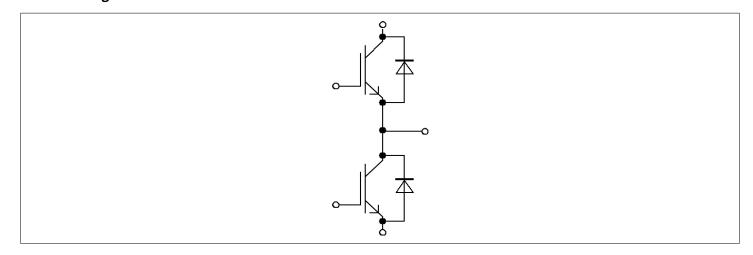


XHP[™]3 Modul mit Trench/Feldstopp IGBT3 und Emitter Controlled 3 Diode

Eigenschaften

- Elektrische Eigenschaften
 - V_{CES} = 3300 V
 - $I_{C nom} = 450 A / I_{CRM} = 900 A$
 - Große DC-Festigkeit
 - Hohe Kurzschlussrobustheit
 - Niedrige Schaltverluste
 - Niedriges V_{CEsat}
 - $T_{viop} = 150$ °C
 - Sehr große Robustheit
- · Mechanische Eigenschaften
 - AlSiC Bodenplatte für erhöhte thermische Lastwechselfestigkeit
 - Isolierte Bodenplatte
 - Gehäuse mit CTI > 600
 - Gehäuse mit erweiterten Isolationseigenschaften von 10,4kV AC 60s


Potenzielle Anwendungen

- Traktionsumrichter
- Mittelspannungsantriebe
- Motorantriebe

Produktvalidierung

 Qualifiziert für Industrieanwendungen entsprechend den relevanten Tests der IEC 60747, 60749 und 60068

Beschreibung

XHP[™]3 Modul

Inhalt

Inhalt

	Beschreibung	1
	Eigenschaften	1
	Potenzielle Anwendungen	1
	Produktvalidierung	1
	Inhalt	2
1	Gehäuse	3
2	IGBT, Wechselrichter	3
3	Diode, Wechselrichter	5
4	Kennlinien	7
5	Schaltplan	11
6	Gehäuseabmessungen	12
7	Modul-Label-Code	13
	Änderungshistorie	14
	Disclaimer	15

FF450R33T3E3_B5 XHP[™]3 Modul

1 Gehäuse

1 Gehäuse

Tabelle 1 Isolationskoordination

Parameter	Symbol	Notiz oder Prüfbedingung	Werte	Einh.
Isolations-Prüfspannung	V _{ISOL}	RMS, f = 50 Hz, t = 60 s	10.4	kV
Teilentladungs- Aussetzspannung	V_{isol}	RMS, f = 50 Hz, Q _{PD} typ. 10 pC	5.1	kV
Material Modulgrundplatte			AlSiC	
Kriechstrecke	d_{Creep}	Kontakt - Kühlkörper	53.0	mm
Kriechstrecke	d_{Creep}	Kontakt - Kontakt	53.0	mm
Luftstrecke	d_{Clear}	Kontakt - Kühlkörper	36.0	mm
Luftstrecke	d_{Clear}	Kontakt - Kontakt	26.0	mm
Vergleichszahl der Kriechwegbildung	CTI		> 600	

Tabelle 2 Charakteristische Werte

Parameter	Symbol	Notiz oder Prüfbedingu	ng		Werte		Einh.
				Min.	Тур.	Max.	
Modulstreuinduktivität	L _{sCE}				25		nH
Modulleitungswiderstand, Anschlüsse - Chip	R _{AA'+CC'}	T _C =25°C, pro Schalter	_C =25°C, pro Schalter		0.31		mΩ
Modulleitungswiderstand, Anschlüsse - Chip	R _{CC'+EE'}	T _C =25°C, pro Schalter	T _C =25°C, pro Schalter		0.41		mΩ
Lagertemperatur	$T_{\rm stg}$			-40		150	°C
Anzugsdrehmoment f. Modulmontage	М	- Montage gem. gültiger Applikationsschrift	M6, Schraube	4.25		5.75	Nm
Anzugsdrehmoment f.	М	- Montage gem. gültiger	M3, Schraube	0.9		1.1	Nm
elektr. Anschlüsse		Applikationsschrift	M8, Schraube	8		10	1
Gewicht	G				700		g

