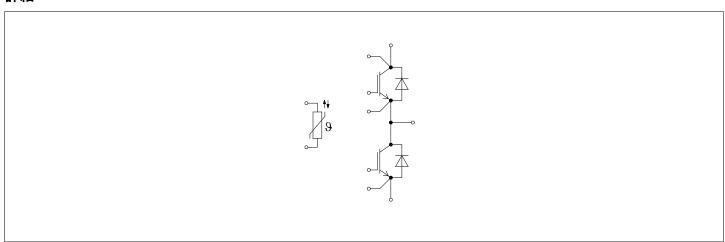
EconoDUAL™3 モジュール

Final datasheet

EconoDUAL™3 モジュール トレンチ/フィールドストップ IGBT4 とエミッターコントロール HE ダイオード内蔵 と PressFIT / NTC サーミスタ / TIM

特徴

- 電気的特性
 - V_{CES} = 1200 V
 - $-I_{C nom} = 300 A / I_{CRM} = 600 A$
 - 低 V_{CEsat} 飽和電圧
 - $T_{viop} = 150$ °C
 - 最適なインフィニオン製ゲートドライバーは以下でご覧になれます。 https://www.infineon.com/gdfinder
- 機械的特性
 - 標準ハウジング
 - 予め塗布されたサーマルインターフェース材料


可能性のある用途

- モーター駆動
- サーボ駆動
- ・ UPS システム
- 風力タービン

製品検証

• IEC 60747、60749、および 60068 の関連試験に準拠して産業用アプリケーションに適合

詳細

EconoDUAL™3 モジュール

目次

目次

	詳細	1
	可能性のある用途	1
	製品検証	1
	目次	2
1	ハウジング	3
2	IGBT- インバータ	4
3	Diode、インバータ	5
4	NTC-サーミスタ	6
5	特性図	7
6	回路図	10
7	パッケージ外形図	11
8	モジュールラベルコード	12
	改訂履歴	13
	免責事項	14

EconoDUAL™3 モジュール

1 ハウジング

1 ハウジング

表 1 絶縁協調

項目	記 号	条件及び注記	定格値	単位
絶縁耐圧	V _{ISOL}	RMS, f = 50 Hz, t = 1 min	2.5	kV
絶縁試験電圧 NTC	V _{ISOL(NTC)}	RMS, f = 50 Hz, t = 1 min	2.5	kV
ベースプレート材質			Cu	
内部絶縁		基礎絶縁 (クラス 1, IEC 61140)	Al ₂ O ₃	
沿面距離	d _{Creep nom}	ベースプレートへのターミナル, nom., (PD2, IEC 60664-1, Ed. 3.0)	> 15	mm
沿面距離	d _{Creep min}	ベースプレートへのターミナル, min., (PD2, IEC 60664-1, Ed. 3.0)	14.7	mm
沿面距離	d _{Creep nom}	ターミナル – ターミナル間, nom., (PD2, IEC 60664-1, Ed. 3.0)	12.1	mm
——————— 沿面距離	d _{Creep min}	ターミナル – ターミナル間, min., (PD2, IEC 60664-1, Ed. 3.0)	11.5	mm
空間距離	d _{Clear nom}	ベースプレートへのターミナル, nom.	> 12.5	mm
空間距離	d _{Clear min}	ベースプレートへのターミナル, min.	12.5	mm
空間距離	d _{Clear nom}	ターミナル – ターミナル間, nom.	10.0	mm
空間距離	d _{Clear min}	ターミナル – ターミナル間, min.	9.6	mm
相対トラッキング指数	СТІ		> 200	
相対温度指数 (電気)	RTI	住宅	140	°C

表 2 電気的特性

項目	記 号	条件及び注記		規格値		単位
			最小	標準	最大	
内部インダクタンス	L _{sCE}			20		nH
パワーターミナル・チップ間 抵抗	R _{CC'+EE'}	T _H = 25 °C, /スイッチ		1.2		mΩ
保存温度	$T_{\rm stg}$		-40		125	°C
最大ベース・プレート動作 温度	T_{BPmax}				125	°C
取り付けネジ締め付けトルク	М	適切なアプリケーション M5, 取り付けオ ノートによるマウンティン グ	ネジ 3		6	Nm
主端子ネジ締め付けトルク	М	適切なアプリケーション M6, 取り付けオ ノートによるマウンティン グ	ネジ 3		6	Nm
質量	G			345		g

