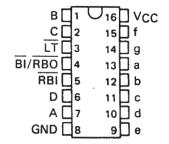
'46A, '47A, 'LS47 feature

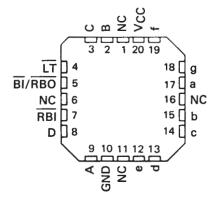
- Open-Collector Outputs
   Drive Indicators Directly
- Lamp-Test Provision
- Leading/Trailing Zero Suppression


'48, 'LS48 feature

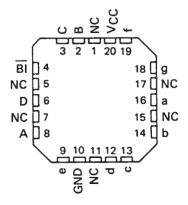
- Internal Pull-Ups Eliminate
   Need for External Resistors
- Lamp-Test Provision
- Leading/Trailing Zero Suppression

'LS49 feature

- Open-Collector Outputs
- Blanking Input


SN5446A, SN5447A, SN54LS47, SN5448, SN54LS48 . . . J PACKAGE SN7446A, SN7447A, SN7448 . . . N PACKAGE SN74LS47, SN74LS48 . . . D OR N PACKAGE (TOP VIEW)



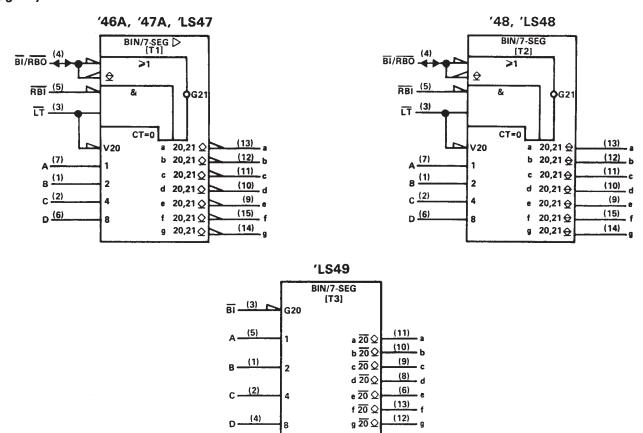

SN54LS49 . . . J OR W PACKAGE SN74LS49 . . . D OR N PACKAGE (TOP VIEW)



SN54LS47, SN54LS48 . . . FK PACKAGE (TOP VIEW)



SN54LS49 . . . FK PACKAGE (TOP VIEW)




NC - No internal connection

#### All Circuit Types Feature Lamp Intensity Modulation Capability

|          |        | DRIVER O       | UTPUTS  |         | TYPICAL     |          |
|----------|--------|----------------|---------|---------|-------------|----------|
| TYPE     | ACTIVE | OUTPUT         | SINK    | MAX     | POWER       | PACKAGES |
|          | LEVEL  | CONFIGURATION  | CURRENT | VOLTAGE | DISSIPATION |          |
| SN5446A  | low    | open-collector | 40 mA   | 30 V    | 320 mW      | J, W     |
| SN5447A  | low    | open-collector | 40 mA   | 15 V    | 320 mW      | J, W     |
| SN5448   | high   | 2-kΩ pull-up   | 6.4 mA  | 5.5 V   | 265 mW      | J,W      |
| SN54LS47 | low    | open-collector | 12 mA   | 15 V    | 35 mW       | J, W     |
| SN54LS48 | high   | 2-kΩ pull-up   | 2 mA    | 5.5 V   | 125 mW      | J, W     |
| SN54LS49 | high   | open-collector | 4 mA    | 5.5 V   | 40 mW       | J, W     |
| SN7446A  | low    | open-collector | 40 mA   | 30 V    | 320 mW      | J, N     |
| SN7447A  | low    | open-collector | 40 mA   | 15 V    | 320 mW      | J, N     |
| SN7448   | high   | 2-kΩ pull-up   | 6.4 mA  | 5.5 V   | 265 mW      | J, N     |
| SN74LS47 | low    | open-collector | 24 mA   | 15 V    | 35 mW       | J, N     |
| SN74LS48 | high   | 2-kΩ pull-up   | 6 mA    | 5.5 V   | 125 mW      | J, N     |
| SN74LS49 | high   | open-collector | 8 mA    | 5.5 V   | 40 mW       | J, N     |

#### logic symbols†



<sup>&</sup>lt;sup>†</sup>These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.



#### description

The '46A, '47A, and 'LS47 feature active-low outputs designed for driving common-anode LEDs or incandescent indicators directly. The '48, 'LS48, and 'LS49 feature active-high outputs for driving lamp buffers or common-cathode LEDs. All of the circuits except 'LS49 have full ripple-blanking input/output controls and a lamp test input. The 'LS49 circuit incorporates a direct blanking input. Segment identification and resultant displays are shown below. Display patterns for BCD input counts above 9 are unique symbols to authenticate input conditions.

The '46A, '47A, '48, 'LS47, and 'LS48 circuits incorporate automatic leading and/or trailing-edge zero-blanking control  $(\overline{RBI} \text{ and } \overline{RBO})$ . Lamp test  $(\overline{LT})$  of these types may be performed at any time when the  $\overline{BI/RBO}$  node is at a high level. All types (including the '49 and 'LS49) contain an overriding blanking input (BI), which can be used to control the lamp intensity by pulsing or to inhibit the outputs. Inputs and outputs are entirely compatible for use with TTL logic outputs.

The SN54246/SN74246 and '247 and the SN54LS247/SN74LS247 and 'LS248 compose the  $\,\Box\,$  and the  $\,\Box\,$  with tails and were designed to offer the designer a choice between two indicator fonts.



'46A, '47A, 'LS47 FUNCTION TABLE (T1)

| DECIMAL<br>OR |    |     | INP | JTS |   |   | BI/RBO† |     |     | 0   | UTPUT | s   |     |     | NOTE |
|---------------|----|-----|-----|-----|---|---|---------|-----|-----|-----|-------|-----|-----|-----|------|
| FUNCTION      | LT | RBI | D   | С   | В | Α |         | а   | ь   | С   | d     | е   | f   | g   |      |
| 0             | Н  | Н   | L.  | L   | L | L | Н       | ON  | ON  | ON  | ON    | ON  | ON  | OFF |      |
| 1             | н  | ×   | L   | L   | L | Н | н       | OFF | ON  | ON  | OFF   | OFF | OFF | OFF |      |
| 2             | н  | x   | L   | L   | Н | L | н       | ON  | ON  | OFF | ON    | ON  | OFF | ON  |      |
| 3             | Н  | ×   | L   | L   | Н | Н | н       | ON  | ON  | ON  | ON    | OFF | OFF | ON  |      |
| 4             | Н  | ×   | L   | Н   | L | L | н       | OFF | ON  | ON  | OFF   | OFF | ON  | ON  |      |
| 5             | н  | x   | L   | Н   | L | Н | н       | ON  | OFF | ON  | ON    | OFF | ON  | ON  |      |
| 6             | н  | ×   | L   | Н   | Н | Ĺ | н       | OFF | OFF | ON  | ON    | ON  | ON  | ON  |      |
| 7             | н  | x   | L   | Н   | Н | н | н       | ON  | ON  | ON  | OFF   | OFF | OFF | OFF | 1    |
| 8             | Н  | ×   | н   | L   | L | L | н       | ON  | ON  | ON  | ON    | ON  | ON  | ON  | ' '  |
| 9             | н  | x   | н   | L   | L | н | н       | ON  | ON  | ON  | OFF   | OFF | ON  | ON  |      |
| 10            | н  | X   | Н   | L   | Н | L | H       | OFF | OFF | OFF | ON    | ON  | OFF | ON  | i    |
| 11            | Н  | X   | Н   | L   | н | Н | н       | OFF | OFF | ON  | ON    | OFF | OFF | ON  |      |
| 12            | Н  | ×   | н   | Н   | L | L | н       | OFF | ON  | OFF | OFF   | OFF | ON  | ON  |      |
| 13            | н  | X   | н   | н   | L | Н | н       | ON  | OFF | OFF | ON    | OFF | ON  | ON  |      |
| 14            | н  | X   | н   | Н   | н | L | н       | OFF | OFF | OFF | ON    | ON  | ON  | ON  |      |
| 15            | н  | X   | Н   | н   | Н | Н | н       | OFF | OFF | OFF | OFF   | OFF | OFF | OFF |      |
| 81            | Х  | Х   | Х   | Х   | Х | X | L       | OFF | OFF | OFF | OFF   | OFF | OFF | OFF | 2    |
| RBI           | н  | L   | L   | L   | L | L | L       | OFF | OFF | OFF | OFF   | OFF | OFF | OFF | 3    |
| LT            | L  | X   | X   | X   | Х | Х | н       | ON  | ON  | ON  | ON    | ON  | ON  | ON  | 4    |

H = high level, L = low level, X = irrelevant

NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high if blanking of a decimal zero is not desired.