2 IGBT, Wechselrichter

Tabelle 3 Höchstzulässige Werte

Parameter	Symbol	Notiz oder Prüfbed	ingung	Werte	Einh.
Kollektor-Emitter-	V _{CES}		<i>T</i> _{∨j} = -40 °C	3300	V
Sperrspannung			T _{vj} = 150 °C	3300	
Kollektor- Dauergleichstrom	I _{CDC}	T _{vj max} = 150 °C	T _C = 100 °C	450	А
Periodischer Kollektor- Spitzenstrom	/ _{CRM}	t _p begrenzt durch T _{vj}	jop	900	А

XHP[™]3 Modul

2 IGBT, Wechselrichter

(Fortsetzung) Höchstzulässige Werte Tabelle 3

Parameter	Symbol	Notiz oder Prüfbedingung	Werte	Einh.
Gate-Emitter-	V_{GES}		±20	V
Spitzenspannung				

Tabelle 4 **Charakteristische Werte**

Parameter	Symbol	Notiz oder Prüfbedingu	ing		Werte		Einh.
				Min.	Тур.	Max.	1
Kollektor-Emitter-	V _{CE sat}	$I_{\rm C}$ = 450 A, $V_{\rm GE}$ = 15 V	T _{vj} = 25 °C		2.50	2.75	V
Sättigungsspannung			T _{vj} = 125 °C		2.90		1
			T _{vj} = 150 °C		3.00	3.30	1
Gate-Schwellenspannung	V_{GEth}	$I_{\rm C}$ = 12 mA, $V_{\rm CE}$ = $V_{\rm GE}$, $T_{\rm vj}$ =	= 25 °C	5.20	5.80	6.40	V
Gateladung	Q _G	$V_{\rm GE} = \pm 15 \text{V}, V_{\rm CE} = 1800 \text{V}$			12.5		μC
Interner Gatewiderstand	R _{Gint}	T _{vj} = 25 °C			1.3		Ω
Eingangskapazität	C _{ies}	$f = 1000 \text{ kHz}, T_{\text{vj}} = 25 ^{\circ}\text{C}, \text{ N}$	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}$		84		nF
Rückwirkungskapazität	C _{res}	$f = 1000 \text{ kHz}, T_{\text{vj}} = 25 ^{\circ}\text{C}, \text{ N}$	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}$		2		nF
Kollektor-Emitter- Reststrom	I _{CES}	$V_{CE} = 3300 \text{ V}, V_{GE} = 0 \text{ V}$	T _{vj} = 25 °C			5	mA
Gate-Emitter-Reststrom	I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}, T_{vj} =$	25 °C			400	nA
Einschaltverzögerungszeit (ind. Last)	uo	$I_{\rm C} = 450 \text{ A}, V_{\rm CE} = 1800 \text{ V},$ $V_{\rm GE} = \pm 15 \text{ V}, R_{\rm Gon} = 0.7 \Omega$	T _{vj} = 25 °C		0.530		μs
			T _{vj} = 125 °C		0.570		
			T _{vj} = 150 °C		0.580		
Anstiegszeit (induktive	t _r	$I_{\rm C}$ = 450 A, $V_{\rm CE}$ = 1800 V,	T _{vj} = 25 °C		0.100		μs
Last)		$V_{\rm GE} = \pm 15 \text{V}, R_{\rm Gon} = 0.7 \Omega$	T _{vj} = 125 °C		0.130		
			T _{vj} = 150 °C		0.130		
Abschaltverzögerungszeit	t_{doff}	$I_{\rm C}$ = 450 A, $V_{\rm CE}$ = 1800 V,	T _{vj} = 25 °C		1.710		μs
(ind. Last)		$V_{\rm GE} = \pm 15 \text{ V}, R_{\rm Goff} = 3.3 \Omega$	T _{vj} = 125 °C		1.860		
			T _{vj} = 150 °C		1.920		
Fallzeit (induktive Last)	t _f	$I_{\rm C}$ = 450 A, $V_{\rm CE}$ = 1800 V,	T _{vj} = 25 °C		0.130		μs
		$V_{\rm GE} = \pm 15 \text{V}, R_{\rm Goff} = 3.3 \Omega$	T _{vj} = 125 °C		0.240		
			T _{vj} = 150 °C		0.270		
Einschaltzeit (ohmsche Last)	t _{on_R}	$I_{\rm C} = 500 \text{ A}, V_{\rm CE} = 2000 \text{ V},$ $V_{\rm GE} = \pm 15 \text{ V}, R_{\rm Gon} = 0.7 \Omega$	T _{vj} = 25 °C	1.15			μs
Einschaltverlustenergie	E _{on}	$I_{\rm C}$ = 450 A, $V_{\rm CE}$ = 1800 V,	T _{vj} = 25 °C		500		mJ
pro Puls		L_{σ} = 85 nH, V_{GE} = ±15 V, R_{Gon} = 0.7 Ω , di/dt =	T _{vj} = 125 °C		765		
		$3650 \text{ A/}\mu\text{s} (T_{\text{vi}} = 150 \text{ °C})$	T _{vi} = 150 °C		845		

