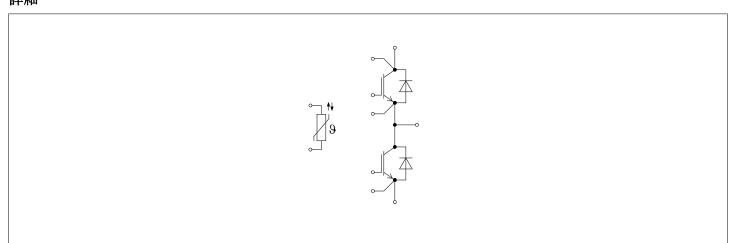


Final datasheet

EconoDUAL™3 モジュール with TRENCHSTOP™IGBT7 and emitter controlled 7 diode と NTC サーミスタ

特徴

- 電気的特性
 - V_{CFS} = 1700 V
 - $I_{C nom} = 900 A / I_{CRM} = 1800 A$
 - 温度センサー内蔵
 - 高い電流密度
 - 低 V_{CEsat} 飽和電圧
 - 最大 175° c の過負荷動作
 - トレンチ IGBT 7
 - 正温度特性を持った V_{CFsat} 飽和電圧
- 機械的特性
 - 高いパワー密度
 - 絶縁されたベースプレート
 - PressFIT 接合 技術
 - 標準ハウジング


可能性のある用途

- ハイパワーコンバータ
- 中電圧コンバータ
- モーター駆動
- 風力タービン

製品検証

• IEC 60747、60749、および 60068 の関連試験に準拠して産業用アプリケーションに適合

詳細

EconoDUAL™3 モジュール

目次

目次

	詳細	. 1
	特徴	. 1
	可能性のある用途	.1
	製品検証	1
	目次	. 2
1	ハウジング	. 3
2	IGBT- インバータ	.4
3	Diode、インバータ	6
4	NTC-サーミスタ	.7
5	特性図	.8
6	回路図	13
7	パッケージ外形図	14
8	モジュールラベルコード	15
	改訂履歴	16
	免責事項	17

EconoDUAL™3 モジュール

1 ハウジング

1 ハウジング

表 1 絶縁協調

項目	記号	条件及び注記	定格値	単位
絶縁耐圧	V _{ISOL}	RMS, f = 50 Hz, t = 1 min	3.4	kV
絶縁試験電圧 NTC	V _{ISOL(NTC)}	RMS, f = 50 Hz	3.4	kV
ベースプレート材質			Cu	
内部絶縁		基礎絶縁 (クラス 1, IEC 61140)	Al2O3	
沿面距離	d _{Creep nom}	ベースプレートへのターミナル, nom., (PD2, IEC 60664-1, Ed. 3.0)	> 15	mm
沿面距離	d _{Creep min}	ベースプレートへのターミナル, min., (PD2, IEC 60664-1, Ed. 3.0)	14.7	mm
沿面距離	d _{Creep nom}	ターミナル – ターミナル間, nom., (PD2, IEC 60664-1, Ed. 3.0)	12.1	mm
沿面距離	d _{Creep min}	ターミナル – ターミナル間, min., (PD2, IEC 60664-1, Ed. 3.0)	11.5	mm
空間距離	d _{Clear nom}	ベースプレートへのターミナル, nom.	> 12.5	mm
空間距離	d _{Clear min}	ベースプレートへのターミナル, min.	12.5	mm
空間距離	d _{Clear nom}	ターミナル - ターミナル間, nom.	10.0	mm
空間距離	d _{Clear min}	ターミナル - ターミナル間, min.	9.6	mm
相対トラッキング指数	СТІ		> 200	
相対温度指数 (電気)	RTI	住宅	140	°C

表 2 電気的特性

項目	記号	条件及び注記		規格値		単位
			最小	標準	最大	
内部インダクタンス	L _{sCE}			20		nH
パワーターミナル・チップ間抵抗	R _{CC'+EE'}	T _C = 25 °C, /スイッチ		0.8		mΩ
保存温度	$T_{\rm stg}$		-40		125	°C
取り付けネジ締め付けトルク	М	適切なアプリケーショ M5,取り付けネジ ンノートによるマウン ティング	3		6	Nm
主端子ネジ締め付けトルク	М	適切なアプリケーショ M6,取り付けネジ ンノートによるマウン ティング	3		6	Nm
質量	G			345		g

