This register holds the bits 5 through 0 of the 20-bit Digital Clipper level. The Digital Clipper limits the magnitude of the sample applied to the DAC. See the <i>Digital Clipper</i> section for more information.
1-0	Reserved	R/W	00	These bits are reserved and should be set to 00 when writing to this register.

7.5.2.10 Digital Control Register 3 (0x13)

Figure 49. Digital Control Register 3

7	6	5	4	3	2	1	0
	HPF_CORNER		AUTO_	SLEEP	TDM_SLOT_16 B	MCLK_PIN_CF G	VOL_CONTRO L[0]
	R/W		R/	W	R/W	R/W	R/W

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 20. Digital Control Register 3 Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	HPF_CORNER	R/W	0	These bits set the High Pass Filter corner frequency. Values for 44.1- kHz sample rate are shown in this table. See Table 3 in the <i>Audio Signal Path</i> section for more information.
				000: 3.7-Hz High Pass Corner at 44.1-kHz Sample Rate (Default)
				001: 7.4-Hz High Pass Corner at 44.1-kHz Sample Rate
				010: 14.9-Hz High Pass Corner at 44.1-kHz Sample Rate
				011: 29.7-Hz High Pass Corner at 44.1-kHz Sample Rate
				100: 59.4-Hz High Pass Corner at 44.1-kHz Sample Rate
				101: 118.4-Hz High Pass Corner at 44.1-kHz Sample Rate
				110: 235.0-Hz High Pass Corner at 44.1-kHz Sample Rate
				111: 463.2-Hz High Pass Corner at 44.1-kHz Sample Rate

Table 20. Digital Control Register 3 Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
4-3	AUTO_SLEEP	R/W	0	These bits control the auto sleep function that disables the power stage if no audio input has been zero for a prescribed number of samples.
				00: Auto Sleep Disabled (Default)
				01: Auto Sleep after 1024 LRCLK's with idle input
				10: Auto Sleep after 64 x 1024 LRCLK with idle input
				11: Auto Sleep after 256 x 1024 LRCLK with idle input
2	TDM_SLOT_16B	R/W	0	This bit indicates the time slot bit width.
				0: Each time slot is 24 or 32 bits in width (Default).
				1: Each time slot is 16 bits in width.
1	MCLK_PIN_CFG	R/W	0	This bit indicates the source of MCLK.
				0: MCLK signal is derived from BCLK internally. Connect MCLK pin to GND on PCB (Default).
				1: MCLK signal is derived from MCLK pin.
0	VOL_CONTROL[0]	R/W	0	This is the LSB of the Digital Volume Control.

7.5.2.11 Analog Control Register 2 (0x14)

Figure 50. Analog Control Register 2

7	6	6 5 4		3	2	1	0	
	Rese	erved		FAULTZ_PU	VREG_LVL	Reserved	PWR_TUNE	
	R	W		R/W	R/W	R/W	R/W	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 21. Analog Control Register 2 Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	Reserved	R/W	0	These bits are reserved and should be set to 0000 when writing to this register.
3	FAULTZ_PU R/W		0	This bit controls an internal 20-k Ω pull-up resistor on the FAULTZ pin.
				0: Disable pull-up resistor (Default).
				1: Enable pull-up resistor.
2	VREG_LVL	R/W	0	This bit reduces the analog voltage regulator during low PVDD < 5.5-V operation.
				0: Default regulator level of 5.4 V (Default).
				1: Reduced regulator level of 3.9 V.
1	Reserved	R/W	1	This bit is reserved and should be set to 1 when writing to this register.
0	PWR_TUNE	R/W	0	This bit reduces static analog current in the analog domain by approximately 0.9 mA.
				0: Do not reduce analog supply current (Default).
				1: Reduce analog supply current.

8 Applications and Implementation

8.1 Application Information

This section describes a filter-free, TDM application.

8.2 Typical Application

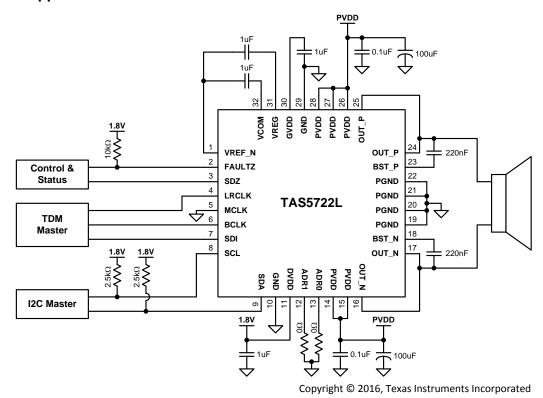


Figure 51. Filter Free 3-Wire TDM Application Circuit (I2C_DEV_ID = 0x6C)

8.2.1 Design Requirements

- Input voltage range PVDD and AVDD: 4.5 V to 17 V
- Input voltage range DVDD: 1.65 V to 2 V
- Input sample rate: 44.1 kHz to 48 kHz or 88.2 kHz to 96 kHz
- I²C clock frequency: up tp 400 kHz
- Maximum output power: 15 W

8.2.2 Design Procedure

8.2.2.1 Overview

The TAS5722L is a very flexible and easy to use Class D amplifier; therefore the design process is straightforward. Before beginning the design, gather the following information regarding the audio system.