(wird fortgesetzt...)

XHP[™]3 Modul

3 Diode, Wechselrichter

Tabelle 4 (Fortsetzung) Charakteristische Werte

Parameter	Symbol	Notiz oder Prüfbedingung			Werte		Einh.
				Min.	Тур.	Max.	
Abschaltverlustenergie pro	E _{off}	$I_{\rm C}$ = 450 A, $V_{\rm CE}$ = 1800 V,	T _{vj} = 25 °C		415		mJ
Puls		L_{σ} = 85 nH, V_{GE} = ±15 V, R_{Goff} = 3.3 Ω , dv/dt =	T _{vj} = 125 °C		610		
		$2850 \text{ V/}\mu\text{s} (T_{\text{vj}} = 150 \text{ °C})$	<i>T</i> _{vj} = 150 °C		670		
Kurzschlussverhalten	I _{SC}	$V_{\text{GE}} \le 15 \text{ V}, V_{\text{CC}} = 2500 \text{ V},$ $V_{\text{CEmax}} = V_{\text{CES}} - L_{\text{sCE}} * \text{di/dt}$	$t_{\rm P} \le 10 \mu \rm s$, $T_{\rm vj} \le 150 ^{\circ} \rm C$		1800		А
Wärmewiderstand, Chip bis Gehäuse	R _{thJC}	pro IGBT				28.4	K/kW
Wärmewiderstand, Gehäuse bis Kühlkörper	R _{thCH}	pro IGBT, λ _{Paste} = 1 W /(m	*K)		17.4		K/kW
Temperatur im Schaltbetrieb	T _{vj op}			-40		150	°C

3 Diode, Wechselrichter

Tabelle 5 Höchstzulässige Werte

Parameter	Symbol	Notiz oder Prüfbedingung		Werte	Einh.
Periodische	V_{RRM}		T _{vj} = -40 °C	3300	V
Spitzensperrspannung			T _{vj} = 150 °C	3300	
Dauergleichstrom	/ _F			450	А
Periodischer Spitzenstrom	/ _{FRM}	t _P = 1 ms		900	А
Grenzlastintegral	I ² t	$t_{\rm P}$ = 10 ms, $V_{\rm R}$ = 0 V	T _{vj} = 125 °C	82.9	kA ² s
			T _{vj} = 150 °C	68	
Spitzenverlustleistung	P_{RQM}		T _{vj} = 150 °C	1000	kW
Mindesteinschaltdauer	t _{onmin}			10	μs

Tabelle 6 Charakteristische Werte

Parameter	Symbol	Notiz oder Prüfbedingu	ing	Werte			Einh.
				Min.	Тур.	Max.	
Durchlassspannung	V_{F}	I _F = 450 A, V _{GE} = 0 V	T _{vj} = 25 °C		3.10	3.50	V
			T _{vj} = 125 °C		2.75		
			T _{vj} = 150 °C		2.65	2.95	
Rückstromspitze	/ _{RM}	$V_{\rm R}$ = 1800 V, $I_{\rm F}$ = 450 A,	T _{vj} = 25 °C		680		А
		V_{GE} = -15 V, -di _F /dt = 3650 A/µs (T _{vi} = 150 °C)	T _{vj} = 125 °C		680		
		3030 M µ3 (1 _{Vj} = 130 °C)	T _{vj} = 150 °C		680		

(wird fortgesetzt...)