- 2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are off regardless of the level of any
- 3. When ripple-blanking input (RBI) and inputs A, B, C, and D are at a low level with the lamp test input high, all segment outputs go off and the ripple-blanking output ( $\overline{\mathsf{RBO}}$ ) goes to a low level (response condition).
- 4. When the blanking input/ripple blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment outputs are on.

<sup>1</sup>BI/RBO is wire AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).



#### '48, 'LS48 FUNCTION TABLE (T2)

| DECIMAL<br>OR |     | INPUTS |   | BI/RBO† |    |   | οι | JTPU | TS       |     |          | NOTE |   |   |   |
|---------------|-----|--------|---|---------|----|---|----|------|----------|-----|----------|------|---|---|---|
| FUNCTION      | LT  | RBI    | D | С       | В  | Α |    | а    | b        | c _ | d        | е    | f | g |   |
| 0             | Н   | Н      | L | L       | L. | L | Н  | Н    | Н        | Н   | Н        | Н    | Н | L |   |
| 1             | Н   | x      | L | L       | L  | н | н  | L    | Н        | Н   | L        | L    | L | 니 |   |
| 2             | н   | x      | L | L       | Н  | L | Н  | Н    | Н        | L   | Н        | Н    | L | H |   |
| 3             | н   | Х      | L | L       | H  | Н | Н  | Н    | <u>H</u> | Н   | Н        | L    | L | Н |   |
| 4             | Н   | X      | L | Н       | L  | L | Н  | L    | Н        | Н   | L        | L    | Н | н |   |
| 5             | н   | х      | L | Н       | L  | Н | н  | н    | L        | Н   | Н        | L    | Н | н |   |
| 6             | н   | X      | L | Н       | Н  | L | H  | L    | L        | Н   | н        | Н    | Н | н |   |
| 7             | н   | Х      | L | Н       | Н  | H | Н  | Н    | Н        | _H  | L        | L    | L | L | 1 |
| 8             | Н   | Х      | Н | L       | L  | L | Н  | Н    | Н        | Н   | Н        | Н    | Н | Н | • |
| 9             | Н ' | ×      | Н | L       | L  | Н | Н  | н    | Н        | Н   | L        | L    | Н | Н |   |
| 10            | Н   | x      | Н | L       | Н  | L | н  | L    | L        | L   | Н        | Н    | L | Н |   |
| 11            | Н   | Х      | Н | L       | Н  | Н | H  | L    | L.       | H   | <u>H</u> | L    | L | Н |   |
| 12            | Н   | Х      | Н | Н       | L  | L | Н  | L    | Н        | L   | L        | L    | Н | Н |   |
| 13            | н   | ×      | н | н       | L  | Н | H  | Н    | L        | L   | Н        | L    | Н | Н |   |
| 14            | Н   | ×      | н | Н       | Н  | L | н  | L    | L        | L   | Н        | Н    | Н | Н |   |
| 15            | Н   | ×      | Н | Н       | Н  | Н | Н  | L.   | L        | L   | L        | L    | L | L |   |
| BI            | X   | ×      | Х | X       | Х  | Х | L  | L    | L        | L   | L        | L    | L | L | 2 |
| RBI           | н   | L      | L | L       | L  | L | L  | L    | L        | L   | L        | L    | L | L | 3 |
| LT            | L   | ×      | Х | X       | Х  | X | Н  | Н    | Н        | Н   | H        | Н    | H | Н | 4 |

H = high level, L = low level, X = irrelevant

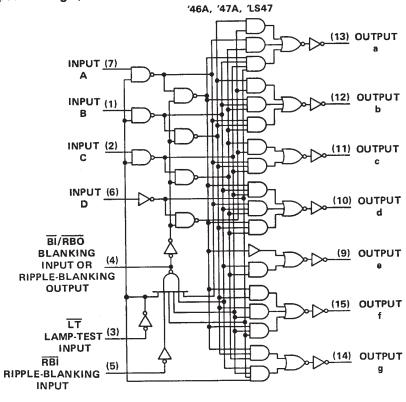
NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high, if blanking of a decimal zero is not desired.

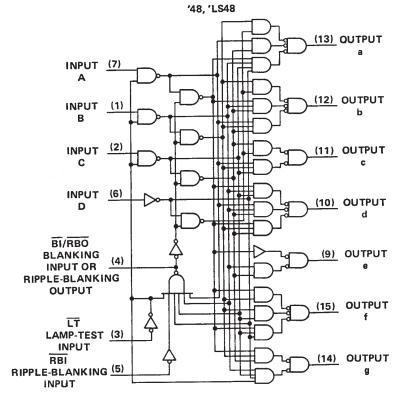
- 2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any other input.
- 3. When ripple-blanking input (RBI) and inputs A, B, C, and D are at a low level with the lamp-test input high, all segment outputs go low and the ripple-blanking output (RBO) goes to a low level (response condition).
- 4. When the blanking input/ripple-blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment outputs are high.

tBI/RBO is wire-AND logic serving as blanking input ( $\overline{BI}$ ) and/or ripple-blanking output ( $\overline{RBO}$ ).

'LS49 FUNCTION TABLE (T3)

| DECIMAL<br>OR |     | II | IPUT | s |    |    |   | οι | JTPU | тѕ |   |   | NOTE |
|---------------|-----|----|------|---|----|----|---|----|------|----|---|---|------|
| FUNCTION      | D   | С  | В    | Α | BI | а  | b | С  | d    | е  | f | g |      |
| 0             | L   | L  | L    | L | Н  | Н  | Н | Н  | Н    | Н  | Н | L |      |
| 1             | L   | L  | L    | Н | н  | L  | Н | Н  | L    | L  | L | L |      |
| 2             | L   | L  | Н    | L | Н  | н  | Н | L  | Н    | Н  | L | Н |      |
| 3             | L   | L  | Н    | H | Н  | Н  | Н | Н  | H    | L  | L | H |      |
| 4             | L   | Н  | L    | L | Н  | L  | Н | Н  | L    | L  | Н | Н |      |
| 5             | L   | H  | L    | Н | Н  | н  | L | Н  | Н    | L  | Н | Н |      |
| 6             | L   | Н  | Н    | L | Н  | L  | L | Н  | Н    | Н  | Н | Н |      |
| 7             | L   | Н  | H    | Н | H  | Н  | Н | Н  | L    | L  | L | L | 1    |
| 8             | Н   | L  | L    | L | Н  | Н  | Н | Н  | Н    | Н  | Н | Н | `    |
| 9             | Н   | L  | L    | Н | Н  | н  | Н | Н  | L    | L  | Н | Н |      |
| 10            | Н   | L  | Н    | L | Н  | L  | L | L  | Н    | Н  | L | Н |      |
| 11            | н   | L  | Н    | Н | H  | L  | L | H  | Н    | L  | L | Н |      |
| 12            | Н   | Н  | L    | L | Н  | L  | Н | L  | L    | L  | Н | Н |      |
| 13            | Н   | Н  | L    | Н | H  | Н  | L | L  | Н    | L  | Н | Н |      |
| 14            | н   | Н  | Н    | L | Н  | L  | L | L  | Н    | Н  | Н | Н |      |
| 15            | l H | Н  | Н    | Н | Н  | L_ | L | L  | L    | L  | L | L |      |
| BI            | X   | X  | ×    | Х | L  | L  | L | L  | L    | L  | L | L | 2    |


H = high level, L = low level, X = irrelevant


NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired.

 When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any other input.



#### logic diagrams (positive logic)

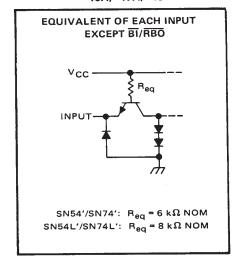




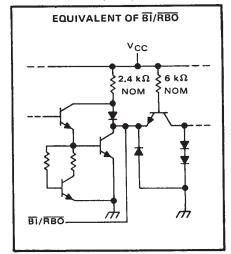

Pin numbers shown are for D, J, N, and W packages.