- PVDD rail planned for the design
- Speaker or load impedance
- Audio sample rate
- Maximum output power requirement
- Desired PWM frequency

Typical Application (continued)

8.2.2.2 Select the PWM Frequency

Set the PWM frequency by writing to the PWM_RATE bits (bits 6-4, reg 0x06). The default setting for this register is 101, which is $16 \times LRCLK$ for single speed applications and $8 \times LRCLK$ for double speed application. This value equates to a default PWM frequency of 768 kHz for a 48 kHz sample rate.

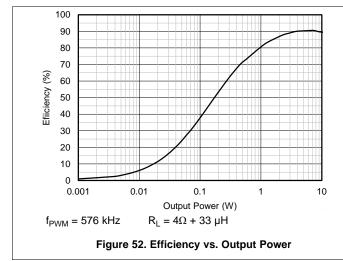
8.2.2.3 Select the Amplifier Gain and Digital Volume Control

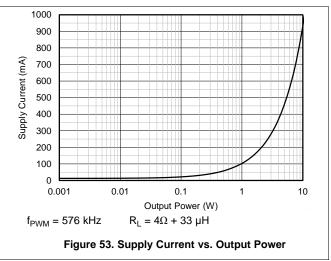
In order to select the amplifier gain setting, the designer must determine the maximum power target and the speaker impedance. Once these parameters have been determined, calculate the required output voltage swing which delivers the maximum output power.

Choose the lowest analog gain setting that produces an output voltage swing greater than the required output swing for maximum power. The analog gain can be set by writing to the ANALOG_GAIN bits (bits 3-2, reg 0x06). The default gain setting is 20.7 dBV referenced to 0dBFS input.

8.2.2.4 Select Input Capacitance

Select the bulk capacitors at the PVDD inputs for proper voltage margin and adequate capacitance to support the power requirements. The TAS5722L has very good PVDD PSRR, so the capacitor is more about limiting the ripple and droop for the rest of system than preserving good audio performance. The amount of bulk decoupling can be reduced as long as the droop and ripple is acceptable. One capacitor should be placed near the PVDD inputs at each side of the device. PVDD capacitors should be a low ESR type because they are being used in a high-speed switching application.


8.2.2.5 Select Decoupling Capacitors


Good quality decoupling capacitors must be added at each of the PVDD inputs to provide good reliability, good audio performance, and to meet regulatory requirements. X5R or better ratings should be used in this application. Consider temperature, ripple current, and voltage overshoots when selecting decoupling capacitors. Also, these decoupling capacitors should be located near the PVDD and GND connections to the device in order to minimize series inductances.

8.2.2.6 Select Bootstrap Capacitors

Each of the outputs require bootstrap capacitors to provide gate drive for the high-side output FETs. For this design, use 0.22-µF, 25-V capacitors of X5R quality or better.

8.2.3 Application Performance Plots

9 Power Supply Recommendations

The power supply requirements for the TAS5722L device consist of one 1.8-V supply to power the low-voltage analog and digital circuitry and one higher-voltage supply to power the output stage of the speaker amplifier. Several on-chip regulators are included on the TAS5722L device to generate the voltages necessary for the internal circuitry of the audio path. It is important to note that the voltage regulators which have been integrated are sized only to provide the current necessary to power the internal circuitry. The external pins are provided only as a connection point for off-chip bypass capacitors to filter the supply. Connecting external circuitry to these regulator outputs may result in reduced performance and damage to the device.

The TAS5722L requires two power supplies. A 1.8-V supply, called DVDD, is required to power the digital section of the device. A higher-voltage supply, between 4.5 V and 17 V, supplies the analog circuitry (AVDD) and the power stage (PVDD). The AVDD supply feeds several LDOs including GVDD, VREG, and VCOM. These LDO outputs are connected to external pins for filtering purposes, but should not be connected to external circuits. These LDO outputs have been sized to provide current necessary for internal functions but not for external loading.

