gen4-uLCD-(24-35)P4 Series

Image file not found - <../diablo16/ img/gen4-uLCD-35D/ gen4_uLCD_35D.png>

gen4-uLCD-XXP4(Non-Touch)
gen4-uLCD-XXP4T(Resistive Touch)
gen4-uLCD-XXP4CT(Capacitive Touch)
gen4-uLCD-XXP4CT-CLB(Capactive Touch w/ CLB)

* - XX indicates the display size: 24 (2.4"), 28 (2.8"), 32 (3.2") and 35 (3.5")

Datasheet

Revision 1.2

Copyright © 2024 4D Systems

Contents

1. Description	4
2. Features	5
3. Hardware Overview	6
4. Hardware Interface - Pins	8
4.1. Serial Ports - TTL	8
4.2. General Purpose I/O	10
4.3. I2C Interface	11
4.4. System Pins	12
4.5. Analog Inputs	12
5. Module Features	13
5.1. PIXXI44 Processor	13
5.2. Audio	13
5.3. SD/SDHC Memory Cards	14
5.4. FAT16	15
5.5. Micro-SD Socket	15
5.6. SPI Serial Flash Memory	16
5.7. PmmC - microSD vs SPI Flash	17
6. Application PCB Support	18
7. Display/Module Precautions	19
8. Hardware Tools	20
8.1. 4D-UPA Programming Adaptor	20
9. Programming Language	22
10. Workshop4 IDE	23
10.1. PmmC Programming	24
10.2. File Transfer	26
11. Starter Kit	27
12. Cover Lens Bezel – Tape Spec	28
13. FFC Cable information	28

14. Display Module Part Numbers	29
15. Module Weights	30
16. Comparison to DIABL016/PICASO	31
16.1. MCU vs SPI Mode	31
16.2. Processor Differences (Basic)	31
16.3. Hardware Differences	32
16.4. PICASO Notes	32
16.5. DIABLO16 Notes	33
17. Mechanical Details - 2.4"	34
17.1. Non-Touch and Resistive - 2.4"	34
17.2. Capacitive - Non CLB - 2.4"	35
17.3. Capacitive - With CLB - 2.4"	36
18. Mechanical Details - 2.8"	37
18.1. Non-Touch and Resistive - 2.8"	37
18.2. Capacitive - Non CLB - 2.8"	38
18.3. Capacitive - With CLB - 2.8"	39
19. Mechanical Details - 3.2"	40
19.1. Non-Touch and Resistive - 3.2"	40
19.2. Capacitive - Non CLB - 3.2"	41
19.3. Capacitive - With CLB - 3.2"	42
20. Mechanical Details - 3.5"	43
20.1. Non-Touch and Resistive - 3.5"	43
20.2. Capacitive - Non CLB - 3.5"	44
20.3. Capacitive - With CLB - 3.5"	45
21. Schematic Details	46
22. Specifications	47
23. Revision History	51
24. Legal Notice	52
24.1. Proprietary Information	52
24.2. Disclaimer of Warranties & Limitations of Liabilities	52

gen4-uLCD-(24-35)P4 Series Description

1. Description

This PIXXI44 Intelligent Display Module range belongs to the gen4 range of modules Designed and Manufactured by 4D Systems.

This range features colour TFT LCD displays, with non-Touch (P4), Resistive Touch (P4T), or Capacitive Touch (P4CT), microSD memory Storage, optional SPI Flash Storage, GPIO and Communications, and Audio Generation built-in.

It is powered by the 4D Labs PIXXI44 Graphics Processor, which offers a wide range of functionality and options for any Designer / Integrator / User.

The PIXXI44 processor in this range includes 14 customisable GPIO, capable of Digital Input/Output, 4 of which are capable of Analog Input, 1 pair is capable of I2C, and another pair is capable of a second UART.

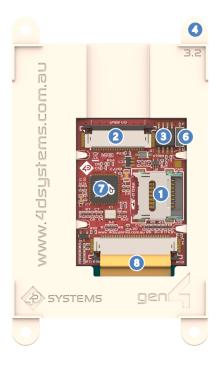
The standalone display also features a 30 pin ZIF/FFC/FPC socket, designed for a 30 pin FFC cable, for easy and simple connection to an application or mother board, or for connecting to accessory boards for added range of functionality advancements.

gen4 range family of products are all designed to be fully compatible with the Workshop4 IDE and its four different development environments, providing the User necessary tools and options for programming and manipulating the display to their desired function for their system project.

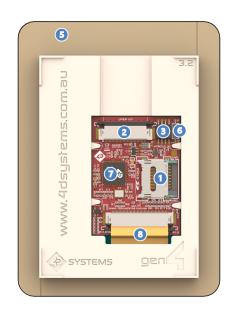
Many applications designed and written to run on other 4D Systems display modules featuring PICASO or DIABLO16 Graphics Processors can be run on this gen4 Intelligent Display Module, however will depend on what functionality from PICASO or DIABLO16 have been utilised. Please contact 4D Systems Support Team for assistance if you are planning on migrating from a previous model.

The gen4 series of modules has been carefully designed from top to bottom for easy integration and use, with meticulous consideration for space requirements to minimize the impact of display related circuity. Thereby, allowing application boards to sit flush on the back of the gen4 if required, as the display related electronics sit inside the plastic mounting base, leaving the application board surface clear for User circuitry.

PIXXI44 gen4 modules in this range are physically the same size as the DIABLO16 gen4 modules. For a comparison to PICASO or DIABLO16, please see Comparison to DIABLO16/PICASO section.


gen4-uLCD-(24-35)P4 Series Features

2. Features


- 2.4" 240 x 320 Resolution IPS TET LCD
 - 2.8" 240 x 320 Resolution IPS TFT LCD
 - 3.2" 240 x 320 Resolution TFT LCD
 - 3.5" 320 x 480 Resolution IPS TFT LCD
- Non-touch (P4), integrated 4-wire Resistive Touch Panel (P4T), Capacitive Touch Panel (P4CT), or Capacitive Touch with Cover Lens Bezel (P4CT-CLB)
- 32KB of Flash memory for User Application Code and Data.
- 30KB of SRAM purely for the User.
- 14 General Purpose I/O pins for user interfacing, which include 4 configurable Analog Inputs.
- The GPIO is variously configurable for alternative functions such as:
 - 1x I2C channels available.
 - 1x dedicated and 1x configurable TTL Serial UART comm ports available.
 - Up to 14 GPIO can be configured for Digital Input/Output, 7 of which are 5V tolerant Inputs.
- 30-pin FPC connection, for all signals, power, communications, GPIO and programming.
- Latch type micro-SD memory card connector for multimedia storage and data logging purposes. (mutually exclusive with Serial Flash usage).
- Selectable 32MB Serial Flash memory for multimedia storage, data files, fonts, or for holding extra code functions (mutually exclusive with micro-SD usage).
- DOS compatible file access (FAT16 format) as well as low level access to card memory.
- Dedicated PWM Audio pin for sound generation, for an external amplifier.
- Display full colour images, animations, icons and video clips and supports available Windows fonts.
- 4.0V to 5.5V range operation (single supply).
- 4x mounting tabs with 3.2mm holes for mechanical mounting using M3 screws (P4/P4T/P4CT Models only).
- 3M Adhesive around perimeter of CLB for mounting the P4CT-CLB model
- RoHS, REACH compliant.
- PCB is UL 94V-0 Flammability Rated.

gen4-uLCD-(24-35)P4 Series Hardware Overview

3. Hardware Overview

gen4-uLCD-XXP4[T/CT] models

gen4-uLCD-XXP4CT-CLB models

- Latch Type microSD Socket (Slide to unlock, place down card, slide to lock) see Micro-SD Socket section
- USER I/O 30-way ZIF/FFC Socket (0.5mm pitch Upper Contact, 30-way FFC Cable) See below and FFC Cable Information section
- SPI Flash Memory (32MB) (NOT populated by default) see SPI Serial Flash Memory and PmmC microSD vs SPI Flash sections
- Mounting Tabs, for non-CLB models See **Non-Touch and Resistive Touch** and **Capacitive Non CLB** Mechanical Drawings for 2.4", 2.8", 3.2" and 3.5" variants
- 3M adhesive tape, for mounting of CLB (Cover Lens Bezel) models see Cover section
- Flash / uSD selection switch (NOT populated by default) see SPI Serial Flash Memory
- 4D Labs PIXXI44 Processor see PIXXI44 Processor section.
- 8 TFT LCD Display Flex

30-Way FPC Connector (USER I/O)

Pin	Symbol	1/0	Description
1	GND	Р	Supply Ground
2	101	I/O/A	General Purpose I/O pin with Analog Capability. This pin has a range of 0-3.3V when used as an Analog Input and is 3.3V tolerant only.
3	102	I/0/A	General Purpose I/O pin with Analog Capability. This pin has a range of 0–3.3V when used as an Analog Input and is 3.3V tolerant only.

gen4-uLCD-(24-35)P4 Series Hardware Overview

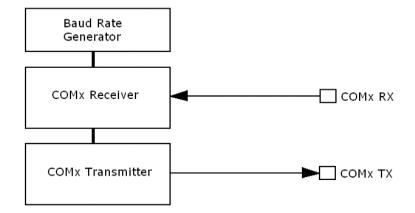
Pin	Symbol	1/0	Description
4	103	I/O/A	General Purpose I/O pin with Analog Capability. This pin has a range of 0-3.3V when used as an Analog Input and is 3.3V tolerant only.
5	104	I/0/A	General Purpose I/O pin with Analog Capability. This pin has a range of 0-3.3V when used as an Analog Input and is 3.3V tolerant only.
6	105	1/0	General Purpose Input/Output, 3.3V Level - 5V Tolerant. Capable of UART RX1
7	106	1/0	General Purpose Input/Output, 3.3V Tolerant only. Capable of I2C SDA
8	107	1/0	General Purpose Input/Output, 3.3V Tolerant only. Capable of I2C SCL
9	1012	1/0	General Purpose Input/Output, 3.3V Level - 5V Tolerant
10	1013	1/0	General Purpose Input/Output, 3.3V Level - 5V Tolerant
11	1014	1/0	General Purpose Input/Output, 3.3V Level - 5V Tolerant
12	1015	1/0	General Purpose Input/Output, 3.3V Level - 5V Tolerant
13	1016	1/0	General Purpose Input/Output, 3.3V Level - 5V Tolerant
14	1017	1/0	General Purpose Input/Output, 3.3V Level - 5V Tolerant
15	1018	1/0	General Purpose Input/Output, 3.3V Tolerant only. Capable of UART TX1
16	106	1/0	General Purpose Input/Output, 3.3V Tolerant only. Capable of I2C SDA
17	107	1/0	General Purpose Input/Output, 3.3V Tolerant only. Capable of I2C SCL
18	NC	_	Not Connected
19	AUDIO_OUT	0	Audio Output, Buffered PWM, to feed into external amplifier
20	AUDENB	0	Audio Amplifier Enable, to enable/disable external amplifier
21	GND	Р	Supply Ground
22	RESET	I	Master Reset signal. Internally pulled up to 3.3V via a 10K resistor. An active Low pulse greater than 2 micro-seconds will reset the module. If the module needs to be reset externally, only use open collector type circuits. This pin is not driven low by any internal conditions. The host should control this pin via one of its port pins using an open collector/drain arrangement
23	RX0	I	Asynchronous Serial Receive pin, TTL level. Connect this pin to the Transmit (Tx) signal of other serial devices. Used in conjunction with the TX pin for programming this display module. This pin is tolerant up to 5.0V levels.
24	TX0	0	Asynchronous Serial Transmit pin, TTL level. Connect this pin to the Receive (Rx) signal of other serial devices. Used in conjunction with the RX pin for programming this display module. This pin outputs at 3.3V levels.
25	GND	Р	Supply Ground.
26	5V IN	Р	Main Voltage Supply +ve input pin. Reverse polarity protected. Range is 4.0V to 5.5V, nominal 5.0V.
27	5V IN	Р	Main Voltage Supply +ve input pin. Reverse polarity protected. Range is 4.0V to 5.5V, nominal 5.0V.
28	NC	_	Not connected
29	NC	_	Not connected
30	GND	Р	Supply Ground.