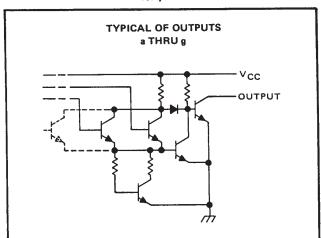
#### logic diagrams (continued)



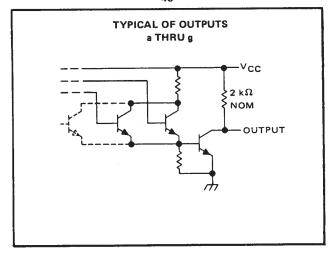

Pin numbers shown are for D, J, N, and W packages.




#### schematics of inputs and outputs

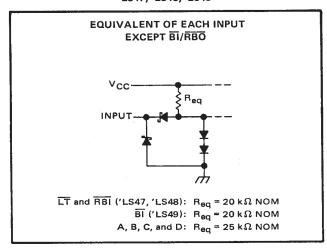

'46A, '47A, '48



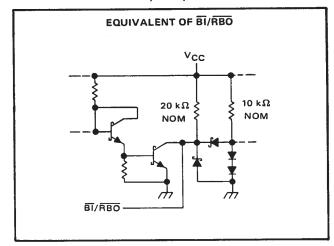

'46A, '47A, '48



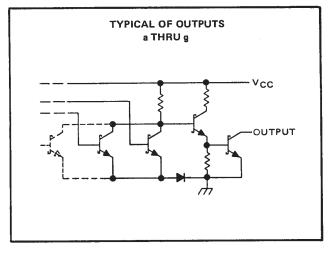
'46A, '47A

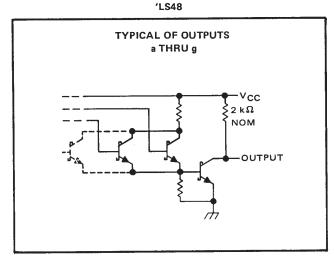



'48

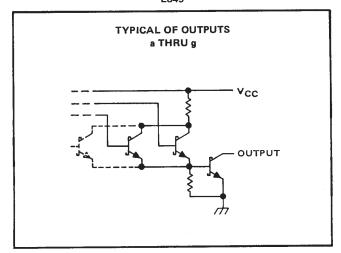



#### schematics of inputs and outputs


'LS47, 'LS48, 'LS49




'LS47, 'LS48, 'LS49




'LS47





'LS49





#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, VCC (see Note 1) .    |     |       |     |    |     |    |    |  |  |  |  |  |  |  |  |    |     |     |      | 7 V    |
|---------------------------------------|-----|-------|-----|----|-----|----|----|--|--|--|--|--|--|--|--|----|-----|-----|------|--------|
| Input voltage                         |     |       |     |    |     |    |    |  |  |  |  |  |  |  |  |    |     |     |      | 5.5 V  |
| Current forced into any output in the | off | state | е   |    |     |    |    |  |  |  |  |  |  |  |  |    |     |     |      | 1 mA   |
| Operating free-air temperature range: | SN  | 5446  | ŝΑ, | Si | V54 | 44 | 7A |  |  |  |  |  |  |  |  | -! | 55° | ,C  | to   | 125°C  |
|                                       | SN  | 7446  | δA, | Si | ٧7  | 44 | 7A |  |  |  |  |  |  |  |  |    | (   | o°( | C to | o 70°C |
| Storage temperature range             |     |       |     |    |     |    |    |  |  |  |  |  |  |  |  |    |     |     |      |        |

NOTE 1: Voltage values are with respect to network ground terminal.

#### recommended operating conditions

|                                    |          | 5   | N5446 | Α    |     | N5447 | A    | 5    | N7446 | A    | 5    | UNIT |      |      |
|------------------------------------|----------|-----|-------|------|-----|-------|------|------|-------|------|------|------|------|------|
|                                    |          | MIN | NOM   | MAX  | MIN | NOM   | MAX  | MIN  | NOM   | MAX  | MIN  | NOM  | MAX  | UNIT |
| Supply voltage, V <sub>CC</sub>    |          | 4.5 | 5     | 5.5  | 4.5 | 5     | 5.5  | 4.75 | 5     | 5.25 | 4.75 | 5    | 5.25 | V    |
| Off-state output voltage, VO(off)  | a thru g |     |       | 30   |     |       | 15   |      |       | 30   |      |      | 15   | ٧    |
| On-state output current, IO(on)    | a thru g |     |       | 40   |     |       | 40   |      |       | 40   |      |      | 40   | mA   |
| High-level output current, IOH     | BI/RBO   |     |       | -200 |     |       | -200 |      |       | -200 |      |      | -200 | μА   |
| Low-level output current, IOL      | BI/RBO   |     |       | 8    |     |       | 8    |      |       | 8    |      |      | 8    | mA   |
| Operating free-air temperature, TA | 1        | -55 | -     | 125  | -55 |       | 125  | 0    | 2     | 70   | 0    |      | 70   | °C   |

### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                    | PARAMETER                              |                            | TEST CONDIT                                                                          | IONS <sup>†</sup> | MIN | TYP‡     | MAX       | UNIT |
|--------------------|----------------------------------------|----------------------------|--------------------------------------------------------------------------------------|-------------------|-----|----------|-----------|------|
| VIH                | High-level input voltage               |                            |                                                                                      |                   | 2   |          |           | V    |
| VIL                | Low-level input voltage                |                            |                                                                                      |                   |     |          | 0.8       | V    |
| VIK                | Input clamp voltage                    |                            | VCC = MIN, II =                                                                      | -12 mA            |     |          | -1.5      | V    |
| VOH                | High-level output voltage              | BI/RBO                     | V <sub>CC</sub> = MIN, V <sub>IH</sub><br>V <sub>IL</sub> = 0.8 V, I <sub>OH</sub>   |                   | 2.4 | 3.7      |           | V    |
| V <sub>OL</sub>    | Low-level output voltage               | BI/RBO                     | V <sub>CC</sub> = MIN, V <sub>IH</sub><br>V <sub>IL</sub> = 0.8 V, I <sub>OL</sub>   | 1                 |     | 0.27     | 0.4       | ٧    |
| IO(off)            | Off-state output current               | a thru g                   | V <sub>CC</sub> = MAX, V <sub>IH</sub><br>V <sub>IL</sub> = 0.8 V, V <sub>O</sub> (  |                   |     |          | 250       | μА   |
| V <sub>O(on)</sub> | On-state output voltage                | a thru g                   | V <sub>CC</sub> = MIN, V <sub>IH</sub><br>V <sub>IL</sub> = 0.8 V, I <sub>O</sub> (c |                   |     | 0.3      | 0.4       | ٧    |
| l <sub>l</sub>     | Input current at maximum input voltage | Any input<br>except BI/RBO | VCC = MAX, Vi =                                                                      | 5.5 V             |     |          | 1         | mA   |
| ЧН                 | High-level input current               | Any input<br>except BI/RBO | VCC = MAX, VI =                                                                      | 2.4 V             |     |          | 40        | μА   |
| IIL                | Low-level input current                | Any input<br>except BI/RBO | V <sub>CC</sub> = MAX, V <sub>I</sub> =                                              | 0.4 V             |     |          | -1.6      | mA   |
|                    |                                        | BI/RBO                     |                                                                                      |                   |     |          | -4        |      |
| los                | Short-circuit output current           | BI/RBO                     | V <sub>CC</sub> = MAX                                                                |                   |     |          | -4        | mA   |
| Icc                | Supply current                         |                            | V <sub>CC</sub> = MAX,<br>See Note 2                                                 | SN54'<br>SN74'    |     | 64<br>64 | 85<br>103 | mA   |

<sup>†</sup>For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

#### switching characteristics, VCC = 5 V, TA = 25°C

|      | PARAMETER                    | TEST CONDITIONS                        | MIN | TYP | MAX | UNIT  |
|------|------------------------------|----------------------------------------|-----|-----|-----|-------|
| toff | Turn-off time from A input   |                                        |     |     | 100 | ns    |
| ton  | Turn-on time from A input    | $C_L = 15  pF$ , $R_L = 120  \Omega$ , |     |     | 100 | ] ""  |
| toff | Turn-off time from RBI input | See Note 3                             |     |     | 100 | ns    |
| ton  | Turn-on time from RBI input  |                                        |     |     | 100 | ] ''' |

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.



