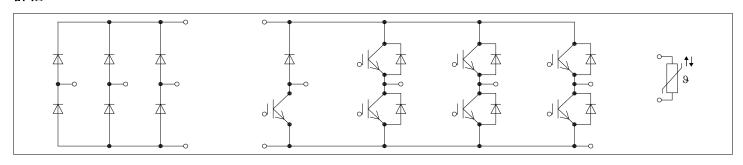


Preliminary datasheet

EconoPIM™2 モジュール with TRENCHSTOP™IGBT7 and Emitter Controlled 7 diode と NTC サーミスタ

特徴

- 電気的特性
 - V_{CES} = 1200 V
 - $I_{C \text{ nom}} = 50 \text{ A} / I_{CRM} = 100 \text{ A}$
 - トレンチ IGBT 7
 - 低 V_{CEsat} 飽和電圧
 - 最大 175°c の過負荷動作
- 機械的特性
 - 高いパワー/サーマルサイクル耐量
 - 内蔵された NTC サーミスタ
 - 銅ベースプレート
 - 低熱インピーダンスの Al₂O₃ DCB
 - 半田接合技術


可能性のある用途

- 補助インバーター
- モーター駆動
- サーボ駆動

製品検証

• IEC 60747、60749、および 60068 の関連試験に準拠して産業用アプリケーションに適合

詳細

EconoPIM[™]2 モジュール

目次

目次

	詳細 1
	特徴 1
	可能性のある用途 1
	製品検証 1
	目次2
1	ハウジング
2	IGBT- インバータ 3
3	Diode、インパー タ5
4	Diode、整流器
5	IGBT、チョッパー 7
6	Diode-、チョッパー
7	NTC-サーミスタ 9
8	特性図 10
9	回路図 16
10	パッケージ外形図 17
11	モジュールラベルコード 18
	改訂履歴 19
	Disclaimer

1 ハウジング

1 ハウジング

表 1 絶縁協調

項目	記号	条件及び注記	定格値	単位
絶縁耐圧	V _{ISOL}	RMS, f = 50 Hz, t = 1 min	2.5	kV
ベースプレート材質			Cu	
内部絶縁		基礎絶縁 (クラス 1, IEC 61140)	Al ₂ O ₃	
沿面距離	d_{Creep}	連絡方法 - ヒートシンク	10.0	mm
空間距離	d _{Clear}	連絡方法 - ヒートシンク	7.5	mm
相対トラッキング指数	CTI		> 200	
相対温度指数 (電気)	RTI	住宅	140	°C

表 2 電気的特性

項目	記号	条件及び注記		規格値		単位
			最小	標準	最大	
内部インダクタンス	L _{sCE}			35		nH
パワーターミナル・チップ間 抵抗	R _{AA'+CC'}	T _C =25°C, /スイッチ		5.5		mΩ
パワーターミナル・チップ間 抵抗	R _{CC'+EE'}	T _C =25°C, /スイッチ		4.8		mΩ
保存温度	$T_{\rm stg}$		-40		125	°C
取り付けネジ締め付けトルク	М	適切なアプリケーション M5, 取り付けネジ ノートによるマウンティン グ	3		6	Nm
質量	G			180		g

2 IGBT- インバータ

表 3 最大定格

項目	記号	条件及び注記		定格值	単位
コレクタ・エミッタ間電圧	V_{CES}		T _{vj} = 25 °C	1200	V
連続 DC コレクタ電流	I_{CDC}	$T_{\rm vj\;max}$ = 175 °C	<i>T</i> _C = 100 °C	50	Α
繰り返しピークコレクタ電流	I _{CRM}	t _P = 1 ms		100	Α
ゲート・エミッタ間ピーク電圧	V_{GES}			±20	V