3

注: Storage and shipment of modules with TIM => see AN2012-07

EconoDUAL™3 モジュール

2 IGBT- インバータ

2 IGBT- インバータ

表 3 最大定格

項目	記号	条件及び注記		定格値	単位
コレクタ・エミッタ間電圧	V _{CES}		T _{vj} = 25 °C	1200	V
連続 DC コレクタ電流	I _{CDC}	T _{vj max} = 175 °C	T _H = 70 °C	300	Α
繰り返しピークコレクタ電 流	I _{CRM}	t _p は T _{vj op} に制約され	3	600	А
ゲート・エミッタ間ピーク電 圧	V _{GES}			±20	V

表 4 電気的特性

項目	記号	条件及び注記			規格値		単位
				最小	標準	最大	1
コレクタ・エミッタ間飽和電	V _{CE sat}	$I_{\rm C}$ = 300 A, $V_{\rm GE}$ = 15 V	T _{vj} = 25 °C		1.75	2.10	V
圧			T _{vj} = 125 °C		2.00		1
			T _{vj} = 150 °C		2.05		
ゲート・エミッタ間しきい値 電圧	V_{GEth}	$I_{\rm C}$ = 11.5 mA, $V_{\rm CE}$ = $V_{\rm GE}$, $T_{\rm v}$	_j = 25 °C	5.20	5.80	6.40	V
ゲート電荷量	Q _G	$V_{\rm GE} = \pm 15 \text{ V}, V_{\rm CC} = 600 \text{ V}$			2.25		μC
内蔵ゲート抵抗	R_{Gint}	T _{vj} = 25 °C			2.5		Ω
入力容量	C _{ies}	$f = 1000 \text{ kHz}, T_{vj} = 25 \text{ °C}, V$	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}$		18.5		nF
帰還容量	C_{res}	$f = 1000 \text{ kHz}, T_{\text{vj}} = 25 ^{\circ}\text{C}, V$	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}$		1.05		nF
コレクタ・エミッタ間遮断電流	I _{CES}	$V_{\rm CE} = 1200 \text{V}, V_{\rm GE} = 0 \text{V}$	T _{vj} = 25 °C			3	mA
ゲート・エミッタ間漏れ電流	I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}, T_{vj} = 100 \text{ V}$	25 °C			400	nA
ターンオン遅延時間(誘導	t _{don}	$I_{\rm C}$ = 300 A, $V_{\rm CC}$ = 600 V,	T _{vj} = 25 °C		0.170		μs
負荷)		$V_{\rm GE} = \pm 15 \text{V}, R_{\rm Gon} = 1.3 \Omega$	T _{vj} = 125 °C		0.180		
			T _{vj} = 150 °C		0.190		
ターンオン上昇時間(誘導	t _r	$I_{\rm C}$ = 300 A, $V_{\rm CC}$ = 600 V,	T _{vj} = 25 °C		0.050		μs
負荷)		$V_{\rm GE} = \pm 15 \text{V}, R_{\rm Gon} = 1.3 \Omega$	T _{vj} = 125 °C		0.050		
			T _{vj} = 150 °C		0.050		
ターンオフ遅延時間(誘導	t _{doff}	$I_{\rm C}$ = 300 A, $V_{\rm CC}$ = 600 V,	T _{vj} = 25 °C		0.450		μs
負荷)		$V_{\rm GE} = \pm 15 \text{V}, R_{\rm Goff} = 1.3 \Omega$	T _{vj} = 125 °C		0.560		
			T _{vj} = 150 °C		0.600		
ターンオフ下降時間(誘導	t _f	$I_{\rm C}$ = 300 A, $V_{\rm CC}$ = 600 V,	T _{vj} = 25 °C		0.070		μs
負荷)		$V_{\rm GE} = \pm 15 \text{V}, R_{\rm Goff} = 1.3 \Omega$	T _{vj} = 125 °C		0.110		
			T _{vj} = 150 °C		0.120		

4

(続く)