10 Layout

10.1 Layout Guidelines

- Pay special attention to the power stage power supply layout. Each half bridge has two PVDD input pins so
 that decoupling capacitors can be placed nearby. Use at least a 0.1-µF capacitor of X5R quality or better for
 each set of inputs.
- Keep the current circulating loops containing the supply decoupling capacitors, the H-bridges in the device and the connections to the speakers as tight as possible to reduce emissions.
- Use ground planes to provide the lowest impedance for power and signal current between the device and the
 decoupling capacitors. The area directly under the device should be treated as a central ground area for the
 device, and all device grounds must be connected directly to that area.
- Use a via pattern to connect the area directly under the device to the ground planes in copper layers below the surface. This connection helps to dissipate heat from the device.
- Avoid interrupting the ground plane with circular traces around the device. Interruption disconnects the copper and interrupt flow of heat and current. Radial copper traces are better to use if necessary.

10.2 Layout Example

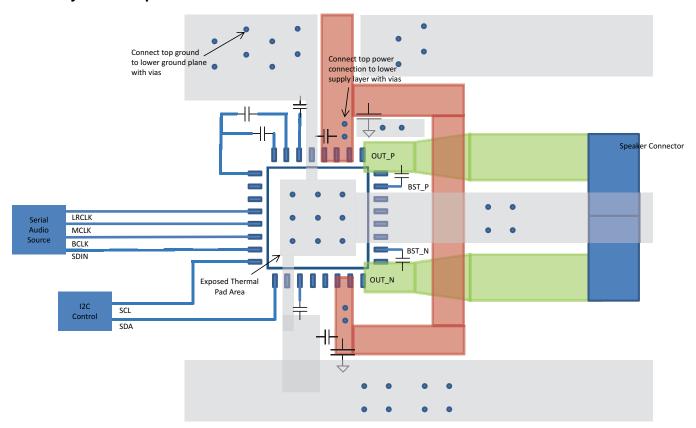


Figure 54. Layout Example

Submit Documentation Feedback

11 Device and Documentation Support

11.1 Trademarks

All trademarks are the property of their respective owners.

11.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

12.1 Package Option Addendum

12.1.1 Packaging Information

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾	Op Temp (°C)	Device Marking ⁽⁴⁾⁽⁵⁾
TAS5722LRSMR	ACTIVE	VQFN	RSM	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	–25 to 85	TAS 5722L
TAS5722LRSMT	ACTIVE	VQFN	RSM	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-25 to 85	TAS 5722L

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PRE PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

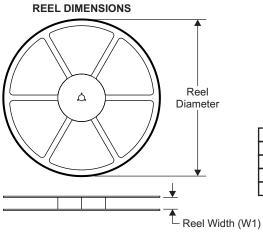
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

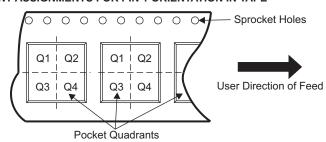
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

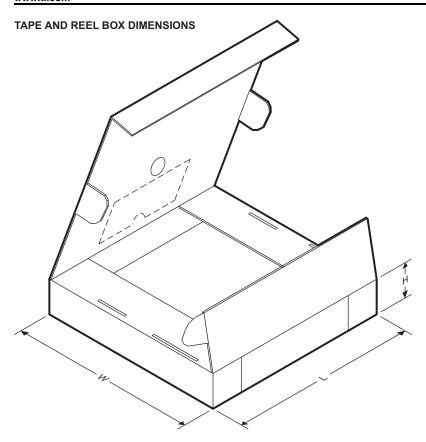
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


- (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
- (5) Multiple Device markings will be inside parentheses. Only on Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


12.1.2 Tape and Reel Information


A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers
	·

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TAS5722LRSMR	VQFN	RSM	32	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
TAS5722LRSMT	VQFN	RSM	32	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TA	S5722LRSMR	VQFN	RSM	32	3000	367.0	367.0	35.0
TA	S5722LRSMT	VQFN	RSM	32	250	210.0	185.0	35.0

PACKAGE OPTION ADDENDUM

27-Jan-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TAS5722LRSMR	ACTIVE	VQFN	RSM	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-25 to 85	TAS 5722L	Samples
TAS5722LRSMT	ACTIVE	VQFN	RSM	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-25 to 85	TAS 5722L	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

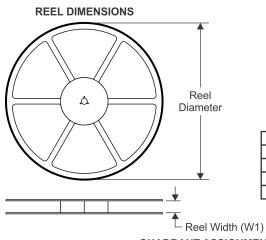
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