2 IGBT- インパータ

表 4 電気的特性

項目	記 号	条件及び注記			規格値		単位
				最小	標準	最大	
コレクタ・エミッタ間飽和電圧	V _{CE sat}	$I_{\rm C}$ = 50 A, $V_{\rm GE}$ = 15 V	T _{vj} = 25 °C		1.50	TBD	V
			T _{vj} = 125 °C		1.64		
			T _{vj} = 175 °C		1.72		
ゲート・エミッタ間しきい値電 圧	V_{GEth}	$I_{\rm C} = 2$ mA, $V_{\rm CE} = V_{\rm GE}$, $T_{\rm vj} = 2$	25 °C	5.15	5.80	6.45	V
ゲート電荷量	Q _G	$V_{GE} = \pm 15 \text{ V}, V_{CE} = 600 \text{ V}$			0.92		μC
内蔵ゲート抵抗	R_{Gint}	T _{vj} = 25 °C			0		Ω
入力容量	C _{ies}	$f = 1000 \text{ kHz}, T_{\text{vj}} = 25 ^{\circ}\text{C}, V$	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}$		11.1		nF
帰還容量	C_{res}	$f = 1000 \text{ kHz}, T_{\text{vj}} = 25 ^{\circ}\text{C}, V$	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}$		0.039		nF
コレクタ・エミッタ間遮断電流	I_{CES}	$V_{CE} = 1200 \text{ V}, V_{GE} = 0 \text{ V}$	T _{vj} = 25 °C			0.01	mA
ゲート・エミッタ間漏れ電流	I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}, T_{vj} = 100 \text{ V}$	25 °C			100	nA
ターンオン遅延時間(誘導負	$t_{\sf don}$	$I_{\rm C} = 50 \text{ A}, V_{\rm CE} = 600 \text{ V},$	T _{vj} = 25 °C		0.059		μs
荷)		$V_{\rm GE} = \pm 15 \text{V}, R_{\rm Gon} = 7.5 \Omega$	T _{vj} = 125 °C		0.061		
			T _{vj} = 175 °C		0.062		
ターンオン上昇時間(誘導負荷)	t _r	$I_{\rm C}$ = 50 A, $V_{\rm CE}$ = 600 V,	T _{vj} = 25 °C		0.043		μs
		$V_{\rm GE} = \pm 15 \text{V}, R_{\rm Gon} = 7.5 \Omega$	T _{vj} = 125 °C		0.047		
			T _{vj} = 175 °C		0.049		
ターンオフ遅延時間(誘導負	t_{doff}	$I_{\rm C} = 50 \text{ A}, V_{\rm CE} = 600 \text{ V},$	T _{vj} = 25 °C		0.290		μs
荷)		$V_{\rm GE} = \pm 15 \text{ V}, R_{\rm Goff} = 7.5 \Omega$	T _{vj} = 125 °C		0.380		
			<i>T</i> _{vj} = 175 °C		0.420		
ターンオフ下降時間(誘導負	t_{f}	$I_{\rm C}$ = 50 A, $V_{\rm CE}$ = 600 V,	T _{vj} = 25 °C		0.110		μs
荷) 		$V_{\rm GE}$ = ±15 V, $R_{\rm Goff}$ = 7.5 Ω	T _{vj} = 125 °C		0.200		
			T _{vj} = 175 °C		0.270		
ターンオンスイッチング損失	E_{on}	$I_{\rm C} = 50 \text{ A}, V_{\rm CE} = 600 \text{ V},$	T _{vj} = 25 °C		5.07		mJ
		$L_{\sigma} = 35 \text{ nH}, V_{GE} = \pm 15 \text{ V},$ $R_{Gon} = 7.5 \Omega, \text{ di/dt} = 900$	<i>T</i> _{vj} = 125 °C		6.76		
		A/ μ s (T _{vj} = 175 °C)	T _{vj} = 175 °C		7.72		
ターンオフスイッチング損失	E_{off}	$I_{\rm C}$ = 50 A, $V_{\rm CE}$ = 600 V,	T _{vj} = 25 °C		3.37		mJ
		$L_{\sigma} = 35 \text{ nH}, V_{GE} = \pm 15 \text{ V}, R_{Goff} = 7.5 \Omega, dv/dt = $	T _{vj} = 125 °C		5.31		1
		$\chi_{Goff} = 7.5 \Omega$, $\chi_{V/d} = 175 ^{\circ}$ C)	T _{vj} = 175 °C		6.58		
短絡電流	I _{SC}	$V_{\text{GE}} \le 15 \text{ V}, V_{\text{CC}} = 800 \text{ V},$ $V_{\text{CEmax}} = V_{\text{CES}} - L_{\text{SCE}} * \text{di/dt}$	$t_{\rm P} \le 8 \mu \text{s},$ $T_{\rm vj} = 150 ^{\circ}\text{C}$		190		А
			$t_{\rm P} \le 7 \mu{\rm s},$ $T_{\rm vj} = 175 ^{\circ}{\rm C}$		180		

3 Diode、インパータ

表 4 電気的特性 (continued)

項目	記号 条件及び注記		規格値			単位
			最小	標準	最大	
ジャンクション・ケース間熱抵 抗	R_{thJC}	IGBT 部(1素子当り)			0.579	K/W
ケース・ヒートシンク間熱抵抗	R_{thCH}	IGBT 部(1素子当り), λ _{grease} =1 W/(m*K)		0.147		K/W
動作温度	T _{vj op}		-40		175	°C

注: $T_{vj op} > 150$ °C is allowed for operation at overload conditions. For detailed specifications, please refer to AN 2018-14.

3 Diode、インバータ

表 5 最大定格

項目	記号	条件及び注記		定格値	単位
ピーク繰返し逆電圧	V_{RRM}		T _{vj} = 25 °C	1200	V
連続 DC 電流	I _F			50	Α
ピーク繰返し順電流	/ _{FRM}	t _P = 1 ms		100	Α
電流二乗時間積	l²t	$t_{\rm P} = 10 \text{ ms}, V_{\rm R} = 0 \text{ V}$	T _{vj} = 125 °C	465	A ² s
			T _{vj} = 175 °C	420	