EconoDUAL™3 モジュール

2 IGBT- インバータ

2 IGBT- インバータ

表 3 最大定格

項目	記号	条件及び注記		定格値	単位
コレクタ・エミッタ間電 圧	V _{CES}		T _{vj} = 25 °C	1700	V
連続 DC コレクタ電流	I _{CDC}	T _{vj max} = 175 °C	T _C = 80 °C	900	А
モジュール・DC ターミナ ルに流せる最大実効電	I _{tRMS}		$T_{\text{Terminal}} = 90 ^{\circ}\text{C},$ $T_{\text{C}} = 90 ^{\circ}\text{C}$	580	А
流 / モジュール・DC タ ーミナル当りの最大実効 電流			$T_{\text{Terminal}} = 105 ^{\circ}\text{C},$ $T_{\text{C}} = 90 ^{\circ}\text{C}$	565	
繰り返しピークコレクタ 電流	I _{CRM}	t _p は T _{vj op} に制約される)	1800	А
ゲート・エミッタ間ピー ク電圧	V_{GES}			±20	V

表 4 電気的特性

記 号	条件及び注記		条件及び注記 規格値			単位
			最小	標準	最大	
V _{CE sat}	$I_{\rm C}$ = 900 A, $V_{\rm GE}$ = 15 V	T _{vj} = 25 °C		1.70	1.85	V
		T _{vj} = 125 °C		1.95		
		T _{vj} = 150 °C		2.05		
		T _{vj} = 175 °C		2.10		
V_{GEth}	$I_{\rm C}$ = 18.8 mA, $V_{\rm CE}$ = $V_{\rm GE}$, $T_{\rm vj}$ = 25 °C		5.15	5.80	6.45	V
Q _G	V _{GE} = ±15 V, V _{CC} = 900 V			8.59		μC
R_{Gint}	T _{vj} = 25 °C			0.28		Ω
C_{ies}	$f = 100 \text{ kHz}, T_{\text{vj}} = 25 ^{\circ}\text{C}, V_{\text{C}}$	$t_{E} = 25 \text{ V}, V_{GE} = 0 \text{ V}$		93.8		nF
C_{res}	$f = 100 \text{ kHz}, T_{\text{vj}} = 25 \text{ °C}, V_{\text{C}}$	$t_{E} = 25 \text{ V}, V_{GE} = 0 \text{ V}$		0.33		nF
I _{CES}	$V_{\rm CE} = 1700 \text{V}, V_{\rm GE} = 0 \text{V}$	T _{vj} = 25 °C			5	mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}, T_{vj} = 25 \text{ °C}$				100	nA
ーンオン遅延時間(誘 $t_{\rm don}$ $I_{\rm C}$ = 900 A, $V_{\rm CC}$ = 900 V, $T_{\rm vj}$ = 25 $^{\circ}$ C				0.174		μs
$V_{\rm GE} = \pm 15 \text{V}, R_{\rm Gon} = 0.33 \Omega$	T _{vj} = 125 °C		0.195			
		T _{vj} = 150 °C		0.202		
		T _{vj} = 175 °C		0.207		
	V _{CE} sat V _{GEth} Q _G R _{Gint} C _{ies} C _{res} I _{CES}	$V_{CE sat}$ $I_{C} = 900 A, V_{GE} = 15 V$ V_{GEth} $I_{C} = 18.8 mA, V_{CE} = V_{GE}, T_{V}$ Q_{G} $V_{GE} = \pm 15 V, V_{CC} = 900 V$ R_{Gint} $T_{Vj} = 25 ^{\circ}C$ C_{ies} $f = 100 kHz, T_{Vj} = 25 ^{\circ}C, V_{C}$ I_{CES} $V_{CE} = 1700 V, V_{GE} = 0 V$ I_{GES} $V_{CE} = 0 V, V_{GE} = 20 V, T_{Vj} = 30 V$ $I_{CE} = 0 V, V_{CC} = 900 V, V_$	$V_{\text{CE sat}} I_{\text{C}} = 900 \text{ A}, V_{\text{GE}} = 15 \text{ V} \qquad \frac{T_{\text{vj}} = 25 \text{ °C}}{T_{\text{vj}} = 125 \text{ °C}}$ $\frac{T_{\text{vj}} = 125 \text{ °C}}{T_{\text{vj}} = 150 \text{ °C}}$ $\frac{T_{\text{vj}} = 150 \text{ °C}}{T_{\text{vj}} = 175 \text{ °C}}$ $V_{\text{GEth}} I_{\text{C}} = 18.8 \text{ mA}, V_{\text{CE}} = V_{\text{GE}}, T_{\text{vj}} = 25 \text{ °C}$ $Q_{\text{G}} V_{\text{GE}} = \pm 15 \text{ V}, V_{\text{CC}} = 900 \text{ V}$ $R_{\text{Gint}} T_{\text{vj}} = 25 \text{ °C}$ $C_{\text{ies}} f = 100 \text{ kHz}, T_{\text{vj}} = 25 \text{ °C}, V_{\text{CE}} = 25 \text{ V}, V_{\text{GE}} = 0 \text{ V}$ $C_{\text{res}} f = 100 \text{ kHz}, T_{\text{vj}} = 25 \text{ °C}, V_{\text{CE}} = 25 \text{ V}, V_{\text{GE}} = 0 \text{ V}$ $I_{\text{CES}} V_{\text{CE}} = 1700 \text{ V}, V_{\text{GE}} = 0 \text{ V} T_{\text{vj}} = 25 \text{ °C}$ $I_{\text{GES}} V_{\text{CE}} = 0 \text{ V}, V_{\text{GE}} = 20 \text{ V}, T_{\text{vj}} = 25 \text{ °C}$ $T_{\text{vj}} = 25 \text{ °C} T_{\text{vj}} = 125 \text{ °C}$ $T_{\text{vj}} = 125 \text{ °C}$ $T_{\text{vj}} = 150 \text{ °C}$	最小 $V_{\text{CE sat}} I_{\text{C}} = 900 \text{ A, } V_{\text{GE}} = 15 \text{ V} \qquad \frac{T_{\text{V}j} = 25 \text{ °C}}{T_{\text{V}j} = 125 \text{ °C}}$ $\frac{T_{\text{V}j} = 125 \text{ °C}}{T_{\text{V}j} = 150 \text{ °C}}$ $\frac{T_{\text{V}j} = 175 \text{ °C}}{T_{\text{V}j} = 175 \text{ °C}}$ $V_{\text{GEth}} I_{\text{C}} = 18.8 \text{ mA, } V_{\text{CE}} = V_{\text{GE}}, T_{\text{V}j} = 25 \text{ °C}$ $S.15$ $Q_{\text{G}} V_{\text{GE}} = \pm 15 \text{ V, } V_{\text{CC}} = 900 \text{ V}$ $R_{\text{Gint}} T_{\text{V}j} = 25 \text{ °C}$ $C_{\text{ies}} f = 100 \text{ kHz, } T_{\text{V}j} = 25 \text{ °C, } V_{\text{CE}} = 25 \text{ V, } V_{\text{GE}} = 0 \text{ V}$ $I_{\text{CES}} V_{\text{CE}} = 1700 \text{ V, } V_{\text{GE}} = 0 \text{ V}$ $I_{\text{CES}} V_{\text{CE}} = 1700 \text{ V, } V_{\text{GE}} = 0 \text{ V}$ $I_{\text{CE}} V_{\text{CE}} = 0 \text{ V, } V_{\text{GE}} = 20 \text{ V, } T_{\text{V}j} = 25 \text{ °C}$ $I_{\text{GES}} V_{\text{CE}} = 0 \text{ V, } V_{\text{GE}} = 20 \text{ V, } T_{\text{V}j} = 25 \text{ °C}$ $I_{\text{C}} = 900 \text{ A, } V_{\text{CC}} = 900 \text{ V, } V_{\text{V}j} = 25 \text{ °C}$ $T_{\text{V}j} = 125 \text{ °C}$ $T_{\text{V}j} = 150 \text{ °C}$		