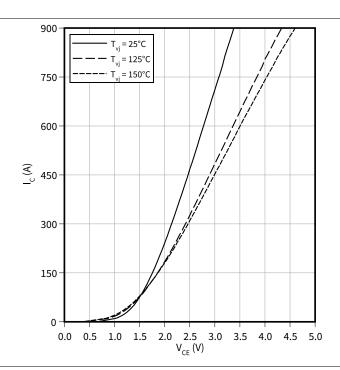
XHP[™]3 Modul

3 Diode, Wechselrichter

(Fortsetzung) Charakteristische Werte Tabelle 6

Parameter	Symbol	Notiz oder Prüfbedingung			Werte		Einh.
				Min.	Тур.	Max.	
Sperrverzögerungsladung	Q _r	$V_{\rm R}$ = 1800 V, $I_{\rm F}$ = 450 A,	T _{vj} = 25 °C		230		μC
		$V_{GE} = -15 \text{ V, } -\text{di}_{F}/\text{dt} = 3650 \text{ A/}\mu\text{s} (T_{vi} = 150 ^{\circ}\text{C})$	T _{vj} = 125 °C		445		
		3030 Α/μ3 (Τ _{VJ} = 130 °C)	T _{vj} = 150 °C		525		
Abschaltenergie pro Puls	E _{rec}	V - 15 V di /d+ -	T _{vj} = 25 °C		220		mJ
			T _{vj} = 125 °C		490		
		3030 Α/ μ3 (Τ _{ν]} – 130 °C)	T _{vj} = 150 °C		595		
Wärmewiderstand, Chip bis Gehäuse	R _{thJC}	pro Diode				45.5	K/kW
Wärmewiderstand, Gehäuse bis Kühlkörper	R _{thCH}	pro Diode, λ _{Paste} = 1 W /(r	n*K)		19.3		K/kW
Temperatur im Schaltbetrieb	T _{vj op}			-40		150	°C

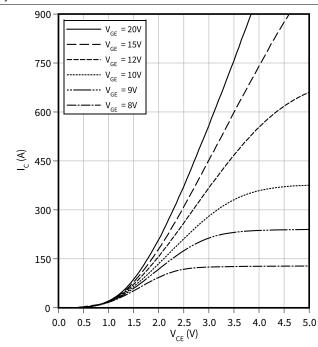
4 Kennlinien



Kennlinien 4

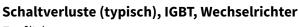
Ausgangskennlinie (typisch), IGBT, Wechselrichter

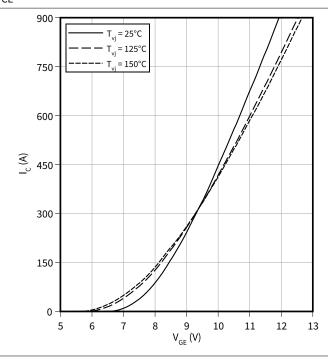
 $I_C = f(V_{CE})$

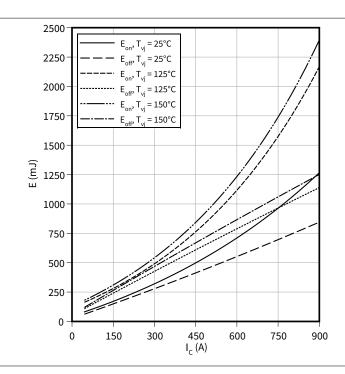

 $V_{GE} = 15 V$

Ausgangskennlinienfeld (typisch), IGBT, Wechselrichter

 $I_C = f(V_{CE})$

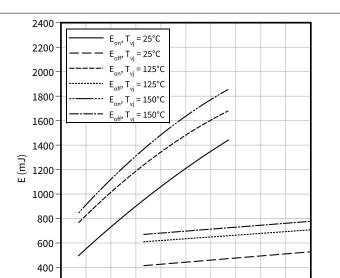

T_{vi} = 150 °C


Übertragungscharakteristik (typisch), IGBT, Wechselrichter


 $I_C = f(V_{GE})$

 $V_{CE} = 20 V$

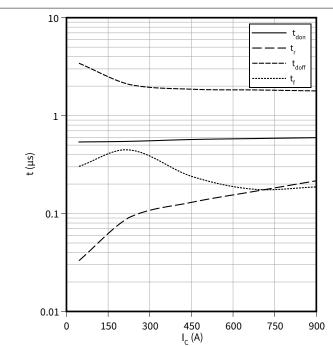
 $R_{Goff} = 3.3 \Omega$, $R_{Gon} = 0.7 \Omega$, $V_{CE} = 1800 V$, $V_{GE} = \pm 15 V$



