Wire bonding vertical SiCap WASC522.310 (100pF/0101/BV>150V)

Rev. 2.0

General description

The WAS Capacitor has been qualified according to AECQ-100 up to 68V, Grade 0 (-40°C/+150°C) 2000 cycles TMCL. Qualification report of the BV150 technology according to AECQ100 requirements is available on request.

Target applications are decoupling and filtering of active devices when miniaturization and low ESL are required. This product is a single 100pF capacitor in 0.25 x 0.25mm package size. Other capacitance values and other package size are available as a single die or capacitor array; please feel free to contact us.

The WAS Capacitor is based on PICS Integrated Passive technology.

Standard PCB FR4 can be used.

<u>Assembly:</u> WASC capacitors are directly mounted on the PCB application using die bonding and wire bonding.

WASC capacitors have the bottom electrode in Ti $(0.1 \,\mu\text{m})/\text{Ni}$ $(0.3 \,\mu\text{m})/\text{Au}$ $(0.2 \,\mu\text{m})$ and top electrode in gold, other top finishing are available on request such as Aluminum.

Key features

- AECQ-100 Qualification
- Full compatible Monolithic ceramic capacitors for replacement
- Ultra-high stability of capacitance value:
 - o Temperature 60ppm/K (-55 °C to +150 °C)
 - Voltage <0.02%/Volts
 - Negligible capacitance loss through ageing
- Low profile 0.1mm
- Small size 0.25 x 0.25 mm (0101 format)

- Break down voltage > 150V
- Low leakage current
- High reliability
- High operating temperature (up to 150 °C)
- Compatible with high temperature cycling during manufacturing operations (exceeding 300 °C)
- Compatible with EIA 0101 footprint
- Applicable for standard wire bonding assembly (ball and wedge)

Key applications

- Any demanding automotive applications, such as ADAS sensors (Lidars, Radars) as well as all Automotive SiP devices (Mems sensors, TPMS...)
- Supply decoupling / filtering of active device
- High reliability applications
- Devices with battery operations
- · High temperature applications
- High volumetric efficiency (i.e. capacitance per unit volume)

Functional diagram

The next figure provides implementation set-up diagram.

Figure 1 Block Diagram

Electrical performances

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
С	Capacitance value	@+25°C	-	100	-	pF
ΔСР	Capacitance tolerance (1)	@+25°C	-15	-	+15	%
T _{OP}	Operating temperature		-55	20	150	°C
T _{STG}	Storage temperature (2)		-70	-	165	°C
ΔСт	Capacitance temperature variation	-55 °C to 150 °C) -)	60	-	ppm/K
RV _{DC}	Rated voltage (3)				68 ⁽⁴⁾	V _{DC}
11000	Trained voltage		-		61 ⁽⁵⁾	
BV	Break down voltage	@+25°C	150	-	-	V
ΔC_{RVDC}	Capacitance voltage variation	From 0 V to RV _{DC} , @+25°C	-	-	-0.02	%/V _{DC}
IR	Insulation resistor	@RV _{DC} , +25°C, 120s	-	10	-	GΩ
ESL	Equivalent Serial Inductance (6)	@+25°C, SRF shunt mode	-	20	-	рН
ESR	Equivalent Serial Resistance (6)	@+25°C, shunt mode	-	150	-	mOhm
ESD	HBM stress (6)	JS-001-2017	500	-	-	V

Table 1 - Electrical performances

^{(1):} other tolerance available upon request

^{(2):} without packaging

^{(3):} Lifetime is voltage and temperature dependent, please refer to application note 'Lifetime of 3D capacitors'

^{(4): 10} years of intrinsic life time prediction at 100°C continuous operation

^{(5): 10} years of intrinsic life time prediction at 150°C continuous operation

^{(6):} please refer to application note 'ESD Challenge in 3D Murata Integrated Passive technology'

Pinning definition

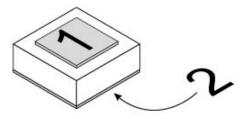


Figure 2 Pinning definition

pin#	Description
1	Top side
	Electrode finishing: Au
2	Back side
	Electrode finishing:Ti (0.1 µm)/Ni (0.3µm)/Au (0.2µm)

Table 2 - Pining description..

Ordering Information

Murata Integrated Passive Devices delivers products with AQL level II (0.65).