(続く)

EconoDUAL™3 モジュール

2 IGBT- インバータ

表 4 (続き) 電気的特性

項目	記号 条件及び注記			規格値			単位
				最小	標準	最大	
ターンオン上昇時間(誘	t _r	$I_{\rm C} = 900 \text{A}, V_{\rm CC} = 900 \text{V},$	T _{vj} = 25 °C		0.054		μs
導負荷)		$V_{\rm GE} = \pm 15 \text{V}, R_{\rm Gon} = 0.33 \Omega$	T _{vj} = 125 °C		0.060		
			T _{vj} = 150 °C		0.061		
			T _{vj} = 175 °C		0.065		
ターンオフ遅延時間(誘	t_{doff}	$I_{\rm C}$ = 900 A, $V_{\rm CC}$ = 900 V,	T _{vj} = 25 °C		0.738		μs
導負荷)		$V_{\rm GE}$ = ±15 V, $R_{\rm Goff}$ = 3 Ω	T _{vj} = 125 °C		0.828		
			T _{vj} = 150 °C		0.850		
			T _{vj} = 175 °C		0.865		
ターンオフ下降時間(誘	t_{f}	$I_{C} = 900 \text{ A}, V_{CC} = 900 \text{ V},$ $V_{GE} = \pm 15 \text{ V}, R_{Goff} = 3 \Omega$	T _{vj} = 25 °C		0.202		μs
導負荷)			T _{vj} = 125 °C		0.432		
			T _{vj} = 150 °C		0.504		
			T _{vj} = 175 °C		0.573).573	
ターンオンスイッチング	E _{on}	$I_{\rm C}$ = 900 A, $V_{\rm CC}$ = 900 V, L_{σ} = 25 nH, $V_{\rm GE}$ = ±15 V, $R_{\rm Gon}$ = 0.33 Ω , di/dt = 12300 A/ μ s (T $_{\rm vj}$ = 175 °C)	T _{vj} = 25 °C		54.6		mJ
損失			T _{vj} = 125 °C		138		
			T _{vj} = 150 °C		172		
			T _{vj} = 175 °C		205		
ターンオフスイッチング	$E_{ m off}$	L_{σ} = 25 nH, V_{GE} = ±15 V,	T _{vj} = 25 °C		163		mJ
損失			T _{vj} = 125 °C		245		
		$R_{Goff} = 3 \Omega$, dv/dt = 3800 V/µs ($T_{vj} = 175 ^{\circ}C$)	T _{vj} = 150 °C		271		
			T _{vj} = 175 °C		297		
短絡電流	I _{SC}	$V_{GE} = 15 \text{ V}, V_{CC} = 1000 \text{ V},$ $V_{CEmax} = V_{CES} - L_{sCE} + \text{di/dt}$	t _P ≤ 8 μs, T _{vj} =150 °C		2950		А
			t _P ≤ 6 μs, T _{vj} =175 °C		2850		
ジャンクション・ケース 間熱抵抗	R _{thJC}	IGBT 部(1素子当り)				0.0460	K/W
ケース・ヒートシンク間 熱抵抗	R _{thCH}	IGBT 部(1素子当り)			0.0270		K/W
動作温度	$T_{\rm vjop}$			-40		175	°C

注: $T_{\text{vjop}} > 150 \,^{\circ}\text{C}$ is only allowed for operation at overload conditions. For detailed specifications please refer to AN 2018-14.

EconoDUAL™3 モジュール

3 Diode、インバータ

3 Diode、インバータ

表 5 最大定格

項目	記号	条件及び注記		定格値	単位
ピーク繰返し逆電圧	V_{RRM}		T _{vj} = 25 °C	1700	V
連続 DC 電流	I _F			900	Α
ピーク繰返し順電流	/ _{FRM}	t _P = 1 ms		1800	Α
電流二乗時間積	I ² t	$t_{\rm P}$ = 10 ms, $V_{\rm R}$ = 0 V	T _{vj} = 125 °C	40200	A ² s
			T _{vj} = 175 °C	27000	

表 6 電気的特性

項目	記号	条件及び注記			規格値		単位
				最小	標準	最大	
順電圧	V_{F}	I _F = 900 A, V _{GE} = 0 V	T _{vj} = 25 °C		2.35	2.50	V
			T _{vj} = 125 °C		2.25		
			T _{vj} = 150 °C		2.20		
			T _{vj} = 175 °C		2.10		
ピーク逆回復電流	I _{RM}	$V_{\rm CC} = 900 \text{V}, I_{\rm F} = 900 \text{A},$	T _{vj} = 25 °C		992		Α
		$V_{\text{GE}} = -15 \text{ V}, -\text{di}_{\text{F}}/\text{dt} = 12900 \text{ A/}\mu\text{s} (T_{\text{vj}} = 175 ^{\circ}\text{C})$	T _{vj} = 125 °C		1130		-
		123007, μ3 (10)	T _{vj} = 150 °C		1140		
			T _{vj} = 175 °C		1170		
逆回復電荷量	Q _r	V _{GE} = -15 V, -di _F /dt = 12900 A/μs (T _{vi} = 175 °C)	T _{vj} = 25 °C		119		μC
			T _{vj} = 125 °C		210		
			T _{vj} = 150 °C		240		
			T _{vj} = 175 °C		272		
逆回復損失	E_{rec}	$V_{\rm CC} = 900 \text{ V}, I_{\rm F} = 900 \text{ A},$	T _{vj} = 25 °C		86		mJ
		V_{GE} = -15 V, -di _F /dt = 12900 A/µs (T _{vj} = 175 °C)	T _{vj} = 125 °C		141		
		123007, μ3 (1γ) 173 (2)	T _{vj} = 150 °C		159		
			T _{vj} = 175 °C		176		
ジャンクション・ケース 間熱抵抗	R_{thJC}	/Diode(1素子当り)				0.0885	K/W
ケース・ヒートシンク間 熱抵抗	R _{thCH}	/Diode(1素子当り)			0.0370		K/W
動作温度	T _{vj op}			-40		175	°C