 $<sup>\</sup>ddagger$ All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .

NOTE 2: ICC is measured with all outputs open and all inputs at 4.5 V.

# SN5446A, '47A, '48, SN54LS47, 'LS48, 'LS49 SN7446A, '47A, '48, SN74LS47, 'LS48, 'LS49 **BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS**

SDLS111 - MARCH 1974 - REVISED MARCH 1988

## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| V  |
|----|
| V  |
| °C |
| °C |
| °C |
| )  |

NOTE 1: Voltage values are with respect to network ground terminal.

#### recommended operating conditions

|                                    |          |     | SN544 | В    |      | 8   | UNIT |       |
|------------------------------------|----------|-----|-------|------|------|-----|------|-------|
|                                    |          | MIN | NOM   | MAX  | MIN  | NOM | MAX  | OIVIT |
| Supply voltage, V <sub>CC</sub>    |          | 4.5 | 5     | 5.5  | 4.75 | 5   | 5.25 | V     |
|                                    | a thru g |     |       | -400 |      |     | -400 | μА    |
| High-level output current, IOH     | BI/RBO   |     |       | -200 |      |     | 200  | μΑ    |
|                                    | a thru g |     |       | 6.4  |      |     | 6.4  | mA    |
| Low-level output current, IOL      | BI/RBO   |     |       | 8    |      |     | 8    | IIIA  |
| Operating free-air temperature, TA |          | -55 |       | 125  | 0    |     | 70   | °c    |

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|     | PARAMETER                              |                                      | TEST CONI                                                           | OITIONS†               | MIN  | TYP‡     | MAX        | UNIT  |
|-----|----------------------------------------|--------------------------------------|---------------------------------------------------------------------|------------------------|------|----------|------------|-------|
| VIH | High-level input voltage               |                                      |                                                                     |                        | 2    |          |            | V     |
| VIL | Low-level input voltage                |                                      |                                                                     |                        |      |          | 0.8        | V     |
| VIK | Input clamp voltage                    |                                      | V <sub>CC</sub> = MIN, II                                           | = -12 mA               |      |          | -1.5       | V     |
| Voн | High-level output voltage              | a thru g                             | V <sub>CC</sub> = MIN, V<br>V <sub>II</sub> = 0.8 V, I <sub>C</sub> |                        | 2.4  | 3.7      |            | V     |
| 10  | Output current                         | a thru g                             | V <sub>CC</sub> = MIN, V                                            | O = 0.85 V,            | -1.3 | -2       |            | mA    |
| VOL | Low-level output voltage               |                                      | V <sub>CC</sub> = MIN, V<br>V <sub>IL</sub> = 0.8 V, I <sub>C</sub> |                        |      | 0.27     | 0.4        | ٧     |
| Ц   | Input current at maximum input voltage | Any input<br>except BI/RBO           | V <sub>CC</sub> = MAX, V                                            | <sub>1</sub> = 5.5 V   |      |          | 1          | mA    |
| ΙΗ  | High-level input current               | Any input except BI/RBO              | V <sub>CC</sub> = MAX, V                                            | = 2.4 V                |      |          | 40         | μА    |
| IIL | Low-level input current                | Any input<br>except BI/RBO<br>BI/RBO | V <sub>CC</sub> = MAX, V                                            | ' <sub>I</sub> = 0.4 V |      |          | -1.6<br>-4 | mA    |
| los | Short-circuit output current           | BI/RBO                               | V <sub>CC</sub> = MAX                                               |                        |      |          | -4         | mA    |
| Icc | Supply current                         |                                      | V <sub>CC</sub> = MAX,<br>See Note 2                                | SN5448<br>SN7448       |      | 53<br>53 | 76<br>90   | -l mA |

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: ICC is measured with all outputs open and all inputs at 4.5 V.

### switching characteristics, VCC = 5 V, TA = 25 °C

| PARAMETER                                                                        | TEST CONDITIONS                                | MIN TYP | MAX | UNIT |
|----------------------------------------------------------------------------------|------------------------------------------------|---------|-----|------|
| <sup>†</sup> PHL Propagation delay time, high-to-low-level output from A input   |                                                |         | 100 | ns   |
| tpLH Propagation delay time, low-to-high-level output from A input               | $C_L = 15 \text{ pF}, R_L = 1 \text{ k}\Omega$ |         | 100 | 113  |
| tpHL Propagation delay time, high-to-low-level output from RBI input             | See Note 3                                     |         | 100 | ns   |
| <sup>†</sup> PLH Propagation delay time, low-to-high-level output from RBI input |                                                |         | 100 |      |

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.



 $<sup>\</sup>ddagger$ AII typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_A = 25 ^{\circ}\text{C}$ .

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, VCC (see Note 1)                              | 7 V  |
|---------------------------------------------------------------|------|
| Input voltage                                                 |      |
| Peak output current ( $t_W \le 1$ ms, duty cycle $\le 10\%$ ) | mΑ   |
| Current forced into any output in the off state               | mΑ   |
| Operating free-air temperature range: SN54LS47                | 25°C |
| SN74LS47                                                      | O°C  |
| Storage temperature range                                     | o°C  |

NOTE 1: Voltage values are with respect to network ground terminal.

#### recommended operating conditions

|                                    |          | S   | N54LS4 | 17  | S    | N74LS4 | 17   |      |
|------------------------------------|----------|-----|--------|-----|------|--------|------|------|
|                                    |          | MIN | NOM    | MAX | MIN  | NOM    | MAX  | TINU |
| Supply voltage, V <sub>CC</sub>    |          | 4.5 | 5      | 5.5 | 4.75 | 5      | 5.25 | V    |
| Off-state output voltage, VO(off)  | a thru g |     | ***    | 15  |      |        | 15   | V    |
| On-state output current, IO(on)    | a thru g |     |        | 12  |      |        | 24   | mA   |
| High-level output current, IOH     | BI/RBO   |     |        | -50 |      |        | -50  | μА   |
| Low-level output current, IOL      | BI/RBO   |     |        | 1.6 |      |        | 3.2  | mA   |
| Operating free-air temperature, TA |          | -55 |        | 125 | 0    |        | 70   | °c   |

### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                    | PARAMETER                    |                            | TEST COM                                                         | IDITIONS†                                            | S    | N54LS4           | 17   | S    | N74LS            | 47   |      |
|--------------------|------------------------------|----------------------------|------------------------------------------------------------------|------------------------------------------------------|------|------------------|------|------|------------------|------|------|
|                    | FARAMETER                    |                            | 1EST CON                                                         | DITIONS.                                             | MIN  | TYP <sup>‡</sup> | MAX  | MIN  | TYP <sup>‡</sup> | MAX  | UNIT |
| VIH                | High-level input voltage     |                            |                                                                  |                                                      | 2    |                  |      | 2    |                  |      | V    |
| VIL                | Low-level input voltage      |                            |                                                                  |                                                      |      |                  | 0.7  |      |                  | 0.8  | V    |
| VIK                | Input clamp voltage          |                            | V <sub>CC</sub> = MIN,                                           | I <sub>1</sub> = -18 mA                              |      |                  | -1.5 |      |                  | -1.5 | V    |
| v <sub>OH</sub>    | High-level output voltage    | BI/RBO                     | V <sub>CC</sub> = MIN,<br>V <sub>IL</sub> = V <sub>IL</sub> max, | V <sub>IH</sub> = 2 V,<br>I <sub>OH</sub> = -50 μA   | 2.4  | 4.2              |      | 2.4  | 4.2              |      | V    |
| VOL                | Low-level output voltage     | BI/RBO                     | V <sub>CC</sub> = MIN,<br>V <sub>IH</sub> = 2 V,                 | I <sub>OL</sub> = 1.6 mA                             |      | 0.25             | 0.4  |      | 0.25             | 0.4  | v    |
|                    |                              |                            | VIL = VIL max                                                    | I <sub>OL</sub> = 3.2 mA                             |      |                  |      |      | 0.35             | 0.5  |      |
| IO(off)            | Off-state output current     | a thru g                   | V <sub>CC</sub> = MAX,<br>V <sub>IL</sub> = V <sub>IL</sub> max, | V <sub>IH</sub> = 2 V,<br>V <sub>O(off)</sub> = 15 V |      |                  | 250  |      |                  | 250  | μА   |
| V <sub>O(on)</sub> | On-state output voltage      | a thru q                   | V <sub>CC</sub> = MIN,<br>V <sub>IH</sub> = 2 V,                 | l <sub>O(on)</sub> = 12 mA                           |      | 0.25             | 0.4  |      | 0.25             | 0.4  | v    |
| 0 (011)            |                              |                            | V <sub>IL</sub> = V <sub>IL</sub> max                            | 1 <sub>O(on)</sub> = 24 mA                           |      |                  |      |      | 0.35             | 0.5  |      |
| I <sub>I</sub>     | Input current at maximur     | n input voltage            | V <sub>CC</sub> = MAX,                                           | V <sub>I</sub> = 7 V                                 |      |                  | 0.1  |      |                  | 0.1  | mA   |
| IJН                | High-level input current     |                            | V <sub>CC</sub> = MAX,                                           | V <sub>I</sub> = 2.7 V                               |      |                  | 20   |      |                  | 20   | μА   |
| I <sub>I</sub> L   | Low-level input current      | Any input<br>except BI/RBO | V <sub>CC</sub> = MAX,                                           | V <sub>I</sub> = 0.4 V                               |      |                  | -0.4 |      |                  | -0.4 | mA   |
|                    |                              | BI/RBO                     |                                                                  |                                                      |      |                  | -1.2 |      |                  | -1.2 |      |
| Ios                | Short-circuit output current | BI/RBO                     | V <sub>CC</sub> = MAX                                            |                                                      | -0.3 |                  | -2   | -0.3 |                  | -2   | mA   |
| 1cc                | Supply current               |                            | V <sub>CC</sub> = MAX,                                           | See Note 2                                           |      | 7                | 13   |      | 7                | 13   | mA   |