${\bf Schaltverluste~(typisch), IGBT, We chselrichter}$

 $E = f(R_G)$

$$I_C$$
 = 450 A, V_{CE} = 1800 V, V_{GE} = \pm 15 V

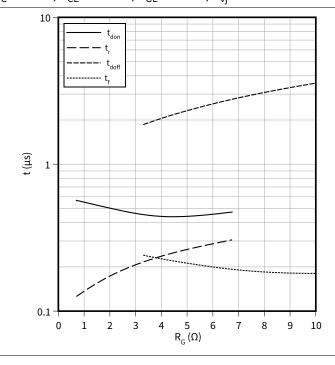


 $\begin{array}{cc} 5 & 6 \\ R_G^{}(\Omega) & \end{array}$

Schaltzeiten (typisch), IGBT, Wechselrichter

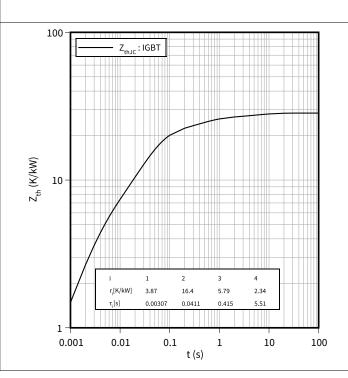
 $t = f(I_C)$

$$R_{Goff}$$
 = 3.3 $\Omega,\,R_{Gon}$ = 0.7 $\Omega,\,V_{CE}$ = 1800 V, V_{GE} = ± 15 V, T_{vj} = 150 °C



Schaltzeiten (typisch), IGBT, Wechselrichter

 $t = f(R_G)$

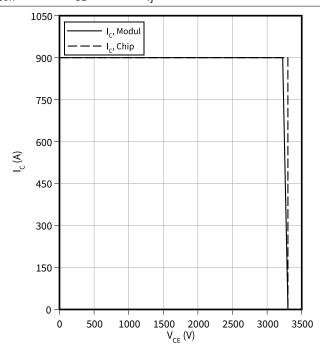

200

$$I_C$$
 = 450 A, V_{CE} = 1800 V, V_{GE} = ± 15 V, T_{vj} = 150 °C

Transienter Wärmewiderstand , IGBT, Wechselrichter

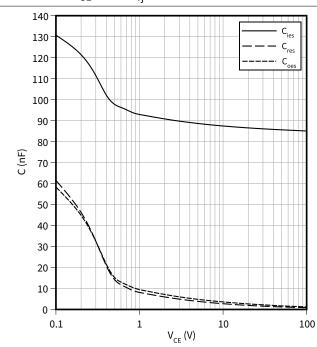
 $Z_{th} = f(t)$

XHP[™]3 Modul


4 Kennlinien

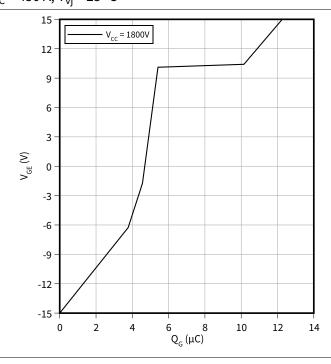
Sicherer Rückwärts-Arbeitsbereich (RBSOA), IGBT, Wechselrichter