注: $T_{\text{vjop}} > 150 \,^{\circ}\text{C}$ is only allowed for operation at overload conditions. For detailed specifications please refer to AN 2018-14.

EconoDUAL™3 モジュール

4 NTC-サーミスタ

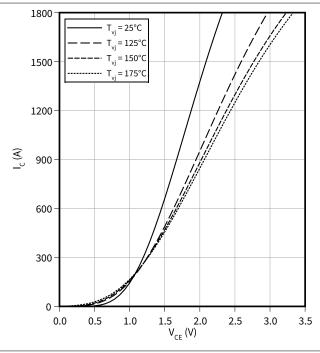
4 NTC-サーミスタ

表 7 電気的特性

項目	記号条件及び注記		規格値			単位
			最小	標準	最大	
定格抵抗値	R ₂₅	T _{NTC} = 25 °C		5		kΩ
	∆R/R	$T_{\rm NTC} = 100 ^{\circ}{\rm C}, R_{100} = 493 \Omega$	-5		5	%
損失	P ₂₅	T _{NTC} = 25 °C			20	mW
B-定数	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		K
B-定数	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$		3411		К
B-定数	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		K

注: NTC の解析的な説明については、AN2009-10 の4 章を参照下さい。

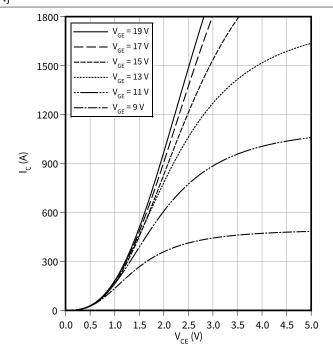
_____ 5 特性図



5 特性図

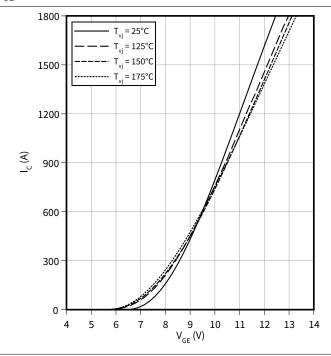
出力特性 (typical), IGBT- インバータ

 $I_C = f(V_{CE})$


 $V_{GE} = 15 V$

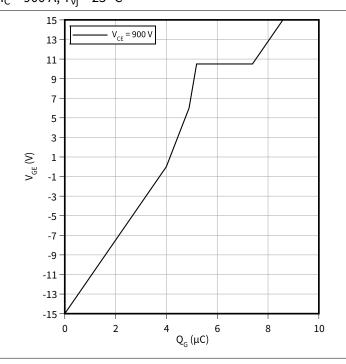
出力特性 (typical), IGBT- インバータ

 $I_C = f(V_{CE})$


 $T_{vj} = 175$ °C

伝達特性 (typical), IGBT- インバータ

 $I_C = f(V_{GE})$

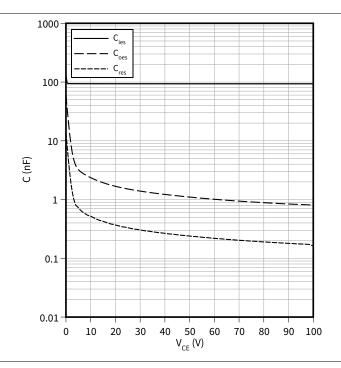

 $V_{CE} = 20 V$

ゲート充電特性 (typical), IGBT- インバータ