<sup>†</sup>For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡All typical values are at  $V_{CC}$  = 5 V,  $T_A$  = 25°C. NOTE 2:  $I_{CC}$  is measured with all outputs open and all inputs at 4.5 V.

#### switching characteristics, VCC = 5 V, TA = 25 °C

|      | PARAMETER                                        | TEST CONDITIONS                          | MIN | TYP | MAX | UNIT |
|------|--------------------------------------------------|------------------------------------------|-----|-----|-----|------|
| toff | Turn-off time from A input                       |                                          |     |     | 100 |      |
| ton  | Turn-on time from A input                        | $C_L = 15 \text{ pF}, R_L = 665 \Omega,$ |     |     | 100 | ns   |
| toff | Turn-off time from RBI input, outputs (a-f) only | See Note 3                               |     |     | 100 |      |
| ton  | Turn-on time from RBI input, outputs (a-f) only  |                                          |     |     | 100 | ns   |

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.



# SN5446A, '47A, '48, SN54LS47, 'LS48, 'LS49 SN7446A, '47A, '48, SN74LS47, 'LS48, 'LS49 **BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS**

SDLS111 - MARCH 1974 - REVISED MARCH 1988

## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, VCC (see Note 1   | ) .   |    |      |     |   |   |   |   |  |  |   |   |   | <br> |  |   |   |    |     |      | 7    | V |
|-----------------------------------|-------|----|------|-----|---|---|---|---|--|--|---|---|---|------|--|---|---|----|-----|------|------|---|
| Input voltage                     |       |    |      |     | _ | _ | _ | _ |  |  | _ |   |   | <br> |  |   |   |    |     |      | 7    | V |
| Operating free-air temperature ra | inge: | SN | 54L  | .S4 | 8 |   |   |   |  |  |   |   |   | <br> |  |   |   |    | 55° | C to | 125° | С |
|                                   |       | SN | 74 L | _S4 | 8 |   |   |   |  |  |   |   | • |      |  | • |   |    | U   | Ut   | 0 /U | C |
| Storage temperature range         |       |    |      |     |   |   |   |   |  |  |   | • | • | <br> |  | • | • | -6 | 35° | C to | 150° | С |

NOTE 1: Voltage values are with respect to network ground terminal.

#### recommended operating conditions

|                                    |          | s   | N54LS4 | 18   | S    | N74LS4 | 18   | UNIT |
|------------------------------------|----------|-----|--------|------|------|--------|------|------|
|                                    |          | MIN | NOM    | MAX  | MIN  | NOM    | MAX  | OWIT |
| Supply voltage, VCC                |          | 4.5 | 5      | 5.5  | 4.75 | 5      | 5.25 | ٧    |
|                                    | a thru g |     |        | -100 |      |        | -100 | μА   |
| High-level output current, IOH     | BI/RBO   | 1   |        | -50  |      |        | -50  | μΑ.  |
|                                    | a thru g |     |        | 2    |      |        | 6    | mA   |
| Low-level output current, IOL      | BĪ/RBO   |     |        | 1.6  |      |        | 3.2  | IIIA |
| Operating free-air temperature, TA |          | -55 |        | 125  | 0    |        | 70   | °c   |

#### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                                                                                             | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. |                            | TEST CON                                                         | DITIONS                                         | S    | N54LS4 | 18   | S    | N74LS4           | 8    | UNIT     |
|---------------------------------------------------------------------------------------------|------------------------------------------|----------------------------|------------------------------------------------------------------|-------------------------------------------------|------|--------|------|------|------------------|------|----------|
|                                                                                             | PARAMETER                                |                            | TEST CON                                                         | י פאטווות.                                      | MIN  | TYP‡   | MAX  | MIN  | TYP <sup>‡</sup> | MAX  | Olvii    |
| VIH                                                                                         | High-level input voltage                 | -                          |                                                                  |                                                 | 2    |        |      | 2    |                  |      | V        |
| VIL                                                                                         | Low-level input voltage                  |                            |                                                                  |                                                 |      |        | 0.7  |      |                  | 0.8  | V        |
| VIK                                                                                         | Input clamp voltage                      |                            | V <sub>CC</sub> = MIN,                                           | l <sub>1</sub> = -18 mA                         |      |        | -1.5 |      |                  | -1.5 | V        |
| Voн                                                                                         | High-level output voltage                | a thru g and<br>BI/RBO     | V <sub>CC</sub> = MIN,<br>V <sub>IL</sub> = V <sub>IL</sub> max, | V <sub>IH</sub> = 2 V,<br>I <sub>OH</sub> = MAX | 2.4  | 4.2    |      | 2.4  | 4.2              |      | v        |
| I <sub>O</sub>                                                                              | Output current                           | a thru g                   | V <sub>CC</sub> = MIN,<br>Input conditions                       | $V_O = 0.85 V$ , as for $V_{OH}$                | -1.3 | -2     |      | -1.3 | -2               |      | mA       |
|                                                                                             |                                          | a thru a                   | V <sub>CC</sub> = MIN,                                           | I <sub>OL</sub> = 2 mA                          |      | 0.25   | 0.4  |      | 0.25             | 0.4  | V        |
| \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | Low-level output voltage                 | a thru g                   | V <sub>IH</sub> = 2 V,<br>V <sub>IL</sub> = V <sub>IL</sub> max  | IOL = 6 mA                                      |      |        |      |      | 0.35             | 0.5  |          |
| VOL                                                                                         | LOW-level output voltage                 | BI/RBO                     | V <sub>CC</sub> = MIN,<br>V <sub>IH</sub> = 2 V,                 | I <sub>OL</sub> = 1.6 mA                        |      | 0.25   | 0.4  |      | 0.25             | 0.4  | l ,      |
|                                                                                             |                                          | ВІ/КВО                     | VIH = VIL max                                                    | I <sub>OL</sub> = 3.2 mA                        |      |        |      |      | 0.35             | 0.5  | 1 - 1    |
| 11                                                                                          | Input current at maximum input voltage   | Any input<br>except BI/BRO | V <sub>CC</sub> = MAX,                                           | V <sub>1</sub> = 7 V                            |      |        | 0.1  |      |                  | 0.1  | mA       |
| ΊΗ                                                                                          | High-level input current                 | Any input<br>except BI/RBO | V <sub>CC</sub> = MAX,                                           | V <sub>I</sub> = 2.7 V                          |      |        | 20   |      |                  | 20   | μΑ       |
| 111                                                                                         | Low-level input current                  | Any input<br>except BI/RBO | V <sub>CC</sub> = MAX,                                           | V <sub>I</sub> = 0.4 V                          |      |        | -0.4 |      |                  | -0.4 | mA       |
|                                                                                             |                                          | BI/RBO                     |                                                                  |                                                 |      |        | -1.2 |      |                  | -1.2 | <u> </u> |
| los                                                                                         | Short-circuit output current             | BI/RBO                     | V <sub>CC</sub> = MAX                                            |                                                 | -0.3 |        | -2   | -0.3 |                  | -2   | mA       |
| ¹cc                                                                                         | Supply current                           |                            | V <sub>CC</sub> = MAX,                                           | See Note 2                                      |      | 25     | 38   |      | 25               | 38   | mA       |

