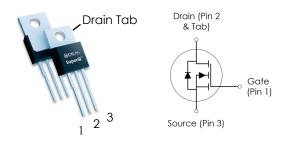


SuperQ™ 200-V N-Channel Power MOSFET

FEATURES

- Wide SOA and current capability
- Robustness under fault conditions
- 100% UIS tested in production
- Low switching losses, Qsw and Eoss
- Easier parallelling with ± 0.5V gate threshold


APPLICATIONS

- Motor control
- Boost converters and SMPS control FETs
- Secondary side synchronous rectifier

DESCRIPTION

Engineered for SMPS and high-efficiency motor drives, this 200V SuperQ MOSFET delivers ultra-low conduction and switching losses in a robust TO-220 package. Featuring best-in-class R_{DS(on)}, Q_{SW} and E_{OSS}, it minimizes heat dissipation at both full and partial loads.

PRODUCT SUMMARY

TO-220

Parameter T _A = 25°C	Value	Unit
V _{DS}	200	٧
R _{DS(on),max}	25	mΩ
ID	40	Α
Q _G	26.5	nC
Qsw	2.7	nC
Eoss	1	μJ

ORDERING INFORMATION				
Part Number	Package	Marking	Packaging	
iS20M028S1P	TO-220	iS20M028S1	50pc Tube	

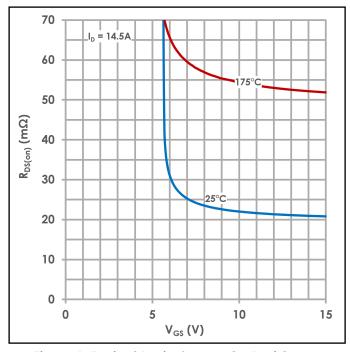


Figure 1: Typical Drain-Source On Resistance

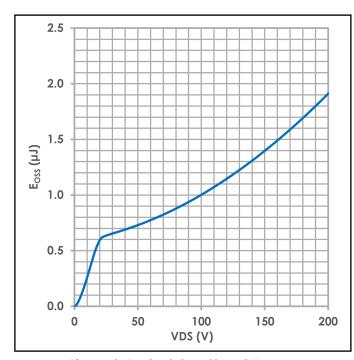


Figure 2: Typical Coss Stored Energy

BSOLUTE MAXIMUM RATINGS				
SYMBOL	BOL PARAMETER (T _A = 25°C unless otherwise specified)		UNIT	
V _G s	Gate-to-source voltage	<u>+</u> 20	V	
l _D	Continuous drain current (silicon limited), T _C = 25°C	40	А	
	Continuous drain current (silicon limited), T _C = 100°C	28		
I _{DM}	Pulsed drain current	154	Α	
P _D	Power dissipation, $T_C = 25^{\circ}C$	100	W	
TJ, Tstg	Operating junction, storage temperature	-55 to 175	°C	
Eas	Avalanche energy, single pulse I_D = 17.8A, R_{GS} = 25 Ω	159	mJ	

THERMAL CHARACTERISTICS					
SYMBOL PARAMETER (TA = 25°C unless otherwise specifie	DADAMETED II. 1990	VALUE			
	YARAMETER (I _A = 25°C unless otherwise specified)	MIN	TYP	MAX	UNIT
R _{OJC}	Junction-to-case thermal resistance - TO-220	-	-	1.5	°C/W
R ₀ JA	Junction-to-ambient thermal resistance (1)		-	40	°C/W
R _{0JA}	Junction-to-ambient thermal resistance, minimal footprint	-	-	62	°C/W

^{(1) 40} mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm² (one layer, 70 µm thick) copper area for drain connection. PCB is vertical in still air.

SYMBOL	PARAMETER		VALUE			
		TEST CONDITIONS	MIN	TYP	MAX	UNIT
STATIC CI						
BV _{DSS}	Drain-to-source voltage	$V_{GS} = 0V$, $I_D = 1mA$	200	-	-	٧
	Danis to some la alimenta a mand	$V_{GS} = 0V$, $V_{DS} = 160V$, $T_{J} = 25$ °C	-	0.03	1	μΑ
I _{DSS}	Drain-to-source leakage current	V _{GS} = 0V, V _{DS} = 160V, T _J = 125°C (2)	-	13	100	
lgss	Gate-to-source leakage current	$V_{DS} = 0V$, $V_{GS} = 20V$	-	0.4	100	nA
V _{GS(th)}	Gate-to-source threshold voltage	$V_{DS} = V_{GS}$, $I_D = 70\mu A$	3.1	3.6	4.1	٧
R _{DS(on)}	Drain-to-source on-resistance	V _{GS} = 10V, I _D = 14.5A	-	22	25	mΩ
G fs	Transconductance (2)	V _{DS} = 10V, I _D = 14.5A	16	31	-	S
DYNAMIC	CHARACTERISTICS	·				
Ciss	Input capacitance (2)		-	1,865	2,425	
Crss	Reverse transfer capacitance (2)	$V_{GS} = 0V$, $V_{DS} = 100V$, $f = 100kHz$	-	12	16	рF
Coss	Output capacitance (2)		-	67	86	
C _{o(er)}	Effective output capacitance	V _{DS} = 0 to 100V, V _{GS} = 0V	-	197	-	
R _G	Series gate resistance	f = 1 MHz	-	4.5	6.8	Ω
t _{d(on)}	Turn-on delay time		-	8.5	-	
† _r	Rise time	$V_{DS} = 100V$, $V_{GS} = 10V$, $I_{DS} = 14.5A$,	-	1.9	-	
t _{d(off)}	Turn-off delay time	$R_{G,EXT} = 0 \Omega$	-	24.7	-	ns
† _f	Fall time		-	11.3	-	
GATE CH	ARGE CHARACTERISTICS	'				
Q _g	Gate charge total (2)		-	26.5	34	
Qsw	Switching charge (3)	$V_{DS} = 100V, I_{D} = 14.5A,$	-	2.7	-	nC
Q _{gd}	Gate to drain charge (2)	V _{GS} = 0 to 10V	-	1.4	1.8	
V _{plateau}	Gate plateau voltage		-	5.7	-	V
Qoss	Output charge (2)		-	95	108	nC
E _{oss}	Capacitive stored energy	$V_{DS} = 0$ to 100V, $V_{GS} = 0$ V	-	1	-	μJ
DIODE CH	IARACTERISTICS					
V _{SD}	Diode forward voltage	I _{SD} = 14.5A, V _{GS} = 0V	-	1.0	1.2	V
Q _{rr}	Reverse recovery charge	V _{DS} = 100V, I _F = 14.5A,	-	425	-	nC
† _{rr}	Reverse recovery time	di/dt = 100A/µs	-	107	-	ns

⁽²⁾ Defined by design. Not subject to production test.

⁽³⁾ Q_{SW} should be used for switching loss calculations. See Figure 16 and Q_{SW} application note on www.idealsemi.com

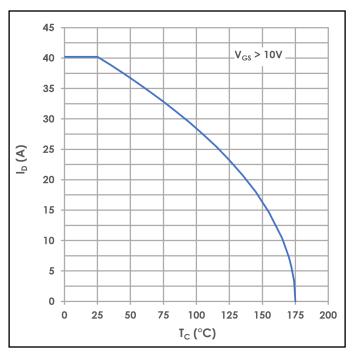


Figure 3: Drain Current

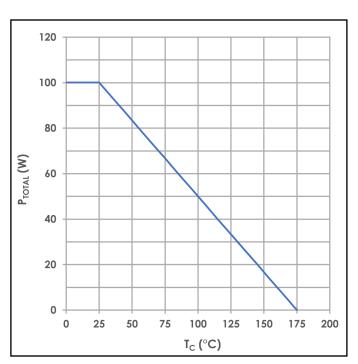


Figure 4: Power Dissipation

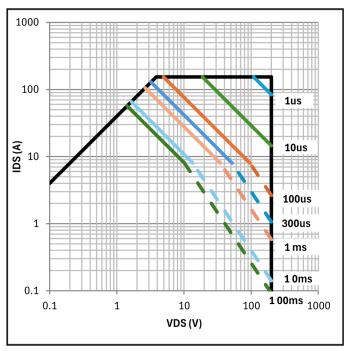


Figure 5: Safe Operating Area

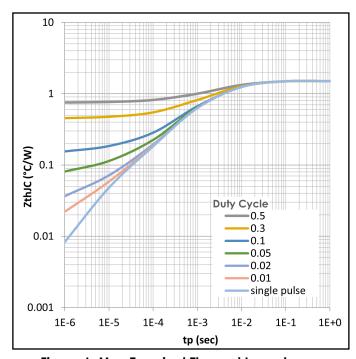


Figure 6: Max Transient Thermal Impedance

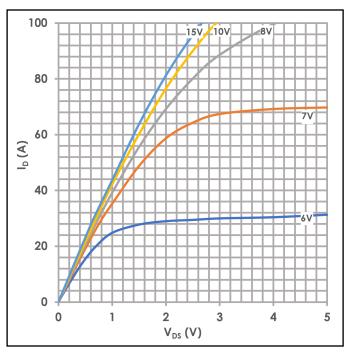


Figure 7: Typical Output Characteristics

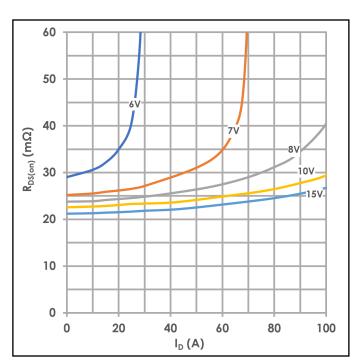


Figure 8: Typical Drain-Source On-Resistance

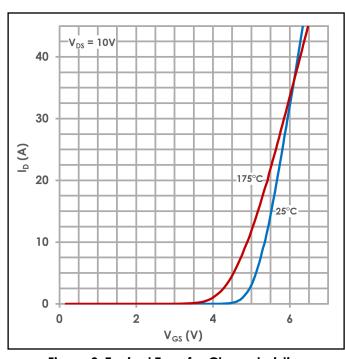


Figure 9: Typical Transfer Characteristics

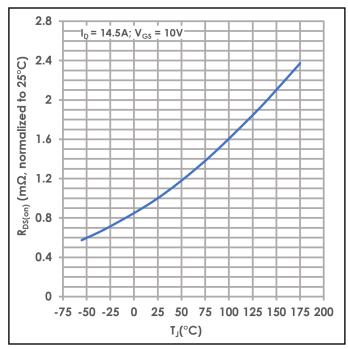


Figure 10: Normalized On-State Resistance vs.
Temperature

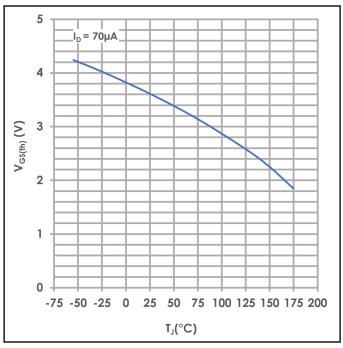


Figure 11: Typical Threshold Voltage

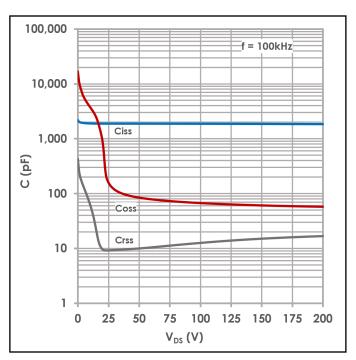


Figure 12: Typical Capacitances