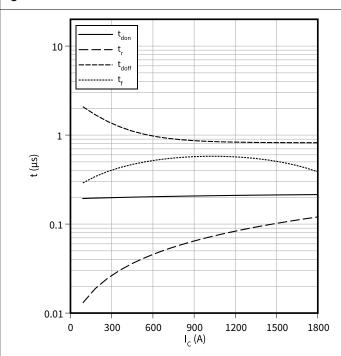
 $V_{GE} = f(Q_G)$

 I_C = 900 A, T_{vj} = 25 °C

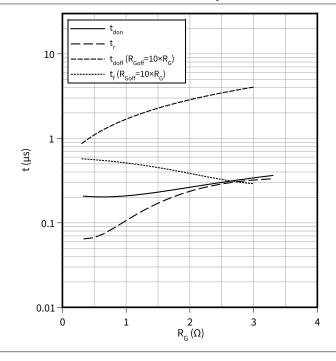
EconoDUAL™3 モジュール



容量特性 (typical), IGBT- インバータ

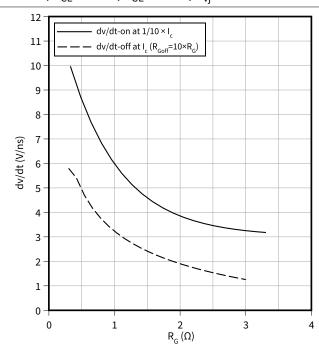

 $C = f(V_{CE})$

 $f = 100 \text{ kHz}, V_{GE} = 0 \text{ V}, T_{vj} = 25 \text{ °C}$


スイッチング時間 (typical), IGBT- インバータ $t = f(I_C)$

 $R_{Goff} = 3 \Omega$, $R_{Gon} = 0.33 \Omega$, $V_{CC} = 900 V$, $V_{GE} = \pm 15 V$, $T_{vj} = 175$

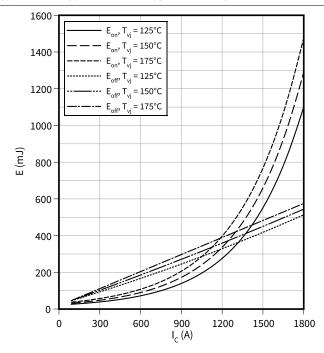
スイッチング時間 (typical), IGBT- インバータ t=f(R_G)


 I_C = 900 A, V_{CC} = 900 V, V_{GE} = ± 15 V, T_{vj} = 175 °C

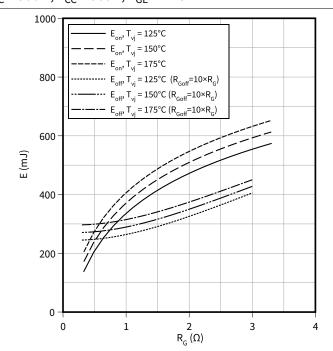
電圧勾配 (typical), IGBT- インバータ

 $dv/dt = f(R_G)$

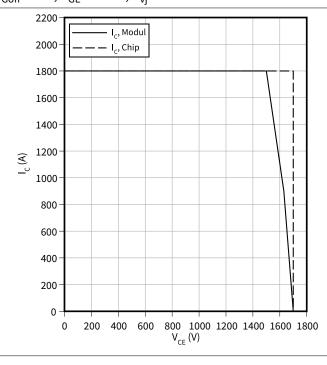
 I_C = 900 A, V_{CE} = 900 V, V_{GE} = ±15 V, T_{vj} = 25 °C



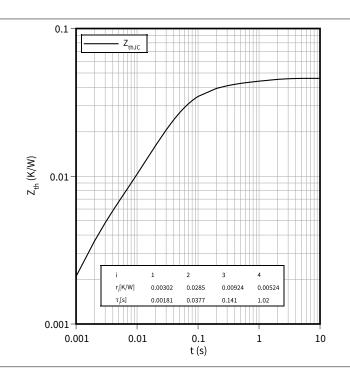
5 特性図


スイッチング損失 (typical), IGBT- インバータ E = f(I_C)

 $R_{Goff} = 3 \Omega$, $R_{Gon} = 0.33 \Omega$, $V_{CC} = 900 V$, $V_{GE} = \pm 15 V$


スイッチング損失 (typical), IGBT- インバータ E = f(R_G)

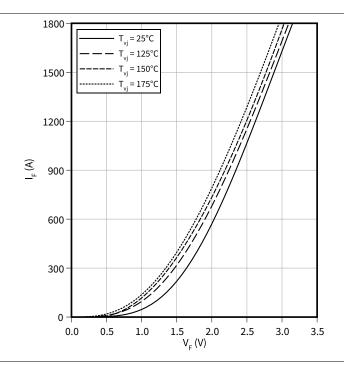
 I_C = 900 A, V_{CC} = 900 V, V_{GE} = ± 15 V