<sup>†</sup>For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

## switching characteristics, $V_{CC} = 5 \text{ V}$ , $T_A = 25 \, ^{\circ}\text{C}$

| PARAMETER                                                                       | TEST CONDITIONS                                 | MIN TY | P MAX | UNIT |
|---------------------------------------------------------------------------------|-------------------------------------------------|--------|-------|------|
| tPHL Propagation delay time, high-to-low-level output from A input              | $C_L = 15 \text{ pF}, R_L = 4 \text{ k}\Omega,$ |        | 100   | ns   |
| tplH Propagation delay time, low-to-high-level output from A input              | See Note 3                                      |        | 100   | 115  |
| tpHL Propagation delay time, high-to-low-level output (a-f only) from RBI input | $C_L = 15 \text{ pF}, R_L = 6 \text{ k}\Omega,$ |        | 100   | ns   |
| tPLH Propagation delay time, low-to-high-level output (a-f only) from RBI input | See Note 3                                      |        | 100   |      |

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.



 $<sup>\</sup>ddagger$ All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_A 25^{\circ}$ C.

NOTE 2: I<sub>CC</sub> is measured with all outputs open and all inputs at 4.5 V.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, VCC (see Note 1)                |  |  |  |       |  |  |  |   |   |  |    |      |      | 7 V    |
|-------------------------------------------------|--|--|--|-------|--|--|--|---|---|--|----|------|------|--------|
| Input voltage                                   |  |  |  |       |  |  |  |   |   |  |    |      |      | 7 V    |
| Current forced into any output in the off state |  |  |  |       |  |  |  |   |   |  |    |      |      | 1 mA   |
| Operating free-air temperature range: SN54LS49  |  |  |  |       |  |  |  |   |   |  | 5  | 55°( | C to | 125°C  |
| SN74LS49                                        |  |  |  |       |  |  |  |   |   |  |    | U    | Ct   | 0 /U C |
| Storage temperature range                       |  |  |  | <br>- |  |  |  | - | - |  | -6 | 5°(  | : to | 150°C  |

NOTE 1: Voltage values are with respect to network ground terminal.

#### recommended operating conditions

|                                    | S   | N54LS | 19  | S    | N74LS | 19   | UNIT |
|------------------------------------|-----|-------|-----|------|-------|------|------|
|                                    | MIN | NOM   | MAX | MIN  | NOM   | MAX  | Uiti |
| Supply voltage, V <sub>CC</sub>    | 4.5 | 5     | 5.5 | 4.75 | 5     | 5.25 | V    |
| High-level output voltage, VOH     |     |       | 5.5 |      |       | 5.5  | V    |
| Low-level output current, IOL      |     |       | 4   |      |       | В    | mA   |
| Operating free-air temperature, TA | -55 |       | 125 | 0    |       | 70   | °C   |

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|     | PARAMETER                              | TEST COA                                                         | NDITIONS†                                         | S   | N54LS4 | 19   | S   | N74LS4 | 19   |      |
|-----|----------------------------------------|------------------------------------------------------------------|---------------------------------------------------|-----|--------|------|-----|--------|------|------|
|     | TANAMETER                              | TEST CON                                                         | ADITIONS,                                         | MIN | TYP‡   | MAX  | MIN | TYP‡   | MAX  | UNIT |
| VIH | High-level input voltage               |                                                                  |                                                   | 2   |        |      | 2   |        |      | V    |
| VIL | Low-level input voltage                |                                                                  |                                                   |     |        | 0.7  |     |        | 0.8  | V    |
| VIK | Input clamp voltage                    | VCC = MIN,                                                       | I <sub>I</sub> = -18 mA                           |     |        | -1.5 |     |        | -1.5 | V    |
| ІОН | High-level output current              | V <sub>CC</sub> = MIN,<br>V <sub>IL</sub> = V <sub>IL</sub> max, | V <sub>IH</sub> = 2 V,<br>V <sub>OH</sub> = 5.5 V |     |        | 250  |     |        | 250  | μА   |
| VOL | Low-level output voltage               | V <sub>CC</sub> = MIN,<br>V <sub>IH</sub> = 2 V,                 | IOL = 4 mA                                        |     | 0.25   | 0.4  |     | 0.25   | 0.4  | V    |
|     |                                        | VIL = VIL max                                                    | 1 <sub>OL</sub> = 8 mA                            |     |        |      |     | 0.35   | 0.5  | ] *  |
| Ц   | Input current at maximum input voltage | V <sub>CC</sub> = MAX,                                           | V <sub>1</sub> = 7 V                              |     |        | 0.1  |     |        | 0.1  | mA   |
| IH  | High-level input current               | V <sub>CC</sub> = MAX,                                           | V <sub>I</sub> = 2.7 V                            |     |        | 20   |     |        | 20   | μΑ   |
| IL  | Low-level input current                | V <sub>CC</sub> = MAX,                                           | V <sub>1</sub> = 0.4 V                            |     |        | -0.4 |     |        | -0.4 | mA   |
| lcc | Supply current                         | V <sub>CC</sub> = MAX,                                           | See Note 2                                        |     | 8      | 15   |     | 8      | 15   | mA   |

<sup>&</sup>lt;sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

#### switching characteristics, VCC = 5 V, TA = 25°C

|                  | PARAMETER                                                                                      | TEST CONDITIONS                                 | MIN | TYP | MAX | UNIT |
|------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------|-----|-----|-----|------|
| tPHL             | Propagation delay time, high-to-low-level output from A input                                  | $C_L = 15 \text{ pF}, R_L = 4 \text{ k}\Omega,$ |     |     | 100 |      |
| <sup>t</sup> PLH | Propagation delay time, low-to-high-level output from A input                                  | See Note 3                                      |     | ·   | 100 | ns   |
| tPHL             | Propagation delay time, high-to-low-level output (a-f only) from RBI input                     | $C_L = 15 \text{ pF}, R_L = 6 \text{ k}\Omega,$ |     |     | 100 |      |
| tPLH             | Propagation delay time, low-to-high-level output (a-f only) from $\overline{\text{RBI}}$ input | See Note 3                                      |     |     | 100 | ns   |

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.



 $<sup>\</sup>ddagger$ All typical values are at V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25°C. NOTE 2: I<sub>CC</sub> is measured with all outputs open and all inputs at 4.5 V.