表 6 電気的特性

項目	記 号	条件及び注記			規格値		単位
				最小	標準	最大	
順電圧	V_{F}	$I_{\rm F} = 50 \text{ A}, V_{\rm GE} = 0 \text{ V}$	T _{vj} = 25 °C		1.72	TBD	V
			T _{vj} = 125 °C		1.59		
			T _{vj} = 175 °C		1.52		
ピーク逆回復電流	I _{RM}	$V_{GE} = -15 \text{ V, } -di_F/dt = 900$ A/µs (T _{vj} = 175 °C)	T _{vj} = 25 °C		31		Α
			T _{vj} = 125 °C		39		
			T _{vj} = 175 °C		45		
逆回復電荷量	Qr	$V_{\rm R}$ = 600 V, $I_{\rm F}$ = 50 A,	T _{vj} = 25 °C		3.96		μC
		$V_{\text{GE}} = -15 \text{ V}, -\text{di}_{\text{F}}/\text{dt} = 900$ A/ μ s (T _{vi} = 175 °C)	T _{vj} = 125 °C		7.37		1
		Α/μς (1 _{vj} – 175 C)	T _{vj} = 175 °C		9.89		
逆回復損失	E _{rec}	$V_{\rm R}$ = 600 V, $I_{\rm F}$ = 50 A,	T _{vj} = 25 °C		1.31		mJ
		$V_{GE} = -15 \text{ V}, -di_F/dt = 900$	T _{vj} = 125 °C		2.52		
	A/ μ s (T _{vj} = 175 °C)		T _{vj} = 175 °C		3.46		

EconoPIM™2 モジュール

4 Diode、整流器

電気的特性 (continued) 表 6

項目	記号 条件及び注記		規格値			単位
			最小	標準	最大	
ジャンクション・ケース間熱抵 抗	R_{thJC}	/Diode(1素子当り)			0.900	K/W
ケース・ヒートシンク間熱抵 抗	R_{thCH}	/Diode(1素子当り), \(\lambda_{grease} = 1 \text{ W/(m*K)}\)		0.168		K/W
動作温度	$T_{\rm vjop}$		-40		175	°C

注:

 $T_{\rm vj~op}$ > 150°C is allowed for operation at overload conditions. For detailed specifications, please refer to AN 2018-14.

Diode、整流器 4

最大定格 表 7

項目	記号	条件及び注記		定格値	単位
ピーク繰返し逆電圧	V_{RRM}	T _{vj} = 25 °C		1600	V
最大実効順電流/chip	I _{FRMSM}	T _C = 80 °C		70	А
整流出力の最大実効電流	I _{RMSM}	T _C = 80 °C		100	А
サージ順電流	I _{FSM}	t _P = 10 ms	T _{vj} = 25 °C	560	А
			T _{vj} = 150 °C	435	
電流二乗時間積	l ² t	t _P = 10 ms	T _{vj} = 25 °C	1570	A ² s
			T _{vj} = 150 °C	945	

電気的特性 表 8

項目	記 号	条件及び注記		規格値			単位
				最小	標準	最大	
順電圧	V_{F}	I _F = 50 A	T _{vj} = 150 °C		1.05		V
逆電流	I _r	$T_{\rm vj}$ = 150 °C, $V_{\rm R}$ = 1600 V			1		mA
ジャンクション・ケース間熱抵 抗	R_{thJC}	/Diode(1素子当り)				0.870	K/W
ケース・ヒートシンク間熱抵 抗	R_{thCH}	/Diode(1素子当り), λ_{grease} = 1 W/(m*K)			0.171		K/W
動作温度	$T_{\rm vj,op}$			-40		150	°C

5 IGBT、チョッパー

5 IGBT、チョッパー

表 9 最大定格

項目	記号	条件及び注記		定格値	単位
コレクタ・エミッタ間電圧	V_{CES}		T _{vj} = 25 °C	1200	V
連続 DC コレクタ電流	I _{CDC}	T _{vj max} = 175 °C	T _C = 100 °C	25	Α
繰り返しピークコレクタ電流	I _{CRM}	t _P = 1 ms		50	Α
ゲート・エミッタ間ピーク電圧	V_{GES}			±20	V