EconoDUAL™3 モジュール

3 Diode、インバータ

表 4 (続き) 電気的特性

項目	記号条件及び注記			規格値		単位	
				最小	標準	最大	
ターンオンスイッチング損	E _{on}	$I_{\rm C}$ = 300 A, $V_{\rm CC}$ = 600 V,	T _{vj} = 25 °C		9.9		mJ
失		L_{σ} = 80 nH, V_{GE} = ±15 V, R_{Gon} = 1.3 Ω , di/dt = 6050	T _{vj} = 125 °C		17		
		A/ μ s (T _{vj} = 150 °C)	T _{vj} = 150 °C		19.5		
ターンオフスイッチング損	$L_{\sigma} = 80 \text{ nH}, V_{GE} =$	$I_{\rm C}$ = 300 A, $V_{\rm CC}$ = 600 V,	T _{vj} = 25 °C		25		mJ
失		L_{σ} = 80 nH, V_{GE} = ±15 V, R_{Goff} = 1.3 Ω , dv/dt =	T _{vj} = 125 °C		37.5		
		3100 V/µs (T _{vj} = 150 °C)	T _{vj} = 150 °C		42		
短絡電流	I _{SC}	$V_{\text{GE}} \le 15 \text{ V}, V_{\text{CC}} = 800 \text{ V},$ $V_{\text{CEmax}} = V_{\text{CES}} - L_{\text{sCE}} * \text{di/dt}$	t _P ≤ 10 μs, T _{vj} =150 °C		1200		А
ジャンクション・ヒートシンク 間熱抵抗	R_{thJH}	IGBT 部(1素子当り), Val applied Thermal Interfac	•			0.137	K/W
動作温度	T _{vj op}			-40		150	°C

3 Diode、インバータ

表 5 最大定格

項目	記号	条件及び注記		定格値	単位
ピーク繰返し逆電圧	V_{RRM}		T _{vj} = 25 °C	1200	V
連続 DC 電流	I _F			300	Α
ピーク繰返し順電流	/ _{FRM}	t _P = 1 ms		600	А
電流二乗時間積	I ² t	$t_{\rm P}$ = 10 ms, $V_{\rm R}$ = 0 V	T _{vj} = 125 °C	19000	A ² s
			T _{vj} = 150 °C	15500	

表 6 電気的特性

項目	記号	条件及び注記		規格値			単位
				最小	標準	最大	
順電圧	V_{F}	$I_{\rm F} = 300 \text{ A}, V_{\rm GE} = 0 \text{ V}$	T _{vj} = 25 °C		1.65	2.10	V
			T _{vj} = 125 °C		1.65		
			T _{vj} = 150 °C		1.65		
ピーク逆回復電流	/ _{RM}	I_{RM} $V_{CC} = 600 \text{ V}, I_F = 300 \text{ A},$	T _{vj} = 25 °C		335		Α
		V _{GE} = -15 V, -di _F /dt = 6050 A/µs (T _{vi} = 150 °C)	T _{vj} = 125 °C		390		
		0030 Α/μ3 (1 _{νj} – 130 °C)	T _{vj} = 150 °C		410		
逆回復電荷量	Qr	$V_{\rm CC}$ = 600 V, $I_{\rm F}$ = 300 A,	T _{vj} = 25 °C		30.5		μC
	1 02 ' 1'	$V_{\text{GE}} = -15 \text{ V, } -\text{di}_{\text{F}}/\text{dt} = 6050 \text{ A/}\mu\text{s} \text{ (T}_{\text{Vi}} = 150 ^{\circ}\text{C)}$	T _{vj} = 125 °C		58		
		ουσυ Α/μς (T _{vj} – 150 °C)	T _{vj} = 150 °C		67		

(続く)