24-Aug-2018

#### **PACKAGING INFORMATION**

| Orderable Device | Status | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan                   | Lead/Ball Finish (6) | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5)          | Samp |
|------------------|--------|--------------|--------------------|------|----------------|----------------------------|----------------------|--------------------|--------------|----------------------------------|------|
| 5962-9856401QEA  | ACTIVE | CDIP         | J                  | 16   | 1              | TBD                        | A42                  | N / A for Pkg Type | -55 to 125   | 5962-9856401QE<br>A<br>SNJ5447AJ | Samp |
| 5962-9856401QFA  | ACTIVE | CFP          | W                  | 16   | 1              | TBD                        | A42                  | N / A for Pkg Type | -55 to 125   | 5962-9856401QF<br>A<br>SNJ5447AW | Samp |
| 7604501EA        | ACTIVE | CDIP         | J                  | 16   | 1              | TBD                        | A42                  | N / A for Pkg Type | -55 to 125   | 7604501EA<br>SNJ54LS47J          | Samp |
| SN5447AJ         | ACTIVE | CDIP         | J                  | 16   | 1              | TBD                        | A42                  | N / A for Pkg Type | -55 to 125   | SN5447AJ                         | Samp |
| SN54LS47J        | ACTIVE | CDIP         | J                  | 16   | 1              | TBD                        | A42                  | N / A for Pkg Type | -55 to 125   | SN54LS47J                        | Samp |
| SN54LS49J        | ACTIVE | CDIP         | J                  | 14   | 1              | TBD                        | A42                  | N / A for Pkg Type | -55 to 125   | SN54LS49J                        | Samp |
| SN7447AN         | ACTIVE | PDIP         | N                  | 16   | 25             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | N / A for Pkg Type | 0 to 70      | SN7447AN                         | Samp |
| SN7447ANE4       | ACTIVE | PDIP         | N                  | 16   | 25             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | N / A for Pkg Type | 0 to 70      | SN7447AN                         | Samp |
| SN74LS47D        | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | 0 to 70      | LS47                             | Samj |
| SN74LS47DG4      | ACTIVE | SOIC         | D                  | 16   | 40             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | 0 to 70      | LS47                             | Samp |
| SN74LS47DR       | ACTIVE | SOIC         | D                  | 16   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM |              | LS47                             | Sam  |
| SN74LS47N        | ACTIVE | PDIP         | N                  | 16   | 25             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | N / A for Pkg Type | 0 to 70      | SN74LS47N                        | Sam  |
| SN74LS47NE4      | ACTIVE | PDIP         | N                  | 16   | 25             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | N / A for Pkg Type | 0 to 70      | SN74LS47N                        | Sam  |
| SN74LS47NSR      | ACTIVE | SO           | NS                 | 16   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM | 0 to 70      | 74LS47                           | Sam  |
| SNJ5447AJ        | ACTIVE | CDIP         | J                  | 16   | 1              | TBD                        | A42                  | N / A for Pkg Type | -55 to 125   | 5962-9856401QE<br>A<br>SNJ5447AJ | Sam  |
| SNJ5447AW        | ACTIVE | CFP          | W                  | 16   | 1              | TBD                        | A42                  | N / A for Pkg Type | -55 to 125   | 5962-9856401QF<br>A<br>SNJ5447AW | Sam  |



### PACKAGE OPTION ADDENDUM

24-Aug-2018

| Orderable Device | Status | Package Type | Package | Pins | Package | Eco Plan | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Device Marking          | Samples |
|------------------|--------|--------------|---------|------|---------|----------|------------------|--------------------|--------------|-------------------------|---------|
|                  | (1)    |              | Drawing |      | Qty     | (2)      | (6)              | (3)                |              | (4/5)                   |         |
| SNJ54LS47FK      | ACTIVE | LCCC         | FK      | 20   | 1       | TBD      | POST-PLATE       | N / A for Pkg Type | -55 to 125   | SNJ54LS<br>47FK         | Samples |
| SNJ54LS47J       | ACTIVE | CDIP         | J       | 16   | 1       | TBD      | A42              | N / A for Pkg Type | -55 to 125   | 7604501EA<br>SNJ54LS47J | Samples |
| SNJ54LS49J       | ACTIVE | CDIP         | J       | 14   | 1       | TBD      | A42              | N / A for Pkg Type | -55 to 125   | SNJ54LS49J              | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



## **PACKAGE OPTION ADDENDUM**

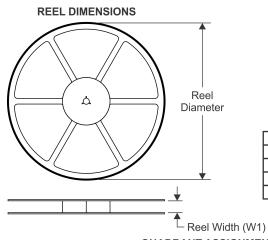
24-Aug-2018

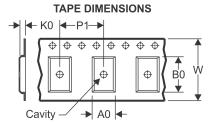
#### OTHER QUALIFIED VERSIONS OF SN5447A, SN54LS47, SN7447A, SN74LS47:

● Catalog: SN7447A, SN74LS47

Military: SN5447A, SN54LS47

NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product


• Military - QML certified for Military and Defense Applications

## PACKAGE MATERIALS INFORMATION

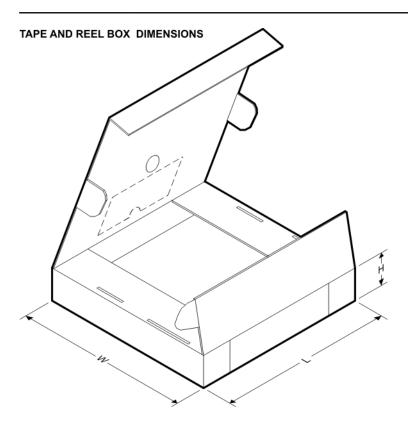
www.ti.com 10-Sep-2015

### TAPE AND REEL INFORMATION





| A0 |                                                           |
|----|-----------------------------------------------------------|
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |


#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



#### \*All dimensions are nominal

| Device     | Package<br>Type | Package<br>Drawing |    |      | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| SN74LS47DR | SOIC            | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |

www.ti.com 10-Sep-2015



#### \*All dimensions are nominal

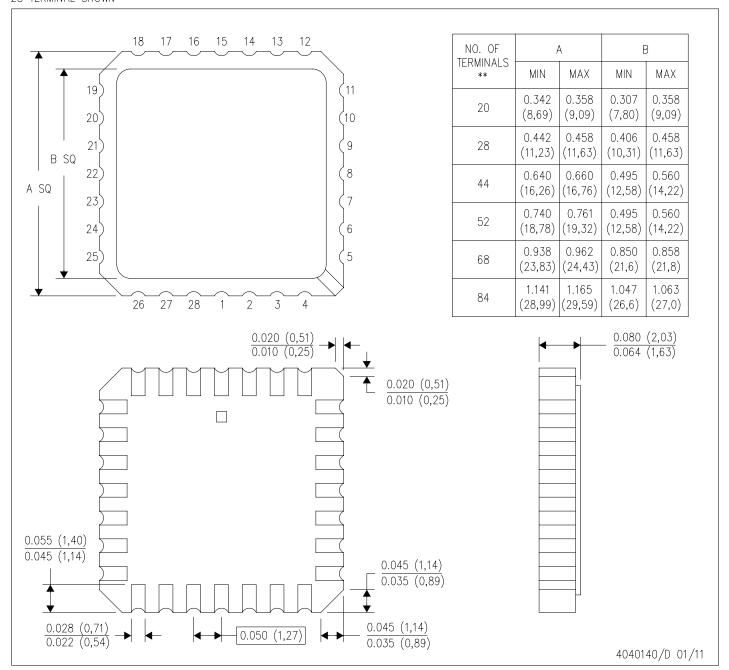
| Device     | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |  |
|------------|--------------|-----------------|------|------|-------------|------------|-------------|--|
| SN74LS47DR | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |  |

# N (R-PDIP-T\*\*)

## PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



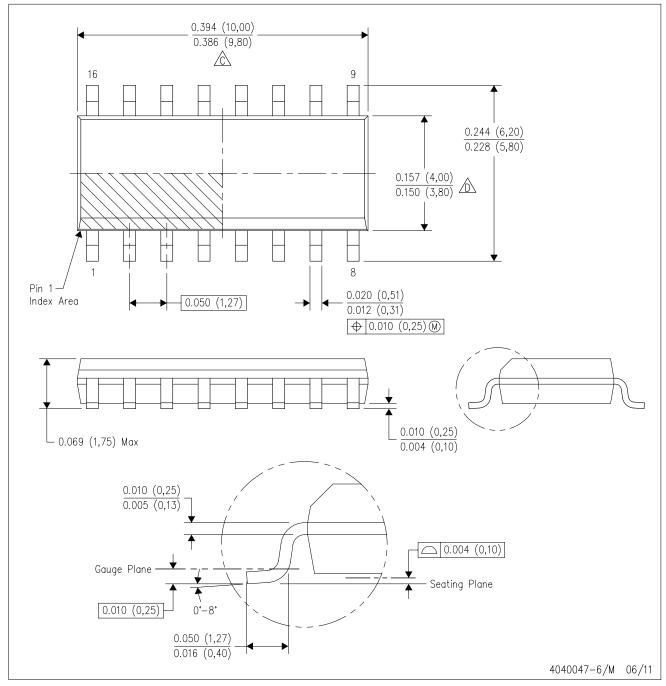

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.