表 10 電気的特性

項目	記号	条件及び注記			規格値		単位
				最小	標準	最大	
コレクタ・エミッタ間飽和電圧	V _{CE sat}	$I_{\rm C}$ = 25 A, $V_{\rm GE}$ = 15 V	T _{vj} = 25 °C		1.60	TBD	V
			T _{vj} = 125 °C		1.74		
			T _{vj} = 175 °C		1.82		
ゲート・エミッタ間しきい値電 圧	V_{GEth}	$I_{\rm C}$ = 0.525 mA, $V_{\rm CE}$ = $V_{\rm GE}$, 7	$I_{\rm C}$ = 0.525 mA, $V_{\rm CE}$ = $V_{\rm GE}$, $T_{\rm vj}$ = 25 °C		5.80	6.45	V
ゲート電荷量	Q_{G}	$V_{\rm GE}$ = ±15 V, $V_{\rm CE}$ = 600 V			0.395		μC
内蔵ゲート抵抗	R_{Gint}	T _{vj} = 25 °C			0		Ω
入力容量	C_{ies}	$f = 1000 \text{ kHz}, T_{\text{vj}} = 25 ^{\circ}\text{C}, V$	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}$		4.77		nF
帰還容量	C_{res}	$f = 1000 \text{ kHz}, T_{\text{vj}} = 25 \text{ °C}, V_{\text{CE}} = 25 \text{ V}, V_{\text{GE}} = 0 \text{ V}$			0.017		nF
コレクタ・エミッタ間遮断電流	I_{CES}	$V_{CE} = 1200 \text{ V}, V_{GE} = 0 \text{ V}$	T _{vj} = 25 °C			0.004	mA
ゲート・エミッタ間漏れ電流	I_{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}, T_{vj} = 20 \text{ V}$	25 °C			100	nA
ターンオン遅延時間(誘導負	$t_{\sf don}$	$I_{\rm C} = 25 \text{ A}, V_{\rm CE} = 600 \text{ V},$	T _{vj} = 25 °C		0.041		μs
荷)		$V_{\rm GE} = \pm 15 \text{V}, R_{\rm Gon} = 9.1 \Omega$	T _{vj} = 125 °C		0.043		
			T _{vj} = 175 °C		0.044		
ターンオン上昇時間(誘導負	t_{r}	$I_{\rm C} = 25 \text{ A}, V_{\rm CE} = 600 \text{ V},$	T _{vj} = 25 °C		0.025		μs
荷)		$V_{\rm GE} = \pm 15 \text{V}, R_{\rm Gon} = 9.1 \Omega$	T _{vj} = 125 °C		0.028		
			T _{vj} = 175 °C		0.030		
ターンオフ遅延時間(誘導負	t_{doff}	$I_{\rm C} = 25 \text{ A}, V_{\rm CE} = 600 \text{ V},$	T _{vj} = 25 °C		0.230		μs
荷)	V_{c}	$V_{\rm GE} = \pm 15 \text{ V}, R_{\rm Goff} = 9.1 \Omega$	T _{vj} = 125 °C		0.320		
			T _{vj} = 175 °C		0.350		
ターンオフ下降時間(誘導負	t_{f}	$I_{\rm C}$ = 25 A, $V_{\rm CE}$ = 600 V,	T _{vj} = 25 °C		0.140		μs
荷)	$V_{\rm GE} = \pm 15 \mathrm{V}, R_{\rm Go}$	$V_{\rm GE} = \pm 15 \text{ V}, R_{\rm Goff} = 9.1 \Omega$	T _{vj} = 125 °C		0.220		
			T _{vj} = 175 °C		0.280		

6 Diode-、チョッパー

表 10 電気的特性 (continued)

項目	記号	条件及び注記			規格値		単位
				最小	標準	最大	
ターンオンスイッチング損失	E _{on}	$I_{\rm C}$ = 25 A, $V_{\rm CE}$ = 600 V,	T _{vj} = 25 °C		1.47		mJ
		$L_{\rm \sigma}$ = 35 nH, $V_{\rm GE}$ = ±15 V, $R_{\rm Gon}$ = 9.1 Ω , di/dt = 780 A/ μ s (T $_{\rm vj}$ = 175 °C)	T _{vj} = 125 °C		2.05		
			T _{vj} = 175 °C		2.39		
ターンオフスイッチング損失	フスイッチング損失 E _{off} I _C =2	$I_{\rm C}$ = 25 A, $V_{\rm CE}$ = 600 V,	T _{vj} = 25 °C		1.65		mJ
		L_{σ} = 35 nH, V_{GE} = ±15 V, R_{Goff} = 9.1 Ω , dv/dt = 3120 V/ μ s (T_{vj} = 175 °C)	T _{vj} = 125 °C		2.58		
			T _{vj} = 175 °C		3.13		
短絡電流	I _{SC}	$V_{\text{GE}} \le 15 \text{ V}, V_{\text{CC}} = 800 \text{ V},$ $V_{\text{CEmax}} = V_{\text{CES}} - L_{\text{sCE}} * \text{di/dt}$	$t_{\rm P} \le 8 \mu{\rm s},$ $T_{\rm vj} = 150 {}^{\circ}{\rm C}$		90		А
			$t_{\rm P} \le 7 \mu \rm s,$ $T_{\rm vj} = 175 ^{\circ} \rm C$		85		
ジャンクション・ケース間熱抵 抗	R_{thJC}	IGBT 部(1素子当り)				0.967	K/W
ケース・ヒートシンク間熱抵抗	R_{thCH}	IGBT 部(1素子当り), λ _{gr}	_{rease} = 1 W/(m*K)		0.171		K/W
動作温度	T _{vj op}			-40		175	°C

注: $T_{vj op} > 150$ °C is allowed for operation at overload conditions. For detailed specifications, please refer to AN 2018-14.