EconoDUAL™3 モジュール

4 NTC-サーミスタ

表 6 (続き) 電気的特性

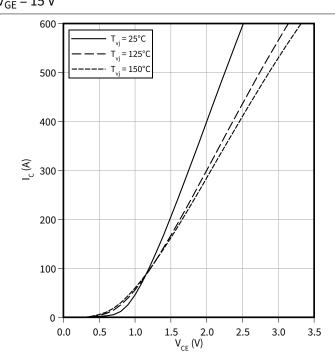
項目	記号 条件及び注記		規格値			単位	
				最小	標準	最大	
逆回復損失	E _{rec}	$V_{\rm CC}$ = 600 V, $I_{\rm F}$ = 300 A,	T _{vj} = 25 °C		19		mJ
		$V_{GE} = -15 \text{ V}, -di_F/dt = 6050 \text{ A}/\mu\text{s} (T_{vi} = 150 ^{\circ}\text{C})$	T _{vj} = 125 °C		29.5		
		0030 Α/ μ3 (Τ _{ν]} = 130 °C)	T _{vj} = 150 °C		34.5		
ジャンクション・ヒートシンク 間熱抵抗	R_{thJH}	/Diode(1素子当り), Vali applied Thermal Interfac	•			0.198	K/W
動作温度	T _{vj op}			-40		150	°C

4 NTC-サーミスタ

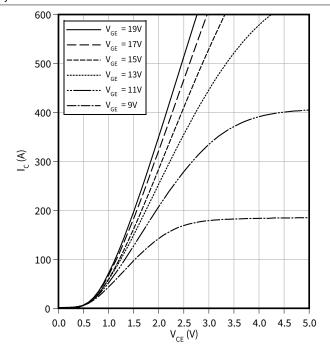
表 7 電気的特性

項目	記号	条件及び注記		規格値		
			最小	標準	最大	
定格抵抗値	R ₂₅	T _{NTC} = 25 °C		5		kΩ
R ₁₀₀ の偏差	∆R/R	$T_{\rm NTC} = 100 ^{\circ}{\rm C}, R_{100} = 493 \Omega$	-5		5	%
損失	P ₂₅	T _{NTC} = 25 °C			20	mW
B-定数	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		K
B-定数	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$		3411		K
B-定数	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		K

注: NTC の解析的な説明については、AN2009-10 の 4 章を参照下さい。


5 特性図

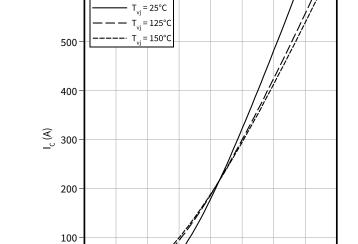
5 特性図


出力特性 (typical), IGBT- インバータ

 $I_C = f(V_{CE})$ $V_{GE} = 15 V$

出力特性 (typical), IGBT- インバータ

 $I_C = f(V_{CE})$ $T_{vj} = 150 \,^{\circ}C$



伝達特性 (typical), IGBT- インパータ

 $I_C = f(V_{GE})$ $V_{CE} = 20 \text{ V}$

600

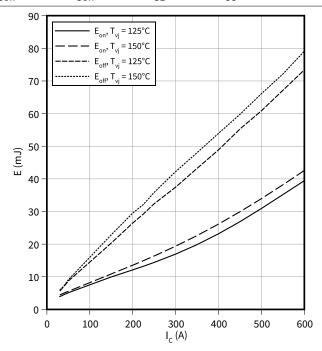
0

9

 $V_{GE}(V)$

10

11

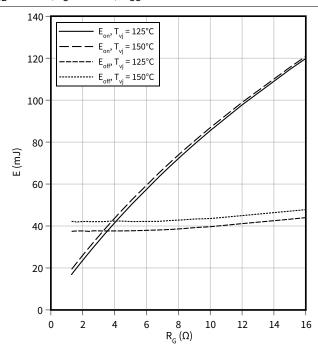

12

13

スイッチング損失 (typical), IGBT- インバータ

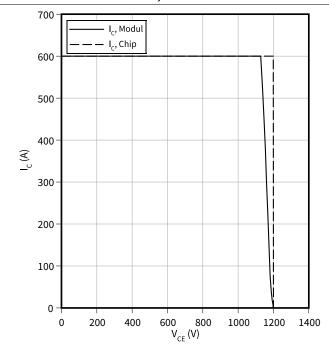
 $\mathsf{E}=\mathsf{f}(\mathsf{I}_\mathsf{C})$