Note

- I = Input, 0 = Output, P = Power
- Gold strips down each side of the PCB, are connected to GND.

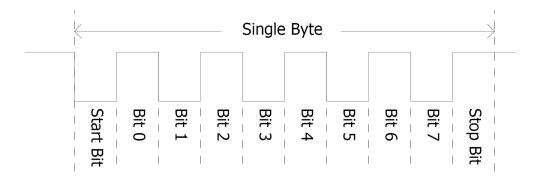
gen4-uLCD-(24-35)P4 Series Hardware Interface - Pins

4. Hardware Interface - Pins


This section describes in detail the hardware interface pins of the device.

4.1. Serial Ports - TTL

The PIXXI44 Processor has two hardware asynchronous serial ports in total (COMO and COM1). Both COM0 (TX0/RX0) and COM1 (TX1/RX1) pins are fixed, and both serial ports can be used to communicate with external serial devices. TX0/RX0 pins are referred to as COM0, and is the only port used for programming the PIXXI44 itself.


The primary features are:

- Full-Duplex 8-bit data transmission and reception.
- Data format: 8 bits, No Parity, 1 Stop bit.
- Independent Baud rates from 300 baud up to 2187500 baud.
- Single byte transmits and receives a fully buffered service. The buffered service feature runs in the background capturing and buffering serial data without the user application having to constantly poll any of the serial ports. This frees up the application to service other tasks.

A single-byte serial transmission consists of the start bit, 8 bits of data followed by the stop bit. The start bit is always 0, while a stop bit is always 1. The LSB (Least Significant Bit, Bit 0) is sent out first following the start bit.

The figure below shows a single-byte transmission timing diagram.

gen4-uLCD-(24-35)P4 Series Serial Ports - TTL

COMO is the programming interface for User program downloads and PmmC programming. Once the compiled 4DGL application program is uploaded and the user code starts executing, the serial port is then available to the user application.

With PIXXI44, it is possible to enable an optional 2nd UART port (COM1). COM1 on this module range is connected to IO18 and IO5 (TX1 and RX1 respectively) and can be enabled by using the com1_* commands, found in the PIXXI Internal Functions Manual. RX1 is 5V tolerant, so can be connected to a 5V logic UART device without issue. TX1 outputs at 3.3V levels as PIXXI44 is a 3.3V device. Most if not all 5V logic UART systems will work with 3.3V signals.

TX0 pin (Serial Transmit COM0):

Dedicated Asynchronous Serial port COM0 transmit pin, TX0. Connect this pin to external serial device receive (Rx) signal. This pin outputs 3.3V levels.

RX0 pin (Serial Receive COM0):

Dedicated Asynchronous Serial port COM0 receive pin, RX0. Connect this pin to external serial device transmit (Tx) signal. This pin is 5.0V tolerant.

TX1 pin (Serial Transmit COM1):

Asynchronous Serial port COM1 transmit pin, TX1. Connect this pin (IO18) to external serial device receive (Rx) signal. This pin outputs 3.3V levels. This is optional and can instead be used as a GPIO.

RX1 pin (Serial Receive COM1):

Asynchronous Serial port COM1 receive pin, RX1. Connect this pin (IO5) to external serial device transmit (Tx) signal. This pin is 5.0V tolerant. This is optional and can instead be used as a GPIO.

gen4-uLCD-(24-35)P4 Series General Purpose I/O

4.2. General Purpose I/O

There are 14 general purpose Input/Output (GPIO) pins available to the user.

Pin Configurations General Purpose I/0			
GPIO Pin	Digital Input	Digital Output	Analog Read
101	Yes	Yes	Yes
102	Yes	Yes	Yes
103	Yes	Yes	Yes
104	Yes	Yes	Yes
105	Yes(5V)	Yes	No
106	Yes	Yes	No
107	Yes	Yes	No
1012	Yes(5V)	Yes	No
1013	Yes(5V)	Yes	No
1014	Yes(5V)	Yes	No
1015	Yes(5V)	Yes	No
1016	Yes (5V)	Yes	No
1017	Yes(5V)	Yes	No
1018	Yes	Yes	No

GPIO are 3.3V logic unless otherwise stated.

Please refer to the PIXXI Internal Functions Manual for more information.

101, 102, 103, 104:

General purpose I/O pins, or can serve as Analog Input pins. Each pin can be individually set for INPUT or OUTPUT or ANALOG. Power-Up Reset default is all INPUTS. Digital GPIO can source/sink 10mA. For more information, the Specifications section. These pins have a **0 to 3.3V** range with 12 bit resolution. For more information, see Analog Inputs section.

105, 1012, 1013, 1014, 1015, 1016, 1017:

General purpose I/O pins. Each pin can be individually set for INPUT or OUTPUT. Power-Up Reset default is all INPUTS. When set as Digital Inputs, the pins are 5V tolerant. Digital GPIO can source/sink 10mA. For more information, see the Specifications section.

105 can be used as COM1 RX1 (5V tolerant). For more information, see Serial Ports section

These 7 GPIO pins are 5V Tolerant.

gen4-uLCD-(24-35)P4 Series I2C Interface

106, 107, 1018:

General purpose I/O pins. Each pin can be individually set for INPUT or OUTPUT. Power-Up Reset default is all INPUTS. When set as Digital Inputs, the pins are 3.3V tolerant. Digital GPIO can source/sink 10mA.

106 can be used for I2C SDA, and **107** can be used for I2C SCL (These are I2C1 in PIXXI44) – External pull-ups are not included so are required on the User side for I2C functionality. For more information, see [I2C Interface] section

IO18 can be used for COM1 TX1 (3.3V logic level). For more information, see Serial Ports section.

GPIO IO8, IO9, IO10, and IO11 do not feature on this module and are not available, as they are used by PIXXI44 exclusively for touch capability.

4.3. I2C Interface

With PIXXI44, it is possible to enable an optional I2C Channel (I2C1), for communicating with additional peripherals.

I2C on this module range is connected to the I2C1 peripheral (SDA1 and SCL1) found on GPIO pins I06 and I07 respectively and can be enabled using the various I2C1_* commands, found in the PIXXI Internal Functions Manual. I2C pins are 3.3V logic level so must only be connected to 3.3V I2C devices. External 4K7 pullups on the I2C lines are required as they are not provided on this module.

The I2C peripheral operates up to 1 MHz, supporting standard mode, full speed, and fast mode.

The module can only function as a Master in an I2C bus.

The following table illustrates which of the GPIO pins can be used for I2C communication.

GPIO Pin	30-way FFC Pin	I2C Function
106	7 or 16	SDA
107	8 or 17	SCL

I2C clock output pin, SCL. Connect this pin to the SCL pin of an external I2C device.

I2C data input/output pin, SDA. Connect this pin to the SDA pin of an external I2C device.

gen4-uLCD-(24-35)P4 Series System Pins

4.4. System Pins

+5V IN (Module Voltage Input)

Module supply voltage input pins. All of these pins should be connected together and to a stable supply voltage in the range of 4.0 Volts to 5.5 Volts DC. Nominal operating voltage is 5.0 Volts.

GND (Module Ground)

Device ground pins. All of these pins should be connected to ground.

**RESET (Module Master Reset) **

Module Master Reset pin. An active low pulse of greater than $2\mu s$ will reset the module. Internally pulled up to 3.3V via a 10K resistor. Only use open collector type circuits to reset the device if an external reset is required.

AUDENB (Audio Enable Output)

Output dedicated to enable or disable and external amplifier, where required. Active High.

AUDIO (PWM Audio Output)

Output specifically for Audio. This pin is a PWM output from the PIXXI44 Processor. This pin is a 3.3V level buffered PWM output to drive an external amplifier with generated Audio, via an external filtering circuit to turn digital PWM into Analog. Note that AUDENB must be enabled in PIXXI44 for any audio signal to be heard.

4.5. Analog Inputs

Please refer to the table in General Purpose I/O section for details on which GPIO can be configured to be analog inputs.

The analog inputs on the PIXXI44 have a range of 0 to 3.3V, each with a max resolution of 12-bits. These can read around 15000 values per second, and the sample can be immediately read.

To enable a GPIO to be used as an Analog Input, the following 4DGL function is used to set the pin:

```
pin_Set(mode, pin);
```

where **mode** would be set to ANALOGUE, and **pin** is the GPIO compatible with this function which is to become an Analog Input, such as IO1 PIN.

Please refer to the PIXXI Internal Functions Manual for more information on how to use the Analog Input functions, along with the PIXXI44 Processor Datasheet.

Analog Inputs are 0-3.3V tolerant only. Do not apply voltages outside of this range as you will damage PIXXI44.

gen4-uLCD-(24-35)P4 Series Module Features

5. Module Features

The gen4 series of Integrated Display Modules are designed to accommodate most applications. Some of the main features of the module are listed below.

5.1. PIXXI44 Processor

The modules in this range are designed around the PIXXI44 Graphics Controller from 4D-Labs.

The PIXXI44 can be configured to interface with many popular TFT-LCD and OLED displays.

The PIXXI44 features a configurable core and hardware layer, which allows it to support LCD modules with various SPI display drivers and touch interfaces. Supported display interfaces include 3-wire serial SPI, 4-wire serial SPI, MCU 8-bit and MCU 16-bit. Additionally, it has support for touch interfaces like the 4-wire resistive touch panel interface and capacitive touch panel interface through an I2C touch controller.

This module series is configured to utilize SPI interface for the LCD to provide more GPIO available for the user.

You can refer to the PIXXI44 Processor Datasheet for more information.

5.2. Audio

Audio playback support in the PIXXI44 Processor enables this module to play audio WAV files stored in the micro-SD memory card. Filtered PWM audio is generated and made available on the AUDIO pin of the 30-way ZIF connector, ready to interface with an audio amplifier on your application board.