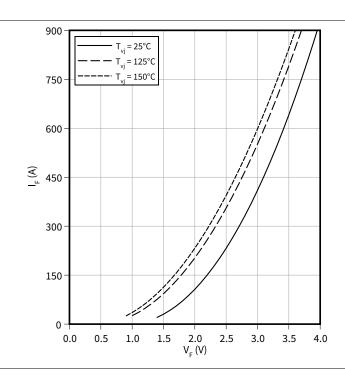
 $I_C = f(V_{CE})$


 $R_{Goff} = 3.3 \Omega$, $V_{GE} = \pm 15 V$, $T_{vi} = 150 °C$

Kapazitäts Charakteristik (typisch), IGBT, Wechselrichter

 $C = f(V_{CE})$


f = 1000 kHz, $V_{GE} = 0 \text{ V}$, $T_{vi} = 25 \,^{\circ}\text{C}$

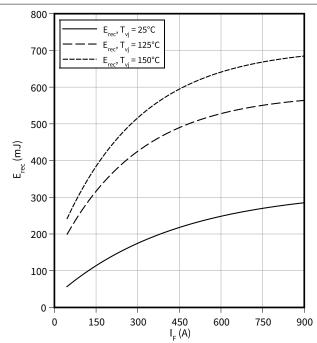

Gateladungs Charakteristik (typisch), IGBT, Wechselrichter

 $V_{GE} = f(Q_G)$

 $I_C = 450 \text{ A}, T_{vi} = 25 \,^{\circ}\text{C}$

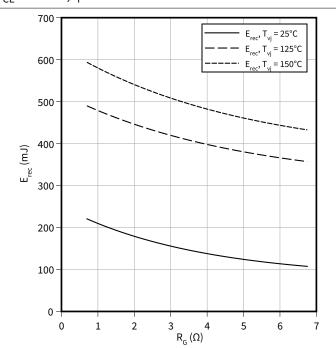
Durchlasskennlinie (typisch), Diode, Wechselrichter $I_F = f(V_F)$