 R_{Goff} = 1.3 Ω , R_{Gon} = 1.3 Ω , V_{GE} = ±15 V, V_{CC} = 600 V

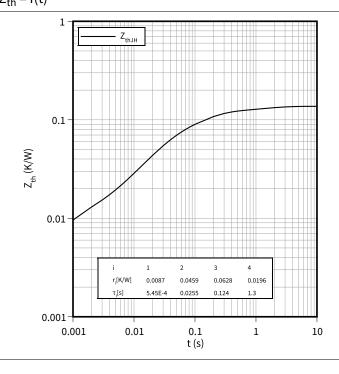


スイッチング損失 (typical), IGBT- インバータ

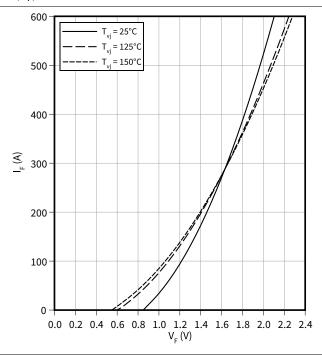
 $E = f(R_G)$


 V_{GE} = ±15 V, I_C = 300 A, V_{CC} = 600 V

逆バイアス安全動作領域 (RBSOA), IGBT- インバータ


 $I_C = f(V_{CE})$

 $R_{Goff} = 1.3 \Omega$, $V_{GE} = \pm 15 V$, $T_{vj} = 150 °C$

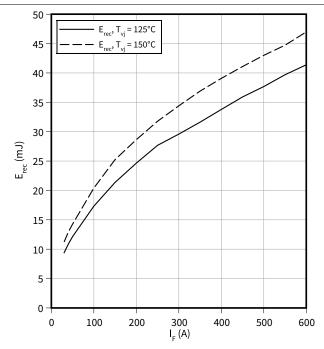

過渡熱インピーダンス, IGBT- インバータ

 $Z_{th} = f(t)$

順電圧特性 (typical), Diode、インバータ

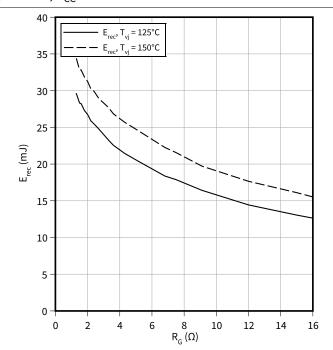
 $I_F = f(V_F)$

EconoDUAL™3 モジュール

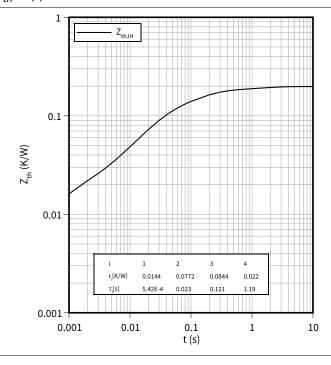


スイッチング損失 (typical), Diode、インバータ

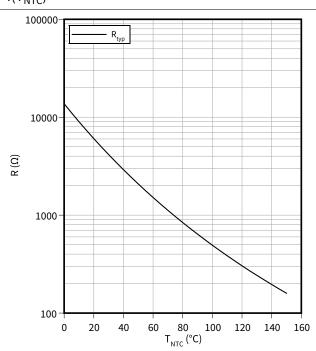
 $E_{rec} = f(I_F)$


 $R_G = 1.3 \Omega$, $V_{CC} = 600 V$

スイッチング損失 (typical), Diode、インバータ


 $E_{rec} = f(R_G)$

 $I_F = 300 \text{ A}, V_{CC} = 600 \text{ V}$


過渡熱インピーダンス, Diode、インバータ

 $Z_{th} = f(t)$

サーミスタの温度特性, NTC-サーミスタ

 $R = f(T_{NTC})$

infineon

6 回路図

6 回路図

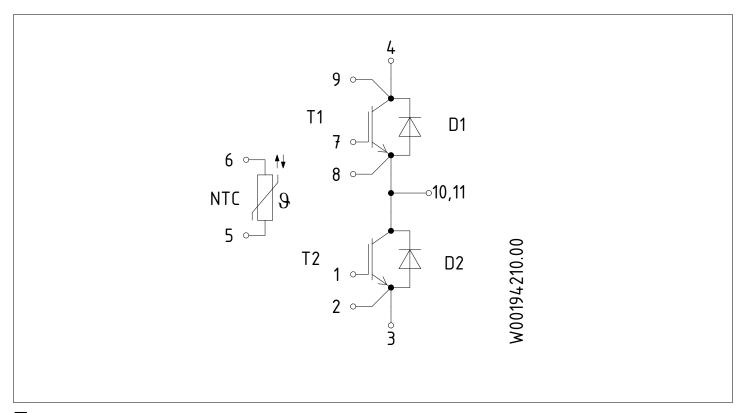


図 1

7 パッケージ外形図

7 パッケージ外形図

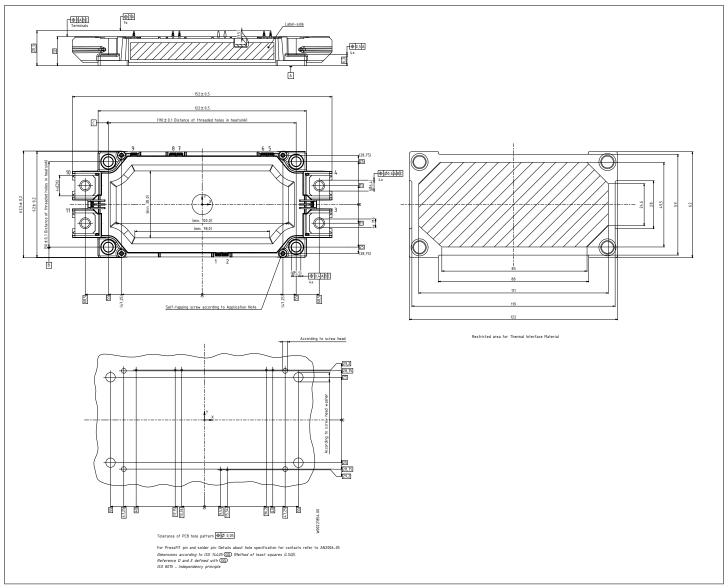


図 2

EconoDUAL™3 モジュール

8 モジュールラベルコード

8 モジュールラベルコード

Code format	Data Matrix		Barcode (Code128
Encoding	ASCII text		Code Set	A
Symbol size	16x16		23 digits	
Standard	IEC24720 and IEC16022		IEC8859-1	