# FK (S-CQCC-N\*\*)

## LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

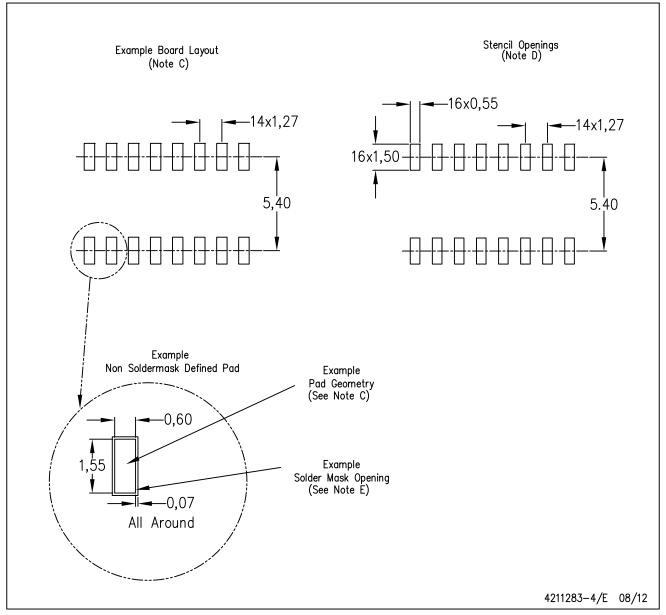



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004



# D (R-PDS0-G16)

### PLASTIC SMALL OUTLINE




- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.



# D (R-PDSO-G16)

## PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

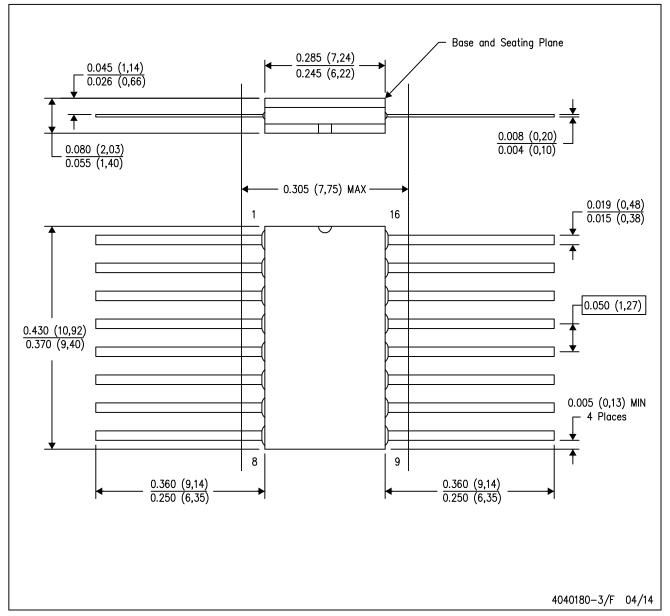


### **MECHANICAL DATA**

## NS (R-PDSO-G\*\*)

# 14-PINS SHOWN

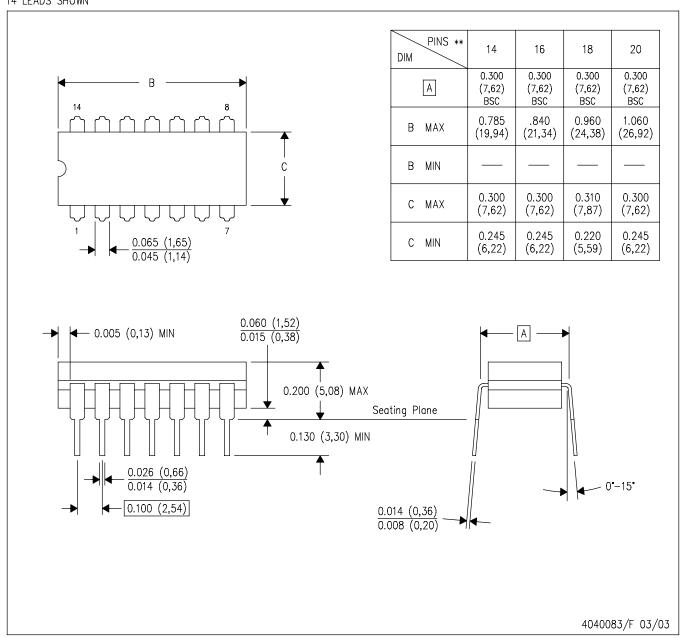
#### PLASTIC SMALL-OUTLINE PACKAGE




- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

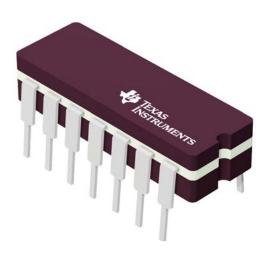


# W (R-GDFP-F16)


## CERAMIC DUAL FLATPACK



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16



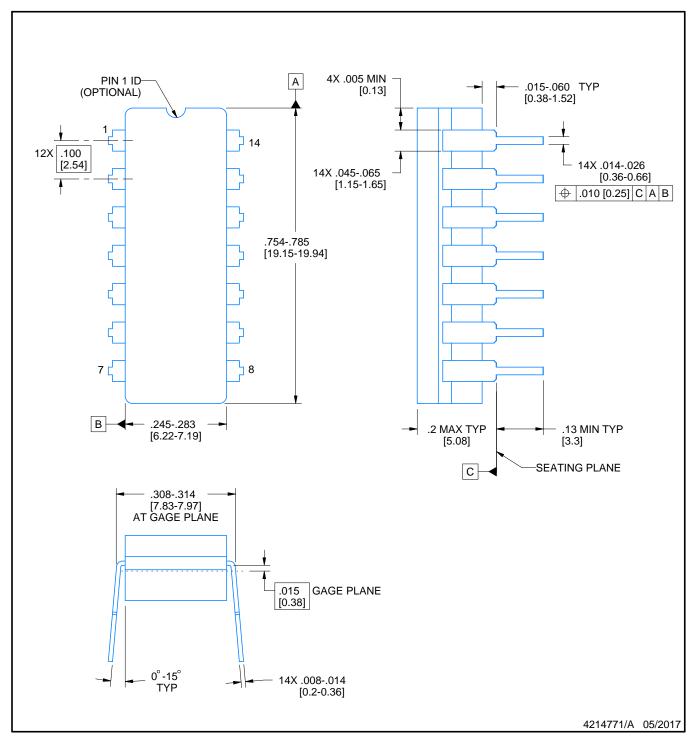

## 14 LEADS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

CERAMIC DUAL IN LINE PACKAGE

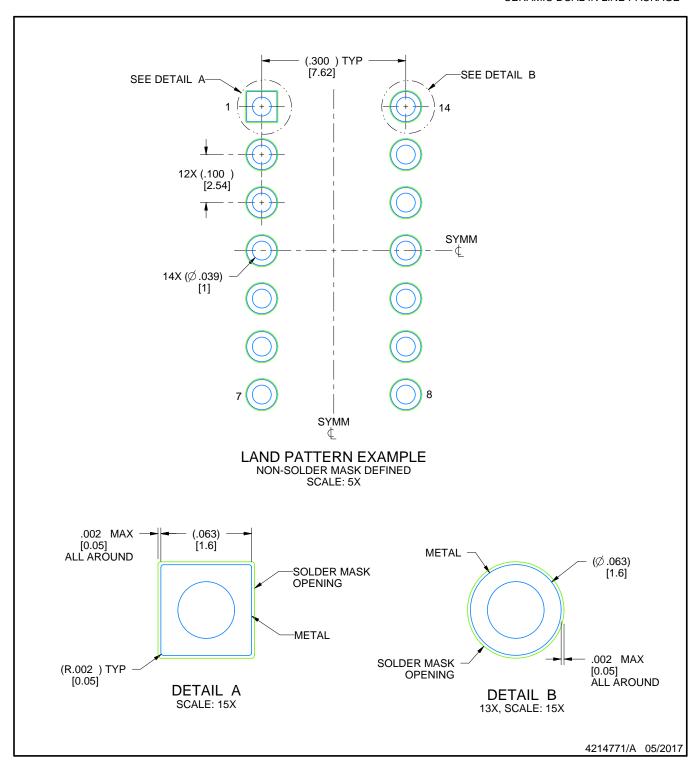



Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040083-5/G






CERAMIC DUAL IN LINE PACKAGE



- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- His package is remitted by sealed with a ceramic its using glass mit.
   Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
   Falls within MIL-STD-1835 and GDIP1-T14.



CERAMIC DUAL IN LINE PACKAGE



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

# **Texas Instruments:**

SN74LS47NSR SN74LS47N SN74LS47D SN74LS47NE4 SN74LS47DG4 SN74LS47DR