6 Diode-、チョッパー

表 11 最大定格

項目	記号	条件及び注記		定格値	単位
ピーク繰返し逆電圧	V_{RRM}		T _{vj} = 25 °C	1200	V
連続 DC 電流	I _F			25	А
ピーク繰返し順電流	/ _{FRM}	t _P = 1 ms		50	А
電流二乗時間積	l ² t	$t_{\rm P}$ = 10 ms, $V_{\rm R}$ = 0 V	T _{vj} = 125 °C	125	A ² s
			T _{vj} = 175 °C	95	

表 12 電気的特性

項目	記 号	条件及び注記		条件及び注記 規格値				単位
				最小	標準	最大		
順電圧	V_{F}	$I_{\rm F}$ = 25 A, $V_{\rm GE}$ = 0 V	T _{vj} = 25 °C		1.83	TBD	V	
			T _{vj} = 125 °C		1.70			
			<i>T</i> _{vj} = 175 °C		1.63			

表 12 電気的特性 (continued)

項目	記 号	条件及び注記			規格値		単位
				最小	標準	最大	
ピーク逆回復電流	I _{RM}	$V_{\rm R}$ = 600 V, $I_{\rm F}$ = 25 A,	T _{vj} = 25 °C		18		Α
		$V_{GE} = -15 \text{ V}, -\text{di}_F/\text{dt} = 395$ A/ μ s (T _{vi} = 175 °C)	T _{vj} = 125 °C		25		
		Λ/μ3 (1 _{Vj} – 113 °C)	T _{vj} = 175 °C		29		
逆回復電荷量	Q _r	$V_{\rm R}$ = 600 V, $I_{\rm F}$ = 25 A,	T _{vj} = 25 °C		2.79		μC
	$\mid A/\mu S (I_{vj} - 175 C) \mid$	T _{vj} = 125 °C		3.36			
		//μ3 (T _{VJ} = 173 °C)	T _{vj} = 175 °C		4.41		
逆回復損失	$E_{\rm rec}$	$V_{\rm R}$ = 600 V, $I_{\rm F}$ = 25 A,	T _{vj} = 25 °C		1.36		mJ
		$V_{GE} = -15 \text{ V}, -\text{di}_F/\text{dt} = 395$ A/ μ s (T _{vi} = 175 °C)	T _{vj} = 125 °C		1.54		
	$A/\mu s (T_{vj} - 175)$	Λ/μ3 (1 _{VJ} = 113 C)	T _{vj} = 175 °C		2.03		
ジャンクション・ケース間熱抵 抗	R_{thJC}	/Diode(1素子当り)				1.43	K/W
ケース・ヒートシンク間熱抵抗	R _{thCH}	/Diode(1素子当り), λ_{gre}	ase= 1 W/(m*K)		0.182		K/W
動作温度	T _{vj op}			-40		175	°C

注: $T_{\rm vj\,op} > 150\,^{\circ}$ C is allowed for operation at overload conditions. For detailed specifications, please refer to AN 2018-14.

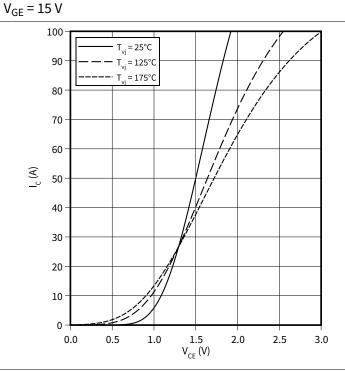
7 NTC-サーミスタ

表 13 電気的特性

項目	記号	記号条件及び注記		単位		
			最小	標準	最大	
定格抵抗値	R ₂₅	T _{NTC} = 25 °C		5		kΩ
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	∆R/R	$T_{\rm NTC} = 100 {}^{\circ}{\rm C}$, $R_{100} = 493 \Omega$	-5		5	%
損失	P ₂₅	T _{NTC} = 25 °C			20	mW
 B-定数	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		K
 B-定数	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$		3411		К
 B-定数	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		K