Code content	Content Module serial number Module material number Production order number Date code (production year) Date code (production week)	Digit 1-5 6-11 12-19 20-21 22-23		Example 71549 142846 55054991 15 30
Example	71549142846550549911530		715401439	46550549911530

図 3

EconoDUAL™3 モジュール

改訂履歴

改訂履歴

文書改訂	発行日	変更内容
V3.0	2017-03-30	Final datasheet
n/a	2020-09-01	Datasheet migrated to a new system with a new layout and new revision number schema: target or preliminary datasheet = 0.xy; final datasheet = 1.xy
1.10	2024-03-20	Package outlines drawing updated

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-03-20 Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-AAX812-002

重要事項

本文書に記載された情報は、いかなる場合も、条件または特性の保証とみなされるものではありません(「品質の保証」)。

本文に記された一切の事例、手引き、もしくは一般的価値、および/または本製品の用途に関する一切の情報に関し、インフィニオンテクノロジーズ(以下、「インフィニオン」)はここに、第三者の知的所有権の不侵害の保証を含むがこれに限らず、あらゆる種類の一切の保証および責任を否定いたします。

さらに、本文書に記載された一切の情報は、お客様の用途におけるお客様の製品およびインフィニオン製品の一切の使用に関し、本文書に記載された義務ならびに一切の関連する法的要件、規範、および基準をお客様が遵守することを条件としています。

本文書に含まれるデータは、技術的訓練を受けた従業員のみを対象としています。本製品の対象用途への適合性、およびこれら用途に関連して本文書に記載された製品情報の完全性についての評価は、お客様の技術部門の責任にて実施してください。

警告事項

技術的要件に伴い、製品には危険物質が含まれる可能性があります。当該種別の詳細については、インフィニオンの最寄りの営業所までお問い合わせください。

インフィニオンの正式代表者が署名した書面を通じ、インフィニオンによる明示の承認が存在する場合を除き、インフィニオンの製品は、当該製品の障害またはその使用に関する一切の結果が、合理的に人的傷害を招く恐れのある一切の用途に使用することはできないこと予めご了承ください。