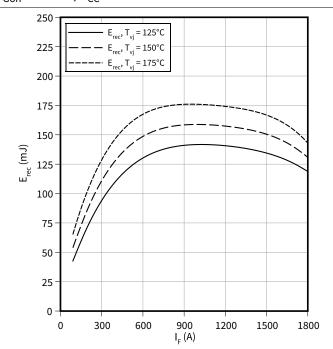
逆バイアス安全動作領域 (RBSOA), IGBT- インバータ $I_C = f(V_{CE})$

 $R_{Goff} = 3 \Omega$, $V_{GE} = \pm 15 V$, $T_{vi} = 175 °C$

過渡熱インピーダンス, IGBT- インバータ Z_{th} = f(t)

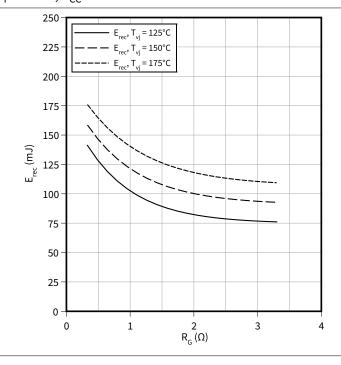


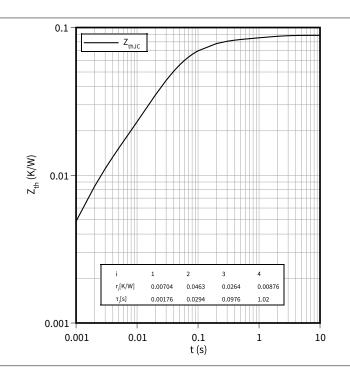
順電圧特性 (typical), Diode、インバータ



スイッチング損失 (typical), Diode、インバータ

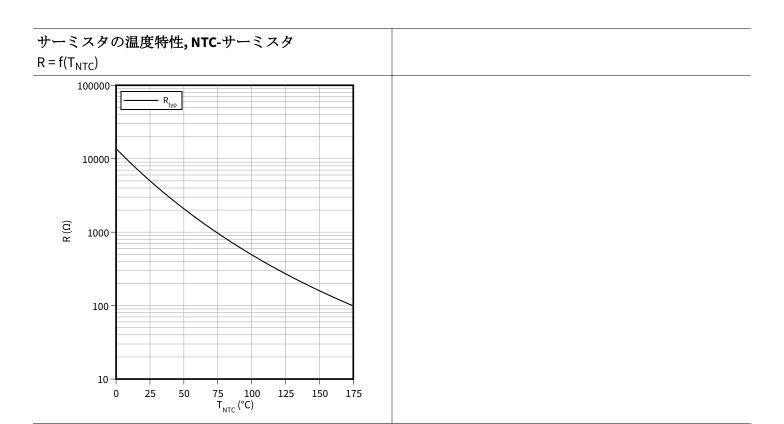
 $E_{rec} = f(I_F)$


 $R_{Gon} = 0.33 \Omega, V_{CC} = 900 V$


スイッチング損失 (typical), Diode、インバータ

 $E_{rec} = f(R_G)$

 $I_F = 900 A, V_{CC} = 900 V$



過渡熱インピーダンス, Diode、インバータ $Z_{th} = f(t)$

EconoDUAL™3 モジュール

EconoDUAL™3 モジュール

6 回路図

6 回路図

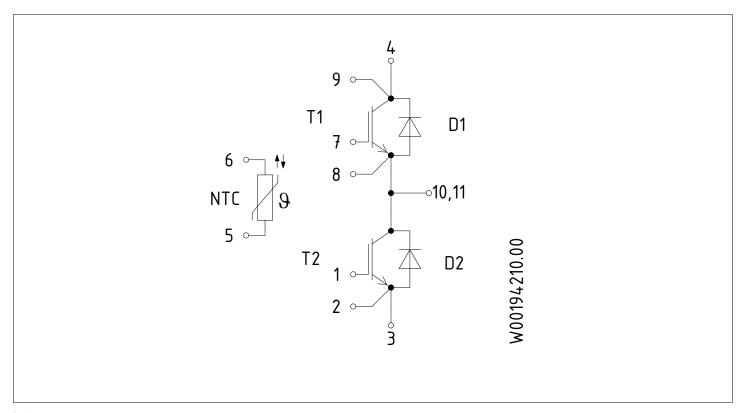
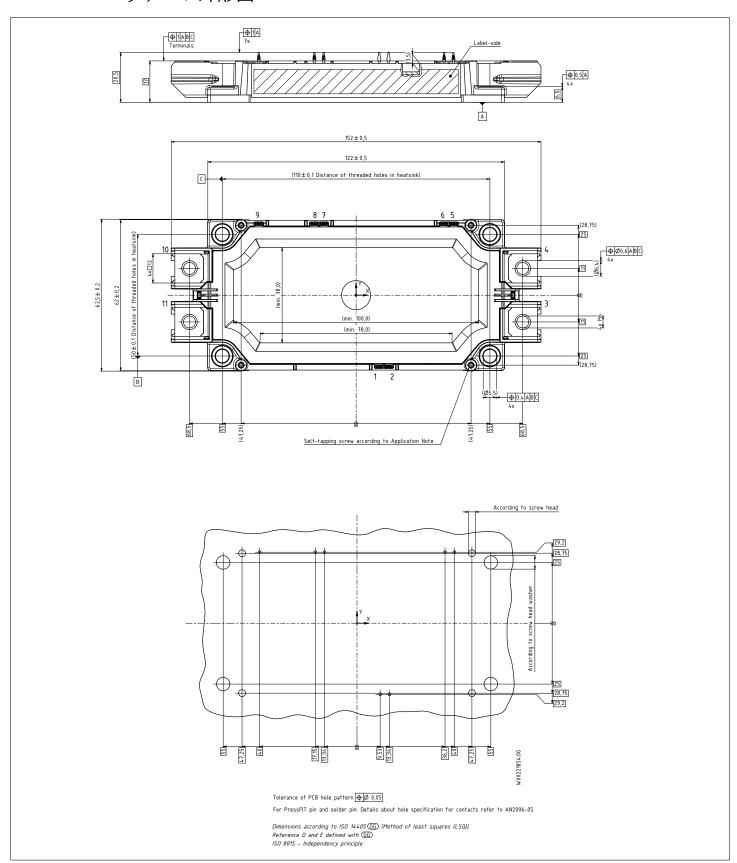
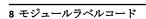



図1

7 パッケージ外形図



7 パッケージ外形図

14

EconoDUAL™3 モジュール

8 モジュールラベルコード

Module label code								
Code format	Data Matrix		Barcode C	Code128				
Encoding	ASCII text		Code Set /	Ą				
Symbol size	16x16		23 digits					
Standard	IEC24720 and IEC16022		IEC8859-1					
Code content	Content Module serial number Module material number Production order number Date code (production year) Date code (production week)	Module serial number 1 - 5 Module material number 6 - 11 Production order number 12 - 19 Date code (production year) 20 - 21		Example 71549 142846 55054991 15 30				