FF450R33T3E3_B5 XHP[™]3 Modul

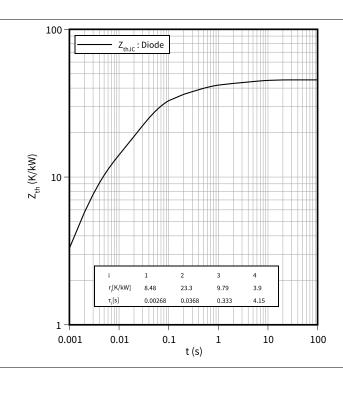


Schaltverluste (typisch), Diode, Wechselrichter

 $E_{rec} = f(I_F)$

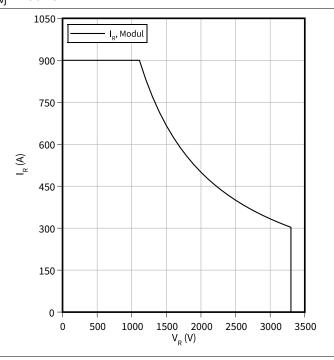

 $V_{CE} = 1800 \text{ V}, R_{Gon} = R_{Gon}(IGBT)$

Schaltverluste (typisch), Diode, Wechselrichter


 $E_{rec} = f(R_G)$

 $V_{CE} = 1800 \text{ V}, I_F = 450 \text{ A}$

Transienter Wärmewiderstand, Diode, Wechselrichter


 $Z_{th} = f(t)$

Sicherer Arbeitsbereich (SOA), Diode, Wechselrichter

 $I_R = f(V_R)$

T_{vi} = 150 °C

5 Schaltplan

5 Schaltplan

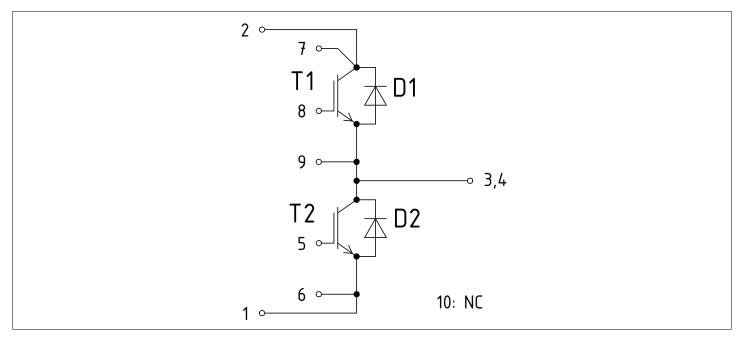


Abbildung 1

6 Gehäuseabmessungen

6 Gehäuseabmessungen

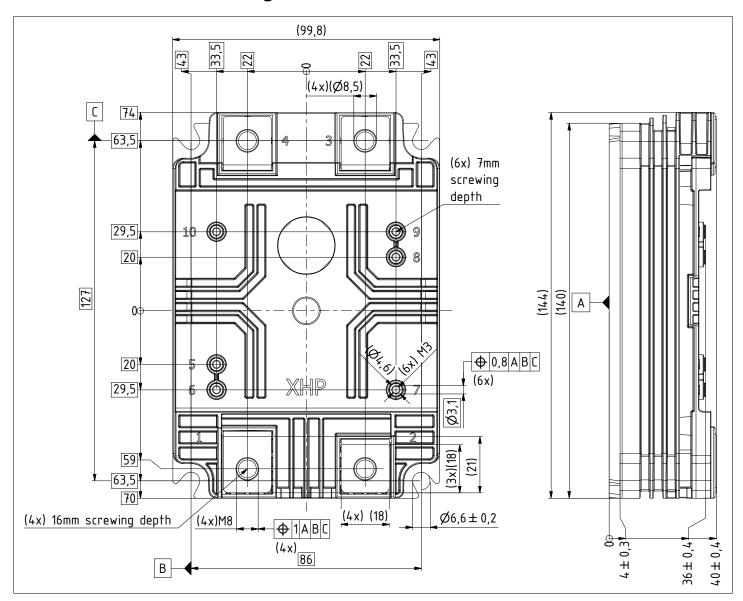
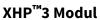


Abbildung 2

XHP[™]3 Modul


7 Modul-Label-Code

7 Modul-Label-Code

Code format	Data Matrix		Barcode C	Code128
Encoding	ASCII text		Code Set	A
Symbol size	16x16		23 digits	
Standard	IEC24720 and IEC16022		IEC8859-1	-
Code content	Content Module serial number Module material number Production order number Date code (production year) Date code (production week)	Module serial number 1 - 5 Module material number 6 - 11 Production order number 12 - 19 Date code (production year) 20 - 21		Example 71549 142846 55054991 15 30
Example	71549142846550549911530			46550549911530

Abbildung 3

Änderungshistorie

Dokumentenrevision	Freigabedatum	Beschreibung der Änderungen
V2.0	2018-10-08	Preliminary datasheet
V3.0	2019-01-28	Final datasheet
V3.1	2020-01-27	Final datasheet
n/a	2020-09-01	Datasheet migrated to a new system with a new layout and new revision number schema: target or preliminary datasheet = 0.xy; final datasheet = 1.xy
1.10	2021-11-04	Final datasheet
1.20	2022-04-06	Final datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-04-06 Published by Infineon Technologies AG 81726 Munich, Germany

© 2022 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-AAY096-005

WICHTIGER HINWEIS

Die in diesem Dokument enthaltenen Angaben stellen keinesfalls Garantien für die Beschaffenheit oder Eigenschaften des Produktes ("Beschaffenheitsgarantie") dar.

Für Beispiele, Hinweise oder typische Werte, die in diesem Dokument enthalten sind, und/oder Angaben, die sich auf die Anwendung des Produktes beziehen, ist jegliche Gewährleistung und Haftung von Infineon Technologies ausgeschlossen, einschließlich, ohne hierauf beschränkt zu sein, die Gewähr dafür, dass kein geistiges Eigentum Dritter verletzt ist.

Des Weiteren stehen sämtliche, in diesem Dokument enthaltenen Informationen, unter dem Vorbehalt der Einhaltung der in diesem Dokument festgelegten Verpflichtungen des Kunden sowie aller im Hinblick auf das Produkt des Kunden sowie die Nutzung des Infineon Produktes in den Anwendungen des Kunden anwendbaren gesetzlichen Anforderungen, Normen und Standards durch den Kunden.

Die in diesem Dokument enthaltenen Daten sind ausschließlich für technisch geschultes Fachpersonal bestimmt. Die Beurteilung der Eignung dieses Produktes für die beabsichtigte Anwendung sowie die Beurteilung der Vollständigkeit der in diesem Dokument enthaltenen Produktdaten für diese Anwendung obliegt den technischen Fachabteilungen des Kunden.

WARNHINWEIS

Aufgrund der technischen Anforderungen können Produkte gesundheitsgefährdende Substanzen enthalten. Bei Fragen zu den in diesem Produkt enthaltenen Substanzen, setzen Sie sich bitte mit dem nächsten Vertriebsbüro von Infineon Technologies in Verbindung.

Sofern Infineon Technologies nicht ausdrücklich in einem schriftlichen, von vertretungsberechtigten Infineon Mitarbeitern unterzeichneten Dokument zugestimmt hat, dürfen Produkte von Infineon Technologies nicht in Anwendungen eingesetzt werden, in welchen vernünftigerweise erwartet werden kann, dass ein Fehler des Produktes oder die Folgen der Nutzung des Produktes zu Personenverletzungen führen.