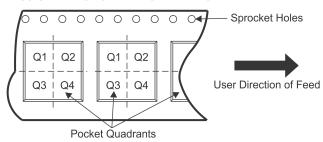
PACKAGE OPTION ADDENDUM


27-Jan-2017

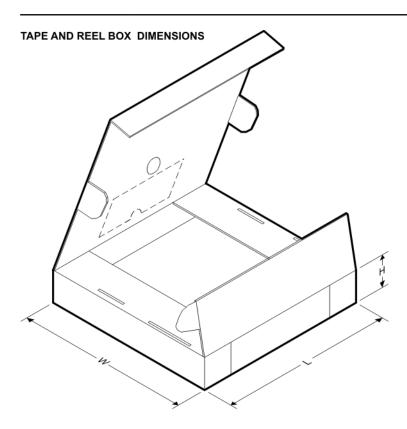
n no event shall TI's liabili	tv arising out of such information	exceed the total purchase	price of the TI part(s) at issue in this document sold by	y TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

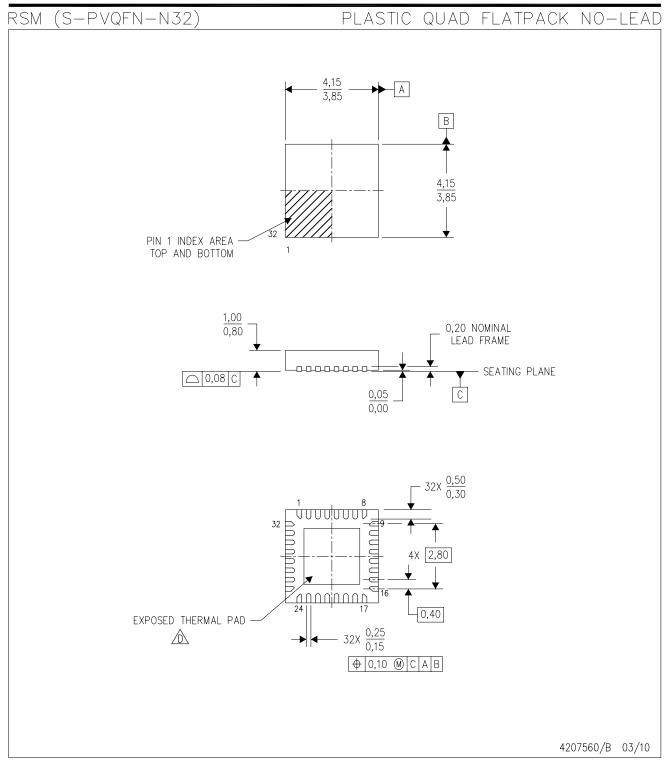
www.ti.com 27-Jan-2017


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal


7 til dilitionolorio aro nominar												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TAS5722LRSMR	VQFN	RSM	32	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
TAS5722LRSMT	VQFN	RSM	32	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

www.ti.com 27-Jan-2017

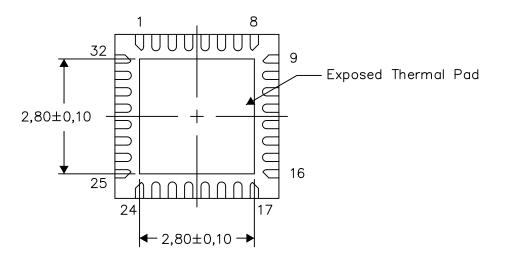
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TAS5722LRSMR	VQFN	RSM	32	3000	367.0	367.0	35.0
TAS5722LRSMT	VQFN	RSM	32	250	210.0	185.0	35.0

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 - B. This drawing is subject to change without notice.
 - C. QFN (Quad Flatpack No-Lead) Package configuration.
 - The package thermal pad must be soldered to the board for thermal and mechanical performance.

 See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

RSM (S-PVQFN-N32)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

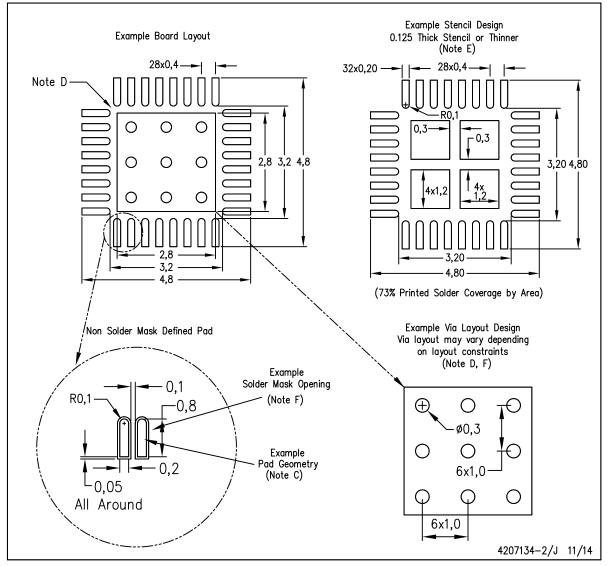
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions


4207868-2/1 07/14

NOTE: All linear dimensions are in millimeters

RSM (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Texas Instruments:

TAS5722LRSMR TAS5722LRSMT