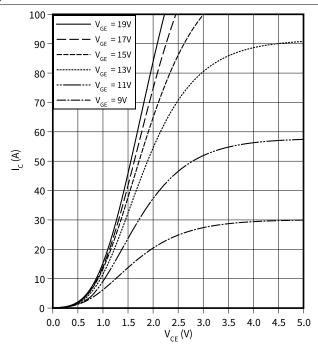
注: 適切なアプリケーションノートによる仕様

EconoPIM[™]2 モジュール



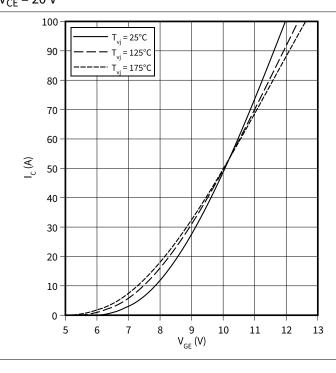
8 特性図

特性図 8


出力特性 (Typical), IGBT- インバータ

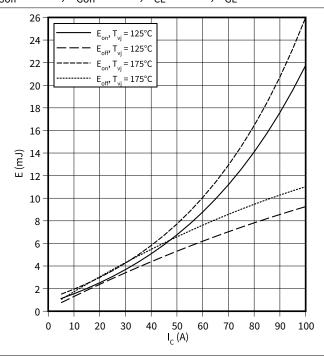
 $I_C = f(V_{CE})$

出力特性 (Typical), IGBT- インバータ


 $I_C = f(V_{CE})$ $T_{vi} = 175$ °C

伝達特性 (Typical), IGBT- インバータ

 $I_C = f(V_{GE})$

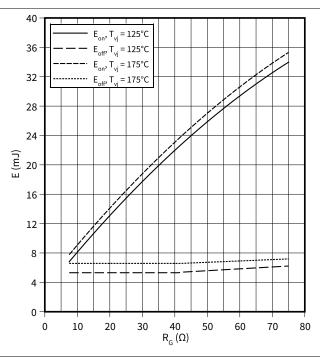

 $V_{CE} = 20 \text{ V}$

スイッチング損失 (Typical), IGBT- インバータ

 $E = f(I_C)$

 $R_{Goff} = 7.5 \Omega$, $R_{Gon} = 7.5 \Omega$, $V_{CE} = 600 V$, $V_{GE} = \pm 15 V$

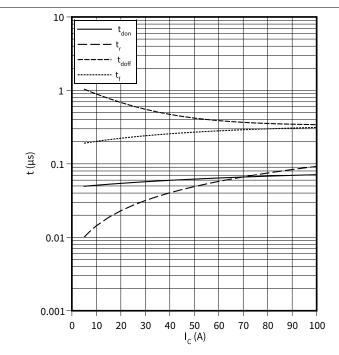
EconoPIM[™]2 モジュール



8 特性図

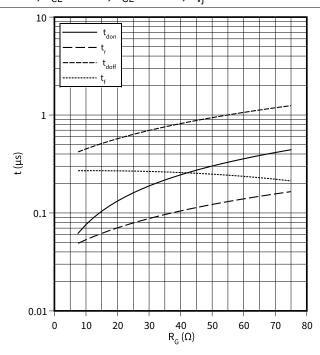
スイッチング損失 (Typical), IGBT- インバータ

 $E = f(R_G)$

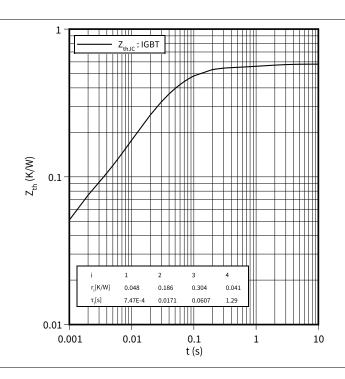

 $I_C = 50 \text{ A}, V_{CE} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$

??? (Typical), IGBT- インバータ

 $t = f(I_C)$


 R_{Goff} = 7.5 $\Omega,\,R_{Gon}$ = 7.5 $\Omega,\,V_{CE}$ = 600 V, V_{GE} = ± 15 V, T_{vj} = 175 °C

??? (Typical), IGBT- インバータ

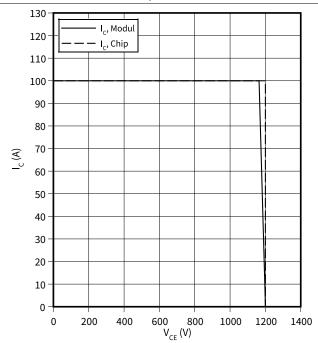

 $t = f(R_G)$

 $I_C = 50 \text{ A}, V_{CE} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}, T_{vi} = 175 ^{\circ}\text{C}$

過渡熱インピーダンス, IGBT- インバータ

 $Z_{th} = f(t)$

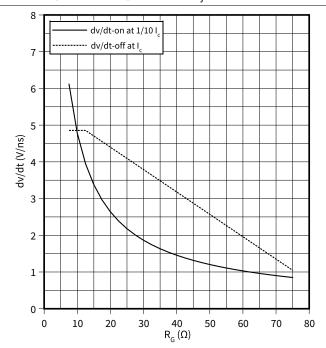
EconoPIM™2 モジュール



8 特性図

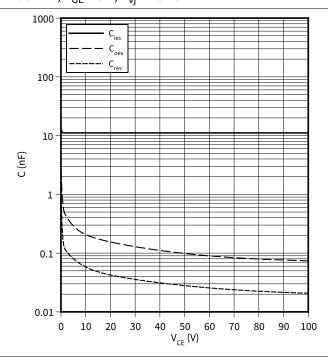
逆パイアス安全動作領域 (RBSOA)), IGBT- インバータ

 $I_C = f(V_{CE})$


 $R_{Goff} = 7.5 \Omega$, $V_{GE} = \pm 15 V$, $T_{vj} = 175 °C$

dv/dt (Typical), IGBT- インバータ

 $dv/dt = f(R_G)$


 $I_C = 50 \text{ A}, V_{CE} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}, T_{vi} = 25 ^{\circ}\text{C}$

容量特性 (Typical), IGBT- インバータ

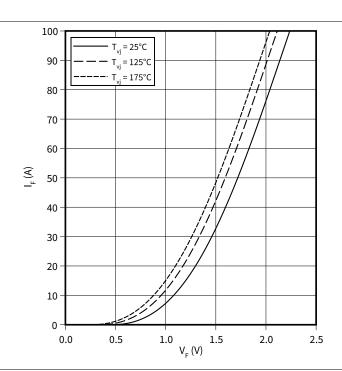
 $C = f(V_{CE})$

f = 100 kHz, $V_{GE} = 0 \text{ V}$, $T_{vj} = 25 \text{ }^{\circ}\text{C}$

ゲート充電特性 (典型), IGBT- インバータ

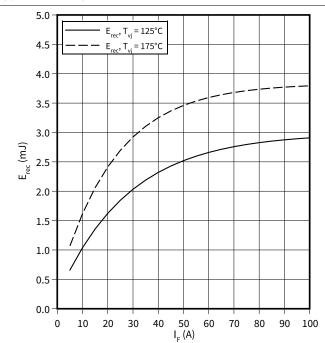
 $V_{GE} = f(Q_G)$

 $I_C = 50 A$, $T_{vi} = 25 °C$


EconoPIM™2 モジュール

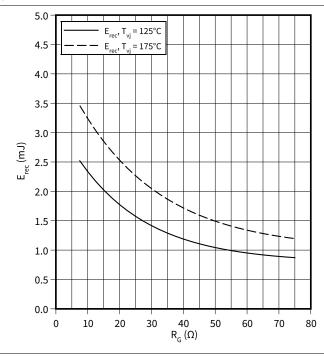
8 特性図

順電圧特性 (typical), Diode、インバータ

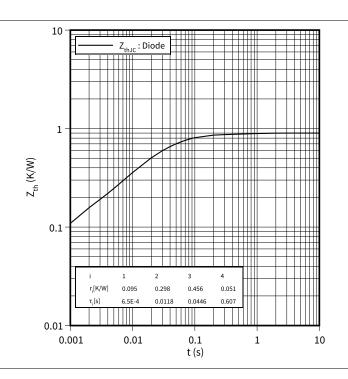

 $I_F = f(V_F)$

スイッチング損失 (Typical), Diode、インバータ

 $E_{rec} = f(I_F)$


 $R_{Gon} = 7.5 \Omega, V_{CE} = 600 V$

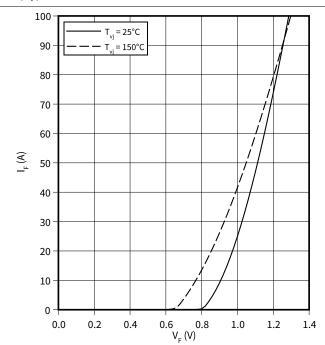
スイッチング損失 (Typical), Diode、インバータ


 $E_{rec} = f(R_G)$

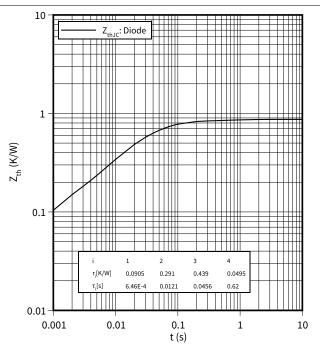
 $V_{CE} = 600 \text{ V}, I_F = 50 \text{ A}$

過渡熱インピーダンス, Diode、インバータ

 $Z_{th} = f(t)$

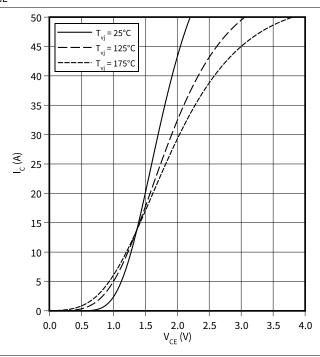

EconoPIM™2 モジュール

8 特性図

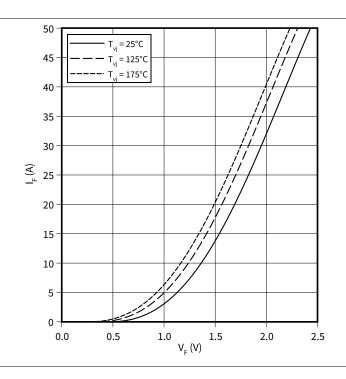

順方向特性(典型), Diode、整流器

 $I_F = f(V_F)$

過渡熱インピーダンス, Diode、整流器

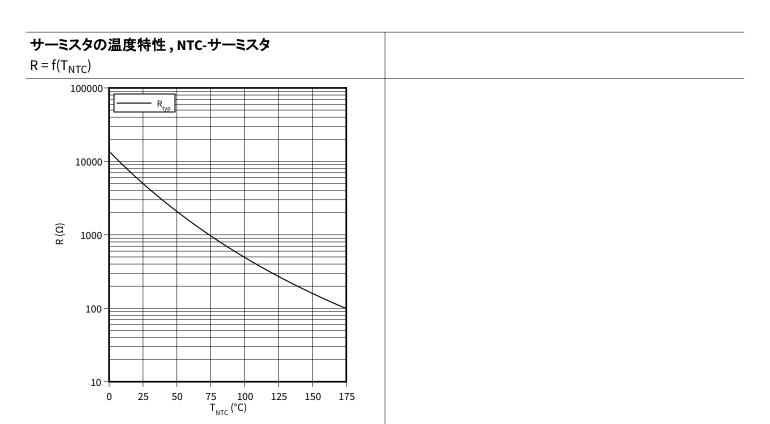

 $Z_{th} = f(t)$

出力特性 (Typical), IGBT、チョッパー


 $I_C = f(V_{CE})$

 $V_{GE} = 15 V$

順電圧特性 (typical), Diode-、チョッパー


 $I_F = f(V_F)$

EconoPIM™2 モジュール

8 特性図

EconoPIM™2 モジュール

9 回路図

9 回路図

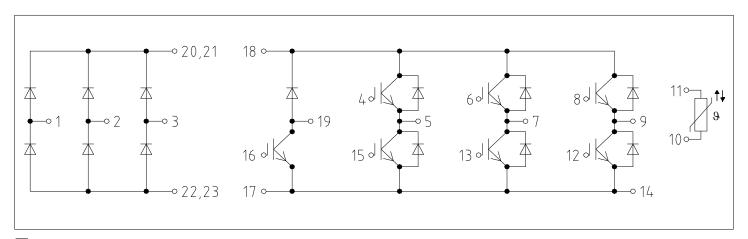


図 2

10 パッケージ外形図

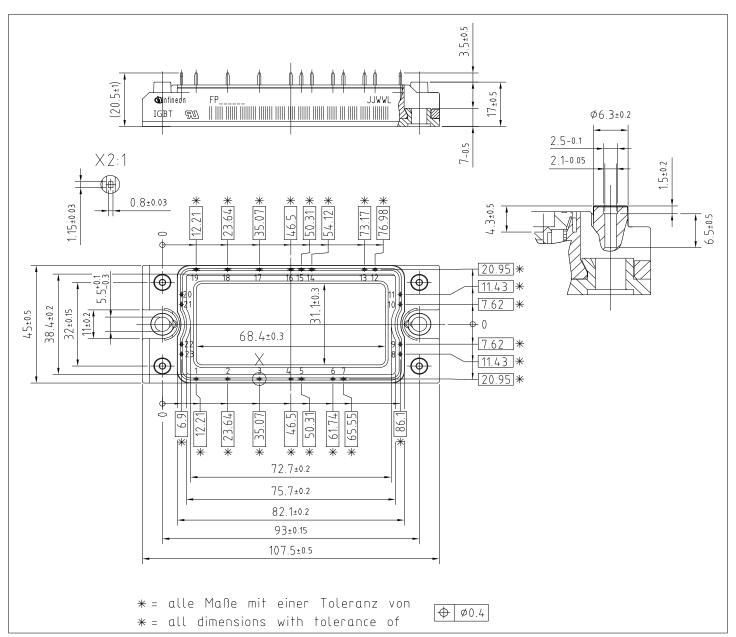


図 3

EconoPIM[™]2 モジュール

11 モジュールラベルコード

11 モジュールラベルコード

Code format	Data Matrix		Barcode C	Code128
Encoding	ASCII text		Code Set	A
Symbol size	16x16		23 digits	
Standard	IEC24720 and IEC16022		IEC8859-1	
Code content	Content Module serial number Module material number Production order number Date code (production year) Date code (production week)	Digit 1-5 6-11 12-19 20-21 22-23		Example 71549 142846 55054991 15 30
Example	71549142846550549911530			6550549911530

図 4

EconoPIM[™]2 モジュール

改訂履歴

改訂履歴

文書改訂	発行日	変更内容
V1.0	2021-06-17	
0.20	2021-06-17	
0.30	2021-06-17	Preliminary datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-06-17 Published by Infineon Technologies AG 81726 Munich, Germany

© 2021 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-AAY119-003

重要事項

本文書に記載された情報は、いかなる場合も、条件 または特性の保証とみなされるものではありません(「品質の保証」)。

本文に記された一切の事例、手引き、もしくは一般的価値、および/または本製品の用途に関する一切の情報に関し、インフィニオンテクノロジーズ(以下、「インフィニオン」)はここに、第三者の知的所有権の不侵害の保証を含むがこれに限らず、あらゆる種類の一切の保証および責任を否定いたします。

さらに、本文書に記載された一切の情報は、お客様の用途におけるお客様の製品およびインフィニオン製品の一切の使用に関し、本文書に記載された義務ならびに一切の関連する法的要件、規範、および基準をお客様が遵守することを条件としています。

本文書に含まれるデータは、技術的訓練を受けた従業員のみを対象としています。本製品の対象用途への適合性、およびこれら用途に関連して本文書に記載された製品情報の完全性についての評価は、お客様の技術部門の責任にて実施してください。

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

警告事項

技術的要件に伴い、製品には危険物質が含まれる可能性があります。当該種別の詳細については、インフィニオンの最寄りの営業所までお問い合わせください。

インフィニオンの正式代表者が署名した書面を通じ、インフィニオンによる明示の承認が存在する場合を除き、インフィニオンの製品は、当該製品の障害またはその使用に関する一切の結果が、合理的に人的傷害を招く恐れのある一切の用途に使用することはできないこと予めご了承ください。