A simple instruction enables the user to play/pause/stop audio files while continuing the execution of the user application code, such as display updates, touch recognition, communications, etc. The audio system also allows real time pitch change of audio samples.

For a complete list of audio commands please refer to the PIXXI Internal Functions Manual.

gen4-uLCD-(24-35)P4 Series SD/SDHC Memory Cards

5.3. SD/SDHC Memory Cards

The PIXXI44 processor uses off-the-shelf (see notes) standard SDHC/SD/microSD memory cards with up to 2GB capacity usable with FAT16 formatting. For any FAT file-related operations, before the memory card can be used it must first be formatted to FAT16. The formatting of the card can be done on any PC system with a card reader. Select the appropriate drive and choose the FAT16 (or just FAT in some systems) option when formatting. The card is now ready to be used in the PIXXI44-based application.

The PIXXI44 processor also supports high-capacity HC memory cards (4GB and above). The available capacity of SD-HC cards varies according to the way the card is partitioned and the commands used to access it.

The FAT partition is always first (if it exists) and can be up to the maximum size permitted by FAT16. Windows 7 will format FAT16 up to 4GB. Windows XP will format FAT16 up to 2GB and the Windows XP command prompt will format FAT16 up to 4GB.

RMPET, a 4D Systems Tool found in the Workshop4 IDE, is capable of repartitioning and formatting microSD cards to be the appropriate type and format for 4D Systems processors. This tool should be used for all cards.

Note

- 1. An SPI Compatible SDHC/SD/microSD card MUST be used. PIXXI44 along with other 4D Systems Processors requires SPI mode to communicate with the SD card. If a non-SPI compatible SD card is used, then the processor will not be able to mount the card.
- 2. Read disturbance is a well-known issue with flash memory devices, such as microSD cards, where reading data from a flash cell can cause the nearby cells in the same memory block to change over time. This issue can be prevented by using industrial-grade microSD cards with read disturb protection. Industrial-grade microSD cards have firmware that actively monitors the read operation and refreshes areas of memory that have high traffic and even move data around to prevent read disturb error from occurring. Furthermore, manufacturers may choose to implement read disturb protection on a specific part of the flash memory only, such that the beginning part of the memory might not be protected. The RMPET utility in Workshop4 is designed to create the first partition at an offset from the start of the microSD card to account for this situation. It is therefore recommended to always partition and format an industrial microSD card using the RMPET utility before using it with 4D Systems processors.

gen4-uLCD-(24-35)P4 Series FAT16

5.4. FAT16

All 4D Systems displays featuring 4D Systems processors use off-the-shelf standard/micro SDHC/SD memory cards (SPI Compatible Only) with up to 4GB capacity usable with FAT16 formatting.

For any FAT file-related operations, before the memory card can be used it must first be formatted correctly. Built into Workshop4 is a tool created by 4D, called RMPET. RMPET allows the User to easily partition and format microSD cards, to make their file system ready to be used with 4D Systems displays. The formatting of the card can be done on any PC system with a card reader.

The PIXXI44 processor also supports high-capacity HC memory cards (4GB and above). The available capacity of SD-HC cards varies according to the way the card is partitioned and the commands used to access it.

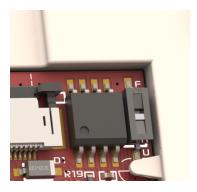
The FAT16 file system can utilize a maximum capacity of 4GB. The FAT partition is always first (if it exists). Any space larger than 4GB will be RAW, and can still be utilized by your 4D Systems module, using different functions.

Please refer to the Application Notes for more information.

5.5. Micro-SD Socket

The micro-SD socket used on these modules is a latch type, not the traditional push/push or push/pull.

The entire top metal cover of the micro-SD socket slides (unclips) to the right, and then hinges up to the right side, revealing the internals of the socket. A micro-SD card can then be placed inside the socket, and the top metal cover hinged back down over top of the micro-SD card, and then the cover slid to the left and locked in place.


gen4-uLCD-(24-35)P4 Series SPI Serial Flash Memory

5.6. SPI Serial Flash Memory

On this gen4 range of displays there is 32MB of SPI Serial Flash memory able to be mounted on the board, which can be used instead of the micro-SD card if desired.

The SPI Serial Flash Memory and the micro-SD card are mutually exclusive, meaning only one or the other can be used. Both cannot operate together, so a choice is needed at the time of development.

At the top right of the modules PCB is a micro-switch (SW1), which can be changed between Flash (F) and uSD (U) selections, to enable the desired storage medium for the project/product in question. This must be done at design time, as the application loaded on to both the PIXXI-44's internal Flash, and the storage (uSD card or SPI Flash Memory) work together, so this cannot be changed once a project has been loaded, as the application will not work.

Inside the Workshop4 IDE, the selection for Flash or FAT (micro-SD) can be made.

SPI Flash Memory can be used in applications where a micro-SD card is either not permitted, or not desirable. The memory capacity is considerably smaller than micro-SD, so there is also a limitation on what can be stored. Smart project planning of widget types is required. It may be desirable to use a majority of Internal or Inherent widgets when using SPI Flash Memory and leave the SPI Flash Memory itself for GCI widgets / Images etc which cannot be stored any other way. Please refer to our Workshop4 Widgets Reference for more information on the available widget types.

Note

Not all modules may come with the SPI Flash loaded on the board, please check the details prior to purchase – or check with our Sales team if you have specific requests.

Modules without SPI Flash will also not have the Switch (SW1) mounted.

gen4-uLCD-(24-35)P4 Series PmmC - microSD vs SPI Flash

5.7. PmmC - microSD vs SPI Flash

On models which feature both microSD and SPI Flash memory loaded, and the SW1 switch to change between them, additionally a specific microSD or Flash PmmC needs to be loaded into PIXXI44 also. These need to be loaded using PmmC Loader, in Manual.

Note

The correct PmmC can be indentified by the suffix in the name which determines the memory device (-u for the SD memory and -f for the serial flash memory).

The Flash Memory device is used for all multimedia file retrieval such as images, animations and movie clips, data files, and fonts, or for holding extra code functions (to expand the code storage of the processor)

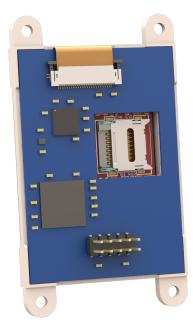
The SD memory card can also be used as general-purpose storage for data logging applications (RAW and FAT16 format support).

Support is available for either an SD memory card (SD with up to 2GB or SDHC starting from 4GB and above) or the Serial Flash memory chip (16 MB). The dedicated SPI port is clocked at 35 MHz.

For models which are either microSD only, or SPI Flash only, then the specific microSD or Flash PmmC needs to be loaded into these also. These will ship with the correct PmmC already loaded from Factory however, so an Automatic update in PmmC loader will be sufficient for any future updates that are required.

Please see PmmC/Firmware Programming section for more detail on PmmC's and how they are loaded.

gen4-uLCD-(24-35)P4 Series Application PCB Support


6. Application PCB Support

The gen4 Display Modules are designed to accommodate a range of applications, and therefore are suited for those wanting to make a customised module, without the need for piggy-back or daughter boards mounted on headers.

On the back of the gen4 module, the display related circuitry will be found, which is recessed into the plastic. The level of the plastic on the back of the gen4 module is higher than the tallest component on the display circuit PCB – meaning an Application PCB can be mounted on the back of the gen4, without affecting the display related circuitry, only a small cut-out is required to gain access to the micro-SD socket.

The image below shows a mock Application PCB on the back of the gen4 display (Blue area). It features a cut-out in the PCB so access to the micro-SD socket on the gen4's display board is possible, however this may or may not be required depending on the application.

The micro-SD socket is a latch type, so it is accessible from the top, rather than a push/push or push/pull style which is accessible from the side. Please refer to Micro-SD Socket section for more detail.

gen4-uLCD-(24-35)P4 Series Display/Module Precautions

7. Display/Module Precautions

• Avoid having to display the same image/object on the screen for lengthy periods. This can cause a burn-in which is a common problem with all types of display technologies. Blank the screen after a while or dim it very low by adjusting the contrast. Better still; implement a screen saver feature.

- Moisture and water can damage the display. Moisture on the surface of a powered display should not cause any problems; however, if water is to enter the display either from the front or from the rear and the water contacts the electronics, it will certainly damage. Wipe off any moisture gently or let the display dry before usage. If using this display module in an environment where it can get wet, ensure an appropriate enclosure is used.
- Dirt from fingerprint oil and fat can easily stain the surface of the display. Gently wipe off any stains with a soft lint-free cloth.
- The performance of the display will degrade under high temperatures and humidity. Avoid such conditions when storing.
- Do not tamper with the display flex cable or the components on the flex. This may affect the connection between the display and the driving circuitry and cause failure.
- Displays are susceptible to mechanical shock and any force exerted on the module may result in deformed zebra stripes, a cracked display cell and a broken backlight
- Display modules have a finite life, which is typically dictated by the display itself, more specifically the backlight. The backlight contains LEDs, which fade over time. In the Specifications section is a figure for the typical life of the display, and the criteria are listed.

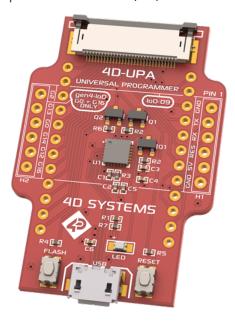
gen4-uLCD-(24-35)P4 Series Hardware Tools

8. Hardware Tools

The following hardware tools are required for full control of the pixxiLCD-25 embedded graphics display.

8.1. 4D-UPA Programming Adaptor

The 4D programming interface is used to program a new Firmware/PmmC, for downloading compiled 4DGL code into the processor, and for transferring files to Flash or uSD card (optional). They even serve as an interface for communicating serial data to the PC.


The **4D Programming Cable** is a USB to Serial-TTL UART converter cable incorporating the Silabs CP2102 USB to Serial UART bridge IC.

A 4D Programming Cable can connect directly to the gen4 Interface board (gen4-IB), which ship with each gen4 Display Module (unless otherwise stated). Simply connect the supplied 30-way FPC cable into the ZIF connector on the gen4 Interface Board, and connect the Programming Cable into the 5-way header on the Interface Board.

An alternative to using a Programming Cable, is a single all in one board called the 4D-UPA (4D Universal Programming Adaptor). The 4D-UPA ships with Starter Kits (SK) and is available for purchase separately also.

The 4D-UPA minimizes the connections and modules required for programming—creating a single module with microUSB interface, and DIP style pads for GPIO breakout of all the signals used on the gen4 Display interface, which is useful for development or final product use.

These programming interfaces are available from 4D Systems.

Note

- The GPIO naming convention on the 4D-UPA does not reflect the GPIO naming of the actual display module, due the 4D-UPA being universal and able to be used with many 4D Products. Please review the 4D-UPA datasheet for information on mapping the GPIO naming from this module, with the GPIO naming on the 4D-UPA, to ensure you connect to the correct pins you desire.
- In addition to these modules, the gen4-PA and uUSB-PA5/uUSB PA5-II can also be used.

Warning

Using a non-4D programming interface could damage your processor, and **void your warranty**.

gen4-uLCD-(24-35)P4 Series Programming Language

9. Programming Language

The PIXXI44 processor belongs to a family of processors powered by a highly optimised soft-core virtual engine called EVE (Extensible Virtual Engine). EVE was designed and created by 4D Systems in the early 2000s.

EVE is a proprietary, high-performance virtual machine with an extensive byte-code instruction set optimised to execute compiled 4DGL programs.

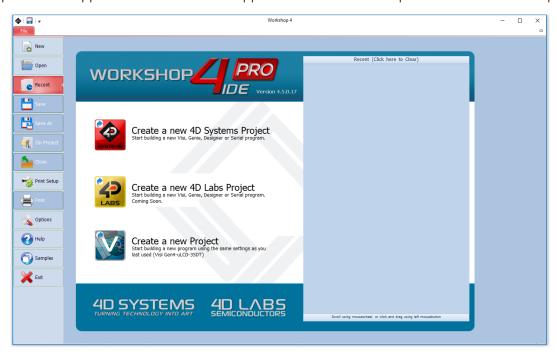
4DGL (4D Graphics Language) was specifically developed from the ground up for the EVE engine core. It is a high-level language that is easy to learn and simple to understand yet powerful enough to tackle many embedded graphics applications.

4DGL is a graphics-oriented language allowing rapid application development, and the syntax structure was designed using elements of popular languages such as C, Basic, Pascal and others.

Programmers familiar with these languages will feel right at home with 4DGL. It includes many familiar instructions such as IF..ELSE..ENDIF, WHILE..WEND, REPEAT..UNTIL, GOSUB..ENDSUB, GOTO, PRINT as well as some specialised instructions SERIN, SEROUT, GFX_LINE, GFX_CIRCLE and many more.

For detailed information about the 4DGL language, please refer to the following documents:

- 4DGL Programmers Reference Manual
- PIXXI Internal Functions Manual


To assist with the development of 4DGL applications, the Workshop4 IDE combines a full-featured editor, a compiler, a linker and a downloader into a single PC-based application. It's all you need to code, test and run your applications.

4DGL is available to be written in two of the four environments offered by the Workshop4 IDE, Designer and ViSi. The other two environments, Serial and ViSi-Genie do not directly use 4DGL by the User (Except in Workshop4 Pro, for ViSi-Genie), however, it is present in the background. Serial is an application that runs, and that is written in 4DGL. ViSi-Genie automatically generates 4DGL itself based on what is configured in the GUI.

gen4-uLCD-(24-35)P4 Series Workshop4 IDE

10. Workshop4 IDE

Workshop 4 is a comprehensive software IDE that provides an integrated software development platform for all of the 4D family of processors and modules. The IDE combines the Editor, Compiler, Linker and Downloader to develop complete 4DGL application code. All user application code is developed within the Workshop 4IDE.

The Workshop 4 IDE supports multiple development environments for the user, to cater to different user requirements and skill levels.

- The **Designer** environment enables the user to write 4DGL code in its natural form to program the range of 4D Systems' intelligent displays.
- A visual programming experience, suitably called **ViSi**, enables drag-and-drop type placement of objects to assist with 4DGL code generation and allows the user to visualise how the display will look while being developed
- An advanced environment called **ViSi-Genie** doesn't require any 4DGL coding at all, it is all done automatically for you. Simply lay the display out with the objects you want, set the events to drive them and the code is written for you automatically. This can be extended with additional features when a Workshop4 PRO license is purchased from the 4D Systems website. Extended Advanced features for Visi-Genie are available in the PRO version of WS4. Further details are explained under the Visi Genie section of the Workshop4 documentation.
- A **Serial** environment (aka SPE 'Serial Platform Environment') is also provided to transform the display module into a slave serial module, allowing the user to control the display from any host microcontroller or device with a serial port using predefined serial commands.

For more information regarding these environments, refer to the Workshop4 manuals.

The Workshop 4 IDE is available from the 4D Systems website.

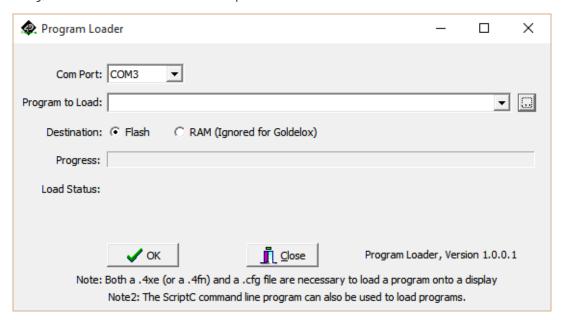
gen4-uLCD-(24-35)P4 Series PmmC Programming

10.1. PmmC Programming

The PIXXI44 processor is a custom graphics processor. All functionality including the high-level commands is built into the chip. This chip-level configuration is available as a PmmC (Personality-module-micro-Code) file, which can be likened to traditional Firmware.

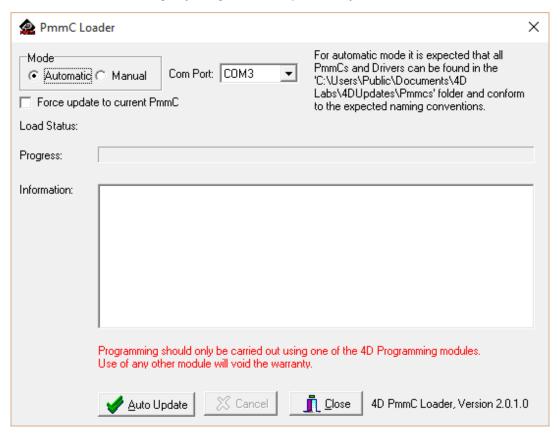
A PmmC file contains all of the low-level micro-code information (analogy of that of a soft silicon) which defines the characteristics and functionality of the device. The ability of programming the device with a PmmC file provides an extremely flexible method of customising as well as upgrading it with future enhancements.

The Display Driver is located inside the PmmC for PIXXI44 and contains the initialisation and parameters associated with the particular display that is to be connected to the PIXXI44 processor, along with product-specific settings and parameters which are required over and above what is found in the PmmC.


The PmmC file can only be programmed into the device with the aid of Workshop 4, the 4D Systems IDE software, or its supporting tools.

Solutions, which remove the need to use Workshop4 to program the display, are available for commercial customers requiring batch programming or production line programming. These solutions are practical for production staff to minimize the chance of unwanted or unauthorised modifications on the production line.

Three solutions come with the Workshop4 IDE, which can be separated for production line computers if required, **ScriptC**, **PmmC Loader** and **Program Loader**.


ScriptC is a command line interface that can be controlled from a Batch Script or similar, useful for repetitive loading or when controlled from an external application. Example scripts are provided, showing how to load PmmC, Display Drivers and Applications using a batch script.

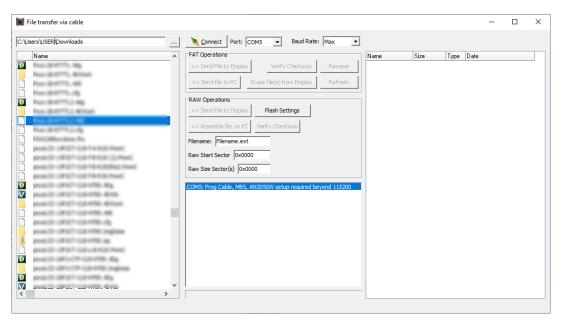
Program Loader is a GUI interface designed to download Applications to either Flash or RAM, useful for testing or production loading, without the need for Workshop4 itself.

gen4-uLCD-(24-35)P4 Series PmmC Programming

PmmC Loader is a GUI interface designed to download PmmC's and Drivers to 4D Systems Processors. It can automatically update existing PmmC's and Drivers present on a module, or manually change or force download to a blank processor or module, overwriting anything written in previously.

Please contact our Support Team for more information on what we can provide. Some solutions also exist for external processor-based loading, if there is a requirement for that. This solution is available under NDA. Using a non-4D programming interface could damage your module, and **void your warranty**.

gen4-uLCD-(24-35)P4 Series File Transfer


10.2. File Transfer

The PIXXI44 processor is capable of transferring files over the serial UART from the PC. This is used when the SPI Serial Flash Memory is loaded by Workshop4, but it can also be used to load the micro-SD card if desired.

The process of loading a micro-SD card can take some time, depending on the size of the files needing to be transferred, and it is often faster to remove the micro-SD card from the display module, place it into your PC using a Media/Card reader, and copying the files directly. However in cases where this is not possible, transferring over the serial UART is available.

Additional to Workshop4 natively using File Transfer during its programming phase, File Transfer can also be run manually by opening the File Transfer application from the Windows Start Menu, or from the /DEP folder inside the Workshop4 installation folder.

When loading content on to the SPI Serial Flash Memory manually, you must erase the memory before writing new files.

File Transfer can be used for loading SPI Serial Flash Memory or the micro-SD card. When actioning the programming process from Workshop4, the appropriate one will be loaded based on your hardware and software settings.

If using the 4D Programming Cable, some software modifications to the USB chip inside the cable are required in order to transfer at full speed. Please refer to this **post** on the 4D Systems Forum, for details on the change. When using the 4D-UPA, uUSB-PA5-II or gen4-PA, this is not required, it only relates to the **4D Programming Cable**.

gen4-uLCD-(24-35)P4 Series Starter Kit

11. Starter Kit

4D Systems highly recommends all first-time buyers of 4D Systems' displays, to purchase the Starter Kit when purchasing their first 4D Systems display solution.

The Starter Kit provides all the hardware that is required to get the User up and running.

Not all development environments and features will be needed by every User. However, by purchasing the display solution in a Starter Kit allows you to take full advantage of all of the features of the 4D Systems Display Solution and try out each of the 4D Woskshop4 Environments prior to settling with the preferred feature-set.

The **Designer** environment can utilise every feature of the display, however depending on the user requirements, a micro-SD (uSD) card may not be required. The uSD card is used when displaying images/video/sound, along with datalogging to uSD, and a programming cable or adaptor is required for downloading compiled code and PmmC/ Firmware updates.

The **ViSi** environment is the same as Designer in terms of feature utilisation, but is image based so requires a uSD card, along with a programming cable.

The **ViSi-Genie** environment is also image based, and therefore requires a uSD card and programming cable also.

The **Serial** environment does not require either a uSD or Programming cable to be used once the module has been configured as a Serial device, however can utilise both depending on the user requirements. The uSD card can be used for such things as storage and display of multimedia files, datalogging, and the Programming cable for PmmC/Firmware updates, or changing to one of the other three programming environments.

Starter Kits typically include: - gen4 Integrated Display Module - gen4 Interface Module (gen4-IB) - 4D Universal Programming Adaptor (4D-UPA) - 4GB micro-SD Card - 5-way cable for easy connection to a breadboard or host via the gen4-IB - 150mm 30-way FFC cable for connecting gen4 display to gen4-IB or 4D-UPA

Please refer to the 4D Systems website for the current components included in the Starter Kit.

Simply select the Starter Kit option when purchasing the chosen display module on the 4D Systems shopping cart, or from your local distributor.

12. Cover Lens Bezel - Tape Spec

The perimeter of the CLB display modules features double sided adhesive tape, designed to stick directly onto a panel, enclosure, box etc without the need for any mounting screws or hardware.

The tape used is 3M 9495LE tape, which uses the well-known and strong 3M 300LSE adhesive.

The double-sided adhesive has a thickness of 0.17mm once the backing has been removed.

More information on this adhesive can be found on the 3M website.

13. FFC Cable information

The FFC cables supplied by 4D Systems (included with products) have the following specifications:

- 30 Pin Flexible Flat Cable, 150mm Long, 0.5mm (0.02") pitch
- Cable Type: AWM 20624 80C 60V VW-1
- Heat Resistance 80 Degrees Celsius
- Connections on the **opposite side** at each end (Type B)

```
Note

Some different length cables are available by contacting 4D Systems sales directly
```

If you are interfacing to this module directly to your own product, and wish to interface via the FFC cable directly, suitable connectors are readily available from many electronics suppliers, such as Digikey, Mouser, Farnell, RS, etc.

A standard 30-pin, 0.5mm pitch, 0.3mm thick FFC, FFC connector. They are available in Top Contact and Bottom Contact, so depending how you orientate the cable on your product, will determine which one you need. Please however take care of the pinout and how it flows from the display module, through the FFC and into your product, to ensure Pin1 and Pin30 are where you expect them to be.

gen4-uLCD-(24-35)P4 Series Display Module Part Numbers

14. Display Module Part Numbers

The following is a breakdown of the part numbers and what they mean.

Examples

```
• gen4-uLCD-35P4CT-CLB
```

• gen4-uLCD-24P4T

where:

SK - Starter Kit (kitting of multiple parts)

gen4 - gen4 Display Range

uLCD - microLCD Display Family

24/28/32/35 - Display size (2.4", 2.8", 3.2", 3.5")

P4 - PIXXI44 Processor

T - Resistive Touch

CT - Capacitive Touch

CLB - Cover Lens Bezel

Note

- The SK at the start denotes it's a Starter Kit, and the rest of the part number describes the display module in the Starter Kit. SK's do not feature the uLCD naming in their part numbers.
- For part numbers which do not include T or CT, these are non-touch variants.
- Cover Lens Bezels (CLB) are glass fronts for the display module with overhanging edges, which allow the display module to be mounted directly into a panel using special adhesive on the overhanging glass. These are available for Non-Touch and Capacitive Touch only.
- Resistive Touch models are not available in CLB, as a CLB is made of glass and resistive touch relies on mechanical flexing of a membrane to trigger touch.

gen4-uLCD-(24-35)P4 Series Module Weights

15. Module Weights

Weighs in grams, of each of the different variations of the gen4-uLCD range covered in this document.

- gen4-uLCD-24P4 20 grams
- gen4-uLCD-24P4T 25 grams
- gen4-uLCD-24P4CT 25 grams
- gen4-uLCD-24P4CT-CLB xx grams (TBA)
- gen4-uLCD-28P4 28 grams
- gen4-uLCD-28P4T 35 grams
- gen4-uLCD-28P4CT 37 grams
- gen4-uLCD-28P4CT-CLB xx grams (TBA)
- gen4-uLCD-32P4 31 grams
- gen4-uLCD-32P4T 45 grams
- gen4-uLCD-32P4CT 47 grams
- gen4-uLCD-32P4CT-CLB 53 grams
- gen4-uLCD-35P4 36 grams
- gen4-uLCD-35P4T 46 grams
- gen4-uLCD-35P4CT -46 grams
- gen4-uLCD-35P4CT-CLB 53 grams

16. Comparison to DIABL016/PICASO

16.1. MCU vs SPI Mode

This gen4-uLCD range of PIXXI44 modules was developed due to the Semiconductor Global Shortages which have been plaguing the world since about 2020.

PIXXI44 is a processor in the 4D range, and it has been used in a few public products, and a few custom products, however the range has not yet been extended to utilise the volumes that PICASO or DIABLO16 processors are used in. This gave us an opportunity to create a range of modules which utilise PIXXI44 stock to fill in some gaps for processors which are waiting on semiconductor foundry time to be produced.

PIXXI44 modules produced to date have all been used in MCU-16 mode (Parallel 16bit mode). In order to gain GPIO on this gen4-uLCD PIXXI44 range, the displays have had to be driven in SPI mode (Serial mode), instead of MCU-16 mode. The reason PIXXI44 needs GPIO pins to be made available is it is a 44-pin chip, compared to DIABLO16 which is a 64-pin chip.

SPI mode uses less processor pins, allowing more pins to be made available for the User. The downside to this is the increased time required to transfer data to the display over SPI, resulting in lower performance on the display.

Please note, this lower performance is only when using the PIXXI44 in SPI mode, it is not an indicator of PIXXI44 in general, its just due to piping all the pixel data down over a Serial interface, rather than a Parallel interface, it takes longer which results in a reduced performance.

If you are a customer who have been using PICASO or DIABLO16 gen4-uLCD products in the past, and you migrate your existing application over to the gen4-uLCD PIXXI44 range, please note that the update rate of the pixels on the screen may appear slower than you are used to with previous products, due to the reason indicated above. For some applications, it may not be noticeable at all.

16.2. Processor Differences (Basic)

There are too many differences to simply list, however PIXXI44 does not have advanced features such as Floating-Point Math or Flash Banks, or advanced GPIO features like Pin Counter, Pulse Out, PWM or SPI communications.

Please refer to the Processor Datasheets for more details.

gen4-uLCD-(24-35)P4 Series Hardware Differences

16.3. Hardware Differences

The gen4-uLCD PIXXI44 modules have been designed based on the original mechanicals of the PICASO and DIABLO16 2.4" to 3.5" modules, however there are a few design changes which need mentioning.

The main part of this design change is the addition of External SPI Flash memory. There are situations where customers cannot use, or do not want to use, a microSD card for media storage on their particular product. External SPI Flash is a solution to this, however does come with some limitations. It is based on other pixxiLCD designs which either have only External SPI Flash or have selectable External SPI Flash and microSD. Only 1 or the other can be used at any given time and is chosen at design time, however the modules allow this choice to be made with the same piece of hardware. For modules which feature both Flash and microSD card, there is a switch to toggle the hardware connections.

External SPI Flash is an option which can be specifically ordered on these gen4-uLCD PIXXI44 modules, by default modules will ship as microSD card only. Please check if the model selected has this installed by default, or please contact our Sales team if you have specific requirements to either have it, or not. Flash only is an option, microSD card only is another option, and joint Flash/microSD is also an option (only 1 can be used at once). Please refer to the following sections for more information.

- SPI Serial Flash Memory
- Micro-SD Socket
- PmmC microSD vs SPI Flash

16.4. PICASO Notes

Generally, PIXXI44 is a more capable graphics processor than PICASO. Beyond the slowing due to SPI mode (as is used in the gen4 modules in this Datasheet), the only slightly significant differences are as follows:

- Some bus_* functions are limited compared to the PICASO implementation
- I2C functions have changed names (generally I2C_ to I2C1_)

gen4-uLCD-(24-35)P4 Series DIABL016 Notes

16.5. DIABLO16 Notes

Whilst PIXXI does not have flashbanks, and thus **Update Bank(s) and Run** is not available, PIXXI does have the ability to update the running program from uSD. To do this you select **Destination uSD**, noting that the program first needs to be loaded into Flash the very first time you do this transfer, so that the automatic update process can begin.

PIXXI44 has 2478 bytes less RAM than DIABLO16. If you are already memory constrained this might cause problems. Also, if you use inherent functions on DIABLO16, these will need to run from RAM on PIXXI44, so you will need enough spare RAM for this to occur.

On DIABLO16, programs generally run from flash, as the overhead of running them directly from flash is very low due to internal caching, and you get extra RAM by running from Flash. On PIXXI the performance of running from flash is measurably slower, and hence the 'Destination Run Flash' exist to influence the run 'location'.

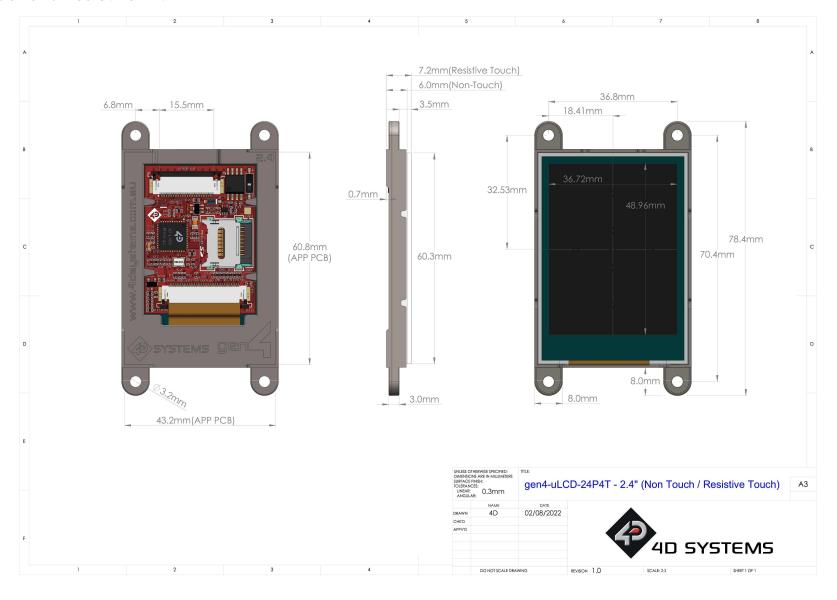
On DIABLO16, Inherent Widgets run from Flashbank 5. As PIXXI does not have flashbanks, this is not possible. With PIXXI-, external flash inherent functions are stored in internal flash and loaded into RAM and run from there using img_FunctionCall() and related functions. With PIXXI uSD this is not feasible, as the FAT overheads mean the loading of functions will be noticeably slowed. In PIXXI44 there is some available flash after then end of the 4XE file and that is what allows the usage of Inherents on PIXXI44 in uSD mode. The enabling function is intflash_FunctionCall() and related functions. Please refer to the PIXXI Internal Functions Manual for more information.

The ability to store data and user settings in DIABLO16 flashbanks is supported in PIXXI44 by enabling 2KB of internal flash using various intflash_* functions.

Because media* type inherents use three functions, gfx_GradientShape(), gfx_GradientColor() and gfx_GradTriangleFilled() which are not available in the uSD PmmC, they are 'hard coded' in the relevant inherents. This means the STACK space required for the use of these inherents is larger than that required on DIABLO16. This is automatically implemented for Genie, whereas for ViSi the required minimum stack space is noted in inserted comments.

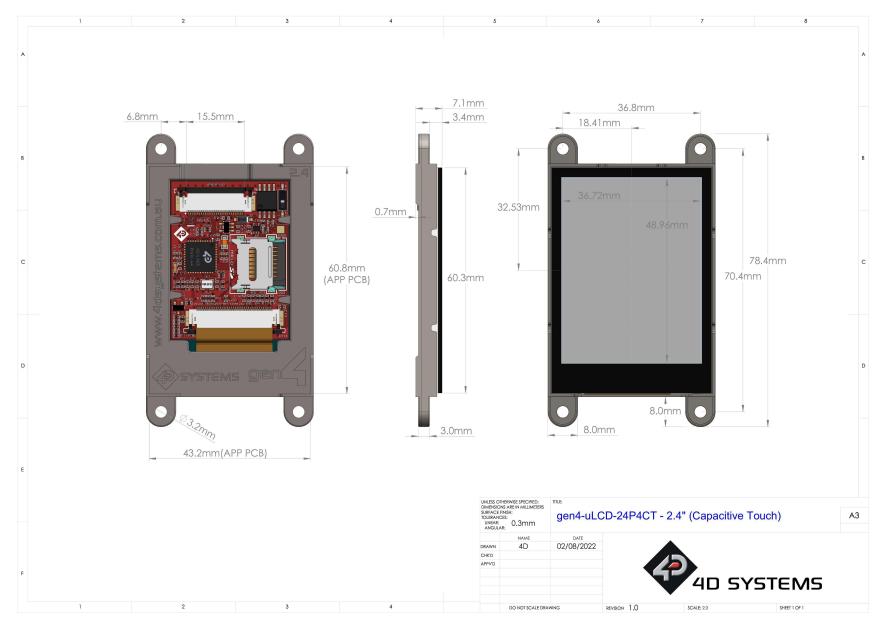
PIXXI does not have the GPIO capability of DIABLO16, and therefore advanced functionality such as PWM, Pulse Out, Pin Counter, Quadrature and SPI Communications, are not possible on PIXXI44.

PIXXI also does not have Floating Point Math, so any calculations done in a DIABLO16 application that is being ported to PIXXI44 need to be done other ways, such as in a Host processor, as PIXXI44 is incapable of Floating-Point math.

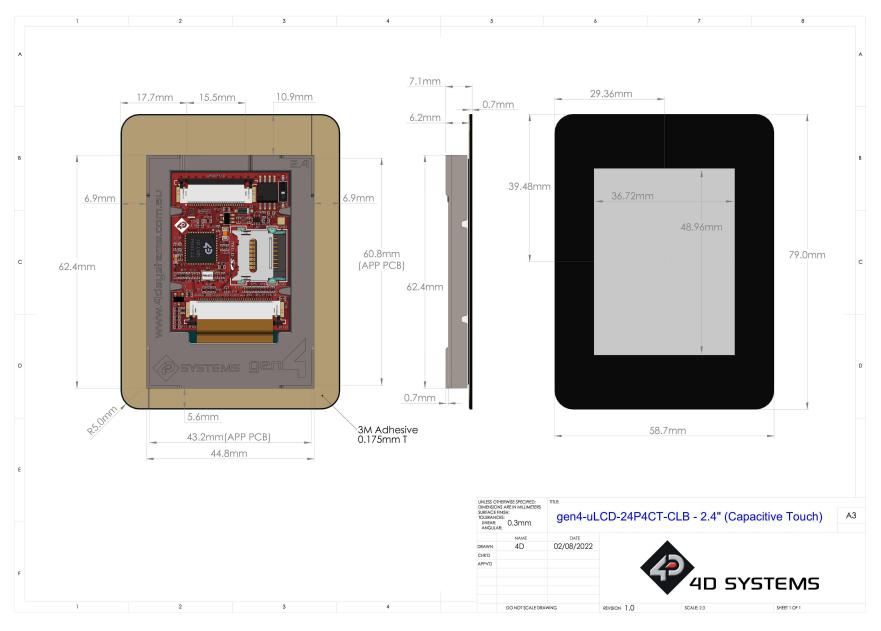

There are some functions, such as sys_GetTimeVar which are not present in PIXXI44, and therefore alternate ways of doing this in a User function using the sys_T() and sys_T_HI() should be investigated.

For more information, please refer to the PIXXI Internal Functions Manual.

gen4-uLCD-(24-35)P4 Series Mechanical Details - 2.4"

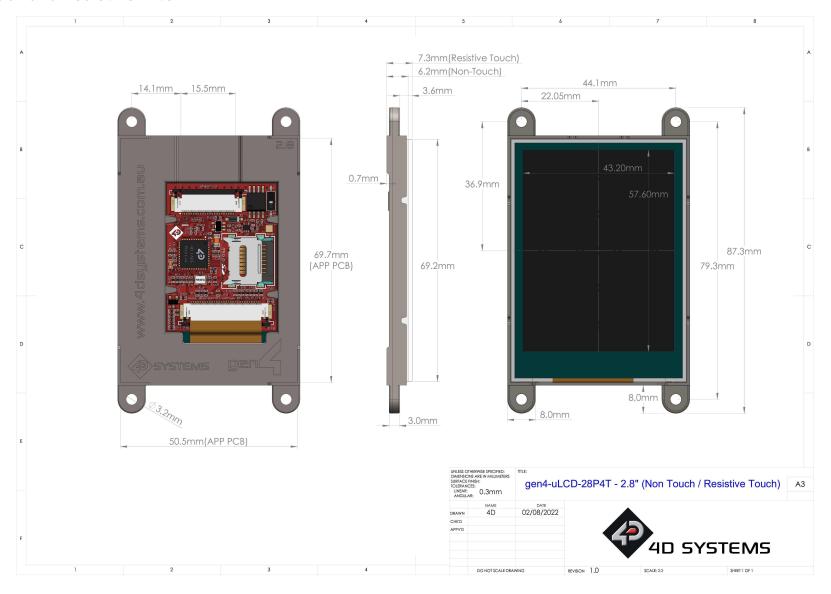

17. Mechanical Details - 2.4"

17.1. Non-Touch and Resistive - 2.4"

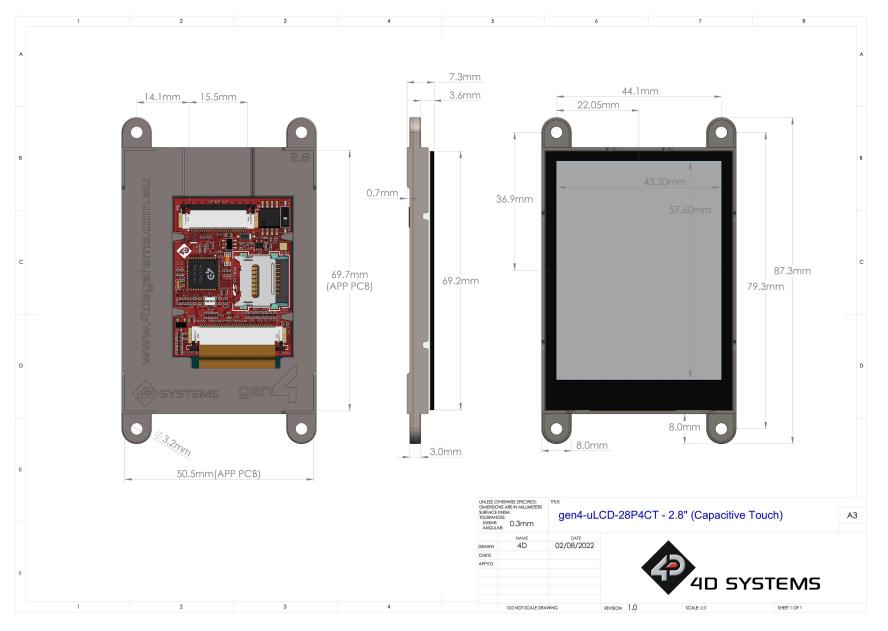

gen4-uLCD-(24-35)P4 Series Capacitive - Non CLB - 2.4"

17.2. Capacitive - Non CLB - 2.4"

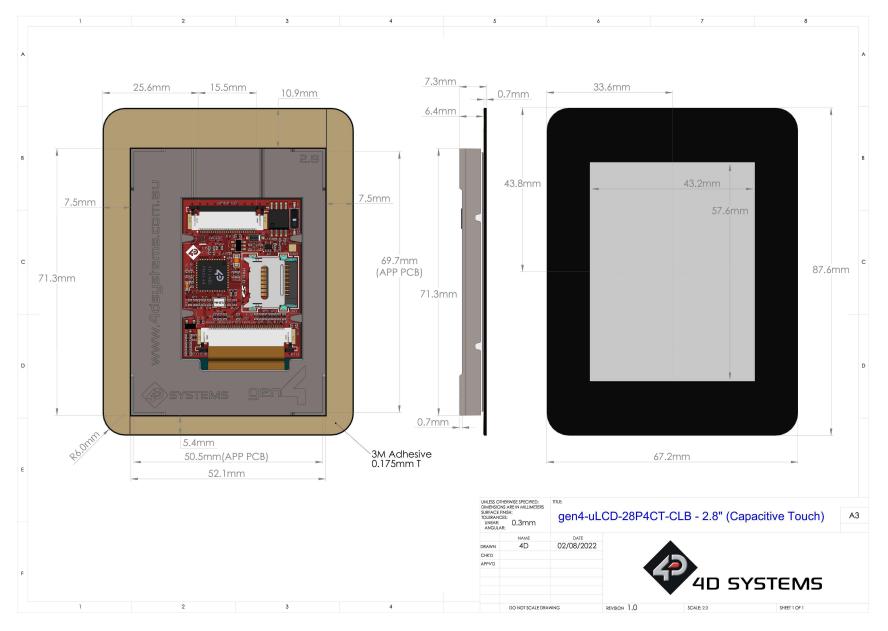
gen4-uLCD-(24-35)P4 Series Capacitive - With CLB - 2.4"


17.3. Capacitive - With CLB - 2.4"

gen4-uLCD-(24-35)P4 Series Mechanical Details - 2.8"

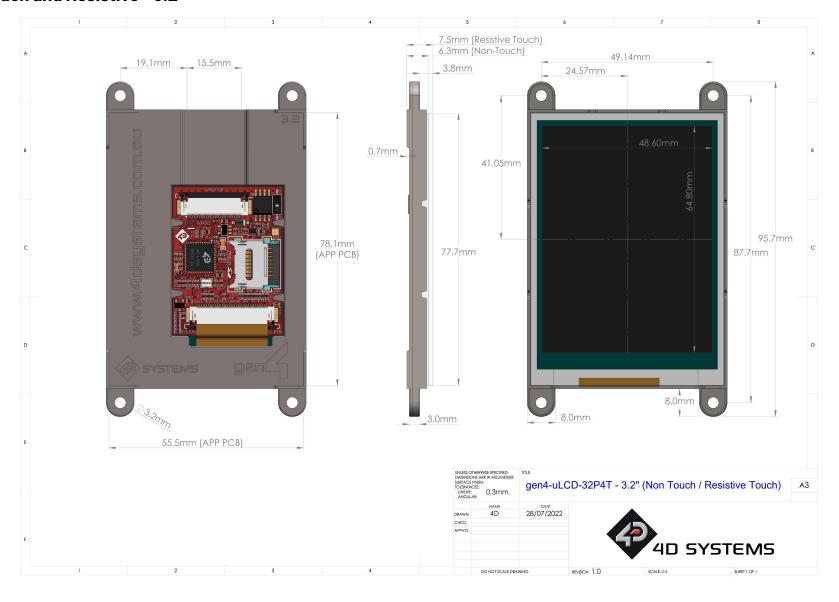

18. Mechanical Details - 2.8"

18.1. Non-Touch and Resistive - 2.8"

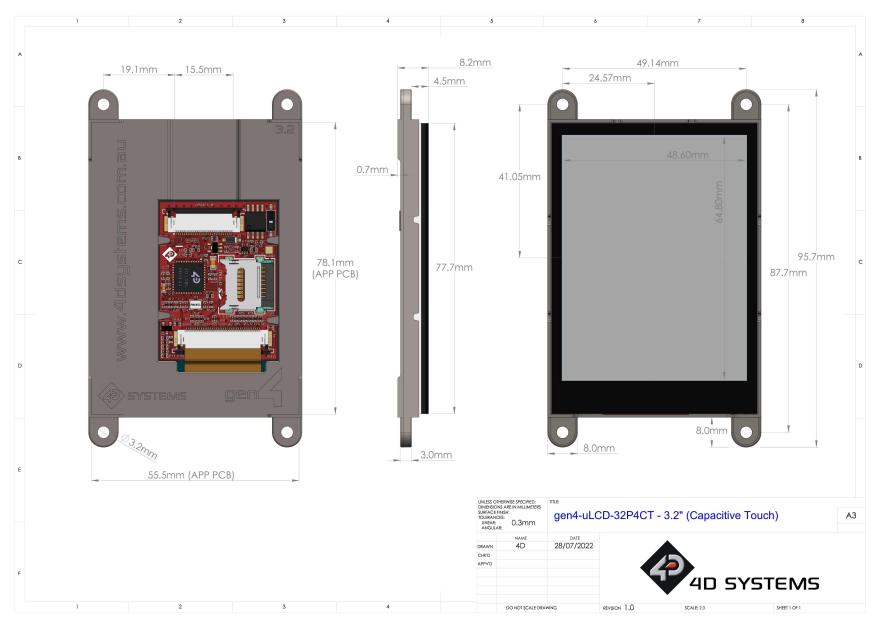

gen4-uLCD-(24-35)P4 Series Capacitive - Non CLB - 2.8"

18.2. Capacitive - Non CLB - 2.8"

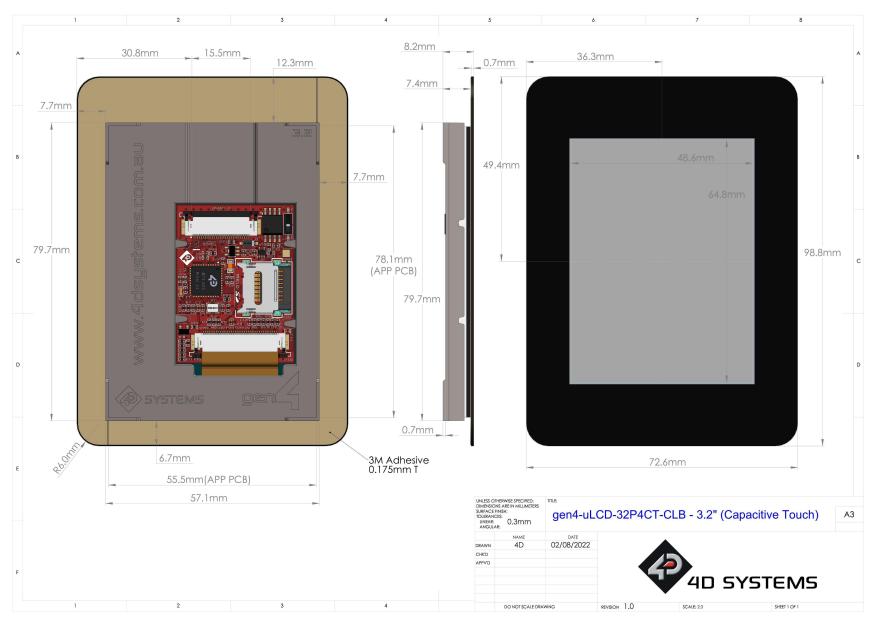
gen4-uLCD-(24-35)P4 Series Capacitive - With CLB - 2.8"


18.3. Capacitive - With CLB - 2.8"

gen4-uLCD-(24-35)P4 Series Mechanical Details - 3.2"

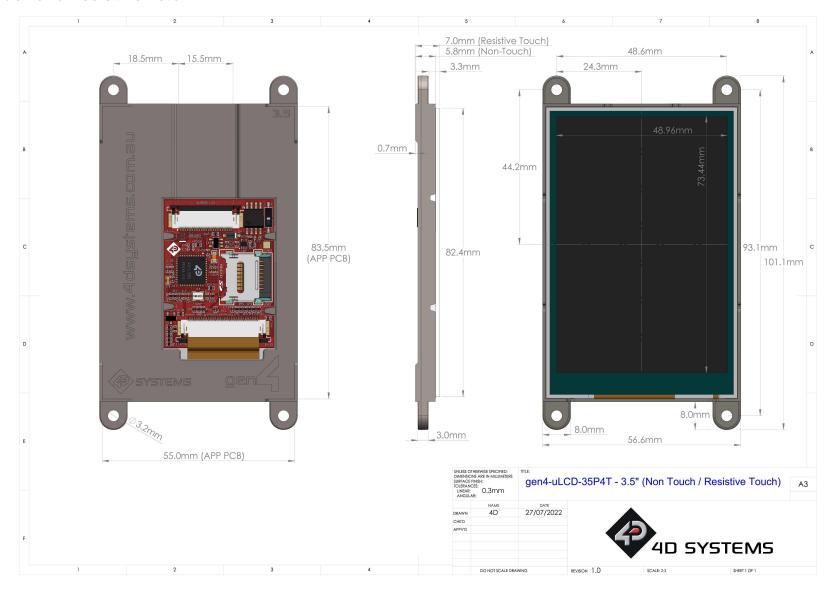

19. Mechanical Details - 3.2"

19.1. Non-Touch and Resistive - 3.2"

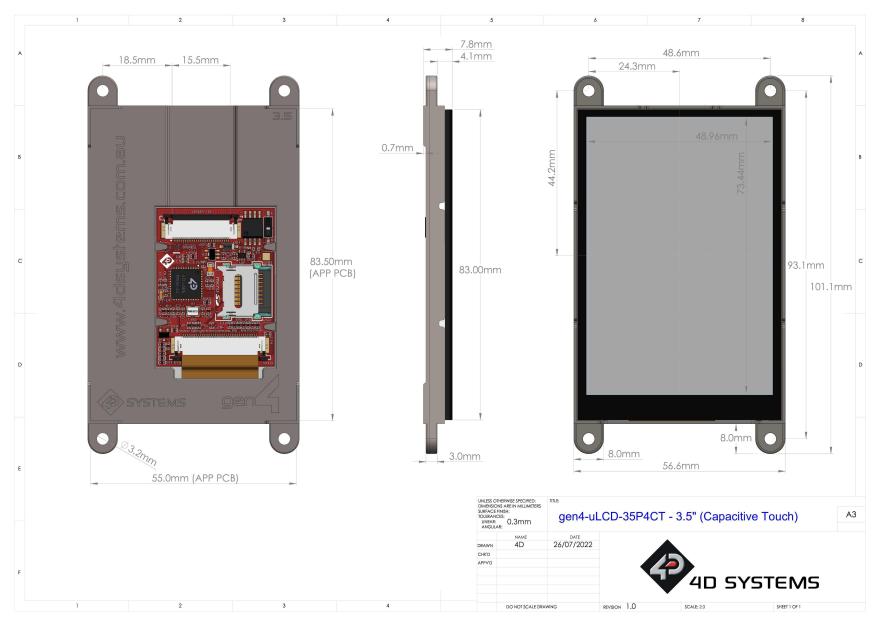

gen4-uLCD-(24-35)P4 Series Capacitive - Non CLB - 3.2"

19.2. Capacitive - Non CLB - 3.2"

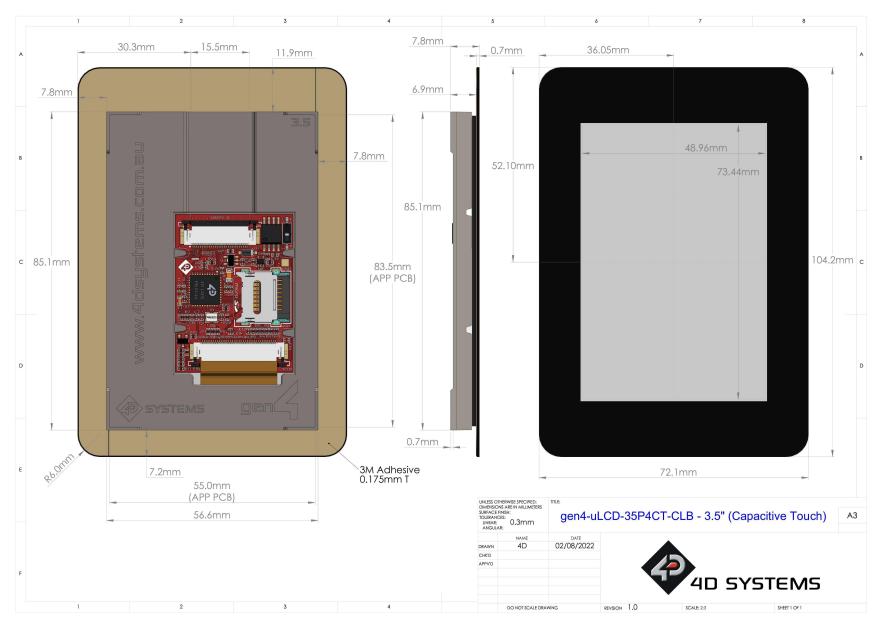
gen4-uLCD-(24-35)P4 Series Capacitive - With CLB - 3.2"


19.3. Capacitive - With CLB - 3.2"

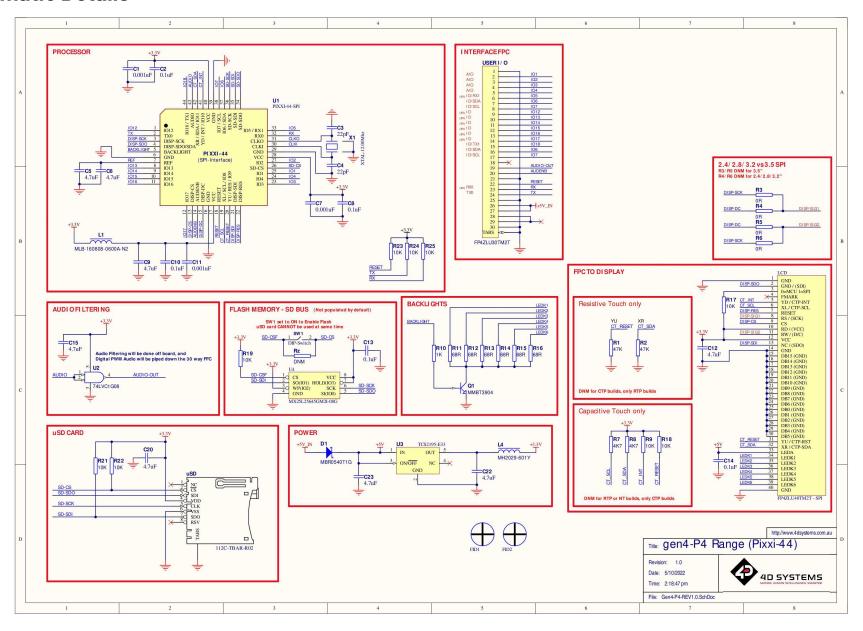
gen4-uLCD-(24-35)P4 Series Mechanical Details - 3.5"


20. Mechanical Details - 3.5"

20.1. Non-Touch and Resistive - 3.5"


gen4-uLCD-(24-35)P4 Series Capacitive - Non CLB - 3.5"

20.2. Capacitive - Non CLB - 3.5"


gen4-uLCD-(24-35)P4 Series Capacitive - With CLB - 3.5"

20.3. Capacitive - With CLB - 3.5"

gen4-uLCD-(24-35)P4 Series Schematic Details

21. Schematic Details

22. Specifications

Absolute Maximum Ratings	
Operating ambient temperature	-20°C to +70°C
Storage temperature	-30°C to +80°C
Voltage on any digital input pin with respect to GND	-0.3V to 6.0V
Voltage on VCC with respect to GND	-0.3V to 6.0V
Maximum current sunk/sourced by any pin	15.0mA

Note

Stresses above those listed here may cause permanent damage to the device. This is for stress rating only and functional operation of the device at those or any other conditions above those indicated in the recommended operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

□ Recommended Operating Conditions					
Parameter	Conditions	Min	Тур	Max	Units
Supply Voltage (VCC)	Stable external supply required	4.0	5.0	5.5	V
Processor voltage (VP)		_	3.3	_	V
Input Low Voltage (VIL)	all pins	GND	_	0.2VP	V
Input High Voltage (VIH)	non 5V tolerant pins	0.8VP	_	3.3	V
Input High Voltage (VIH)	5V Tolerant Pins, RX pin	0.8VP	_	5.5	V
Reset Pulse	External Open Collector	2.0	_	_	μs
Operational Delay	Power-Up or External Reset	500	_	3000	ms

Parameter	Conditions	Min	Тур	Max	Units
Supply Current (ICC)	gen4-uLCD-24P4 (Contrast = 15)	_	125	_	mΑ
	gen4-uLCD-24P4T (Contrast = 15)	_	130	_	mΑ
	gen4-uLCD-24P4CT (Contrast = 15)	_	135	_	mA
	gen4-uLCD-24P4CT-CLB (Contrast = 15)	_	135	_	mA
	gen4-uLCD-28P4 (Contrast = 15)	_	TBA	_	mA
	gen4-uLCD-28P4T (Contrast = 15)	_	TBA	_	mA
	gen4-uLCD-28P4CT (Contrast = 15)	_	TBA	_	mA
	gen4-uLCD-28P4CT-CLB (Contrast = 15)	_	TBA	_	mA
	gen4-uLCD-32P4 (Contrast = 15)	_	160	_	mA
	gen4-uLCD-32P4T (Contrast = 15)	_	165	_	mΑ
	gen4-uLCD-32P4CT (Contrast = 15)	_	170	_	mΑ
	gen4-uLCD-32P4CT-CLB (Contrast = 15)	_	170	_	mΑ
	gen4-uLCD-35P4 (Contrast = 15)	_	165	_	mΑ
	gen4-uLCD-35P4T (Contrast = 15)	_	170	_	mΑ
	gen4-uLCD-35P4CT (Contrast = 15)	_	175	_	mΑ
	gen4-uLCD-35P4CT-CLB (Contrast = 15)	_	175	_	mΑ
Display Endurance	Hours of operation, measured to when the display is 50% original brightness	30000	_	_	Н
Touch Screen Endurance (Resistive)	Number of touches/hits with a 12.5mm tip at a rate of 2x per second with 250gf force	_	1M	_	Touche
	Slide stylus on screen, 100gf force, 60mm/s speed with a 0.8mm polyacetal tip stylus pen	_	100K	_	Slides
Touch Screen Transparency	Resistive Touch	82	_	_	%
	Capacitive Touch	90	_	_	%
Touch Screen Operational Force (Resistive Touch)	Only use Finger or Stylus, do not use anything sharp or metal	20	_	100	Gf
CLB Display Hardness	Cover Lens Bezel Glass Hardness	_	6	_	Н

LCD Display Info	□ LCD Display Information (TN)			
Parameter Parameter	Conditions	Specification		
Display Type	All 3.2" displays are TN Type TFT LCD	TN - TFT Transmissive LCD		
Display Size	All gen4-uLCD-32P4 Modules	3.2" Diagonal		
Display Resolution	All gen4-uLCD-32P4 Modules	240 x 320 (Portrait Viewing)		
Display Brightness	gen4-uLCD-32P4 (Contrast = 15)	200 cd/m2		
	gen4-uLCD-32P4T (Contrast = 15)	160 cd/m2		
	gen4-uLCD-32P4CT (Contrast = 15)	190 cd/m2		
	gen4-uLCD-32P4CT-CLB (Contrast = 15)	190 cd/m2		
Display Contrast Ratio	Typical (3.2")	250:1		
Display Viewing Angles	Above Centre	35 Degrees		
	Below Centre	55 Degrees		
	Left of Centre	55 Degrees		
	Right of Centre	55 Degrees		
Display Viewing Direction	All gen4-uLCD-32P4 Modules	6 oʻclock Display (Optimal viewing is from below when in Landscape/Wide mode)		
Display Backlighting	All gen4-uLCD-32P4 Modules	1x6 LED's		
Pixel Pitch	All gen4-uLCD-32P4 Modules	0.2025 x 0.2025mm (Square pixels)		
Pixel Density	Number of pixels in 1 row in 25.4mm, 3.2"	127 DPI/PPI		

LCD Display Information (IPS)			
Parameter	Conditions	Specification	
Display Type	2.4, 2.8 and 3.5" displays are IPS TFT LCD	IPS - TFT Transmissive LCD	
Display Size	All gen4-uLCD-24P4 Modules	2.4" Diagonal	
	All gen4-uLCD-28P4 Modules	2.8" Diagonal	
	All gen4-uLCD-35P4 Modules	3.5" Diagonal	
Display Resolution	All gen4-uLCD-24P4 Modules	240 x 320 (Portrait Viewing)	
	All gen4-uLCD-28P4 Modules	240 x 320 (Portrait Viewing)	
	All gen4-uLCD-35P4 Modules	320 x 480 (Portrait Viewing)	
Display Brightness	gen4-uLCD-24P4 (Contrast = 15)	320 cd/m2	
	gen4-uLCD-24P4T (Contrast = 15)	270 cd/m2	
	gen4-uLCD-24P4CT (Contrast = 15)	300 cd/m2	
	gen4-uLCD-24P4CT-CLB (Contrast = 15)	300 cd/m2	
	gen4-uLCD-28P4 (Contrast = 15)	300 cd/m2	
	gen4-uLCD-28P4T (Contrast = 15)	250 cd/m2	
	gen4-uLCD-28P4CT (Contrast = 15)	280 cd/m2	
	gen4-uLCD-28P4CT-CLB (Contrast = 15)	280 cd/m2	
	gen4-uLCD-35P4 (Contrast = 15)	320 cd/m2	
	gen4-uLCD-35P4T (Contrast = 15)	270 cd/m2	
	gen4-uLCD-35P4CT (Contrast = 15)	295 cd/m2	
	gen4-uLCD-35P4CT-CLB (Contrast = 15)	295 cd/m2	
Display Contrast Ratio	Typical (2.4")	800:1	
	Typical (2.8")	800:1	
	Typical (3.5")	1000:1	
Display Viewing Angles	Above, Below Left and Right of Centre	80 Degrees	
Display Viewing Direction	All 2.4", 2.8" and 3.5"	ALL (wide viewing IPS Display)	
Display Backlighting	All gen4-uLCD-28P4 Modules	1x4 LED's	
	All gen4-uLCD-28P4 Modules	1x4 LED's	
	All gen4-uLCD-35P4 Modules	1x6 LED's	
Pixel Pitch	All gen4-uLCD-28P4 Modules	0.153 x 0.153mm (Square pixels)	
	All gen4-uLCD-28P4 Modules	0.180 x 0.180mm (Square pixels)	
	All gen4-uLCD-35P4 Modules	0.153 x 0.153mm (Square pixels)	
Pixel Density	All gen4-uLCD-28P4 Modules	166 DPI/PPI	
	All gen4-uLCD-28P4 Modules	141 DPI/PPI	
	All gen4-uLCD-35P4 Modules	166 DPI/PPI	

Note

Relevant for both TN and IPS displays, the Displays used are of the highest rated 'Grade A', which allows for 0-4 defective pixels. A defective pixel could be solid Black (Dead), White, Red, Green or Blue.

gen4-uLCD-(24-35)P4 Series Revision History

23. Revision History

Hardware Revisi	on		
Revision Number	Date	Description	
1.0	21/06/2022	Initial Revision	

Datasheet Revision		
Revision Number	Date	Description
1.0	08/12/2022	Initial release version
1.1	23/05/2022	Modified datasheet for web-based documentation
1.2	07/03/2024	Updated formatting for resource centre redesign

gen4-uLCD-(24-35)P4 Series Legal Notice

24. Legal Notice

24.1. Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be copied or disclosed without prior written permission. 4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position with 4D Systems. 4D Systems reserves the right to modify, update or makes changes to Specifications or written material without prior notice at any time.

All trademarks belong to their respective owners and are recognised and acknowledged.

24.2. Disclaimer of Warranties & Limitations of Liabilities

4D Systems makes no warranty, either expressed or implied with respect to any product, and specifically disclaims all other warranties, including, without limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

Images and graphics used throughout this document are for illustrative purposes only. All images and graphics used are possible to be displayed on the 4D Systems range of products, however the quality may vary.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages (including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental damage ('High Risk Activities'). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems' products and devices in 'High Risk Activities' and in any other application is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any 4D Systems intellectual property rights.