Type number		Package			
(15NC)		Packaging	Finishing	Description	
935 148 522 310-F1T	WO0101310	6" FFC	Au ⁽¹⁾	100pF/0101 – 1 bondpad – 0.25 x 0.25mm x 0.10mm	
935 148 522 310-W0T	WO0101310	Waffle pack 400units	Au ⁽¹⁾	100pF/0101 – 1 bondpad – 0.25 x 0.25mm x 0.10mm	

⁽¹⁾ Au = TiW (0.3μm) / Au (3μm)

Table 3 - Packaging and ordering information

Pad Metallization

The standard pad finishing metallization is Au for the top pad and Ti (0.1 µm)/Ni (0.3µm)/Au (0.2µm) for the bottom pad. Other Metallization, such as Thick Gold or Aluminum pads are possible on request.

Material regulation

This product is RoHS compliant at the time of publication. For further information about regulation compliancy, please ask your sales representative

Package outline

The product is delivered as a bare silicon die, with passivation opening for contacts.

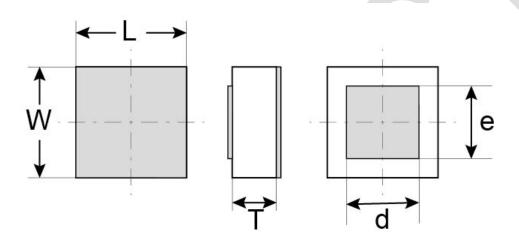


Figure 3 - Package outline drawing

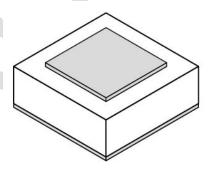


Figure 4 - Package isometric view

L (mm)	W (mm)	T (mm)	d (mm)	e (mm)
0.25 ±0.03	0.25 ±0.03	0.10 ±0.01	0.164	0.164

Table 4 - Dimensions and tolerances

Assembly

The attachment techniques recommended by Murata on the customer's substrates are fully detailed in specific documents available on our website. To assure the correct use and proper functioning of Murata capacitors please download the assembly instructions on https://www.murata.com/en-us/products/capacitor/siliconcapacitors and read them carefully.

Figure 5 Scan this QR Code to access the Murata Silicon Capacitor web page

Packaging format

Please refer to application note 'Products Storage Conditions and Shelf Life'.

Film frame carrier:

With UV curable dicing tape (UV performed)

Good dies are identified using the appropriate e-mapping format. No ink is added on wafer to label other dies.

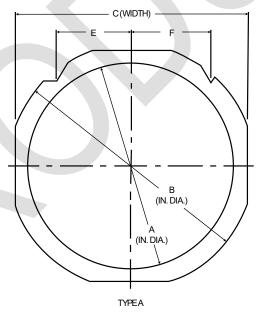


Figure 6 – Film frame drawing

Wafer diameter	Inside diameter A	Outside diameter B	Width C	Thickness	Pin location E	Pin location F	Frame style
6"	7.639"	8.976"	8.346"	0.048"	2.370"	2.5"	DTF-2-6-1

Table 5 - Frame dimensions (inches)

Waffle pack:

Please refer to application note 'Waffle Pack Chip Carrier Handling & Opening Procedure'

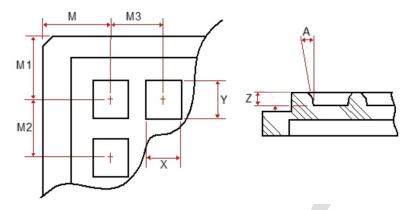


Figure 7 Waffle pack drawing

External Max. capacity		Pocket length X	Pocket width Y	Pocket depth Z	
2 inches	20 x 20	0.36 ±0.05	0.36 ±0.05	0.13 ±0.05	

Table 6 - Waffle pack dimensions (mm)

М	M1	M2	М3	Α	
4.55 ±0.08	4.55 ±0.08	2.18 ±0.05	2.18 ±0.05	7° ±1/2°	

Table 7 - Waffle pack dimensions (mm)

Definitions

Data sheet status

Objective specification: This data sheet contains target or goal specifications for product development.

Preliminary specification: This data sheet contains preliminary data; supplementary data may be published later.

Product specification: This data sheet contains final product specifications.

Limiting values

Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Electrical performances sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

Revision history

Revision	Date	Description	Author.
Release 2.0	2020 July 28 th	Product release	LLE

Disclaimer / Life support applications

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Murata customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Murata for any damages resulting from such improper use or sale.

Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

Murata Integrated Passive Solutions S.A. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