Example	71549142846550549911530		7154914284	6550549911530				

図3

EconoDUAL™3 モジュール

改訂履歴

改訂履歴

文書改訂	発行日	変更内容
0.10	2020-11-12	Target datasheet
0.20	2021-01-14	Target datasheet
1.00	2022-02-01	Final datasheet
1.10	2024-03-07	Final datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-03-07 Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference IFX-AAJ664-004

重要事項

本文書に記載された情報は、いかなる場合も、条件 または特性の保証とみなされるものではありません (「品質の保証」)。

本文に記された一切の事例、手引き、もしくは一般的価値、および/または本製品の用途に関する一切の情報に関し、インフィニオンテクノロジーズ(以下、「インフィニオン」)はここに、第三者の知的所有権の不侵害の保証を含むがこれに限らず、あらゆる種類の一切の保証および責任を否定いたします。

さらに、本文書に記載された一切の情報は、お客様の用途におけるお客様の製品およびインフィニオン製品の一切の使用に関し、本文書に記載された義務ならびに一切の関連する法的要件、規範、および基準をお客様が遵守することを条件としています。

本文書に含まれるデータは、技術的訓練を受けた従業員のみを対象としています。本製品の対象用途への適合性、およびこれら用途に関連して本文書に記載された製品情報の完全性についての評価は、お客様の技術部門の責任にて実施してください。

警告事項

技術的要件に伴い、製品には危険物質が含まれる 可能性があります。当該種別の詳細については、 インフィニオンの最寄りの営業所までお問い合 わせください。

インフィニオンの正式代表者が署名した書面を 通じ、インフィニオンによる明示の承認が存在す る場合を除き、インフィニオンの製品は、当該製 品の障害またはその使用に関する一切の結果が、 合理的に人的傷害を招く恐れのある一切の用途 に使用することはできないこと予めご了承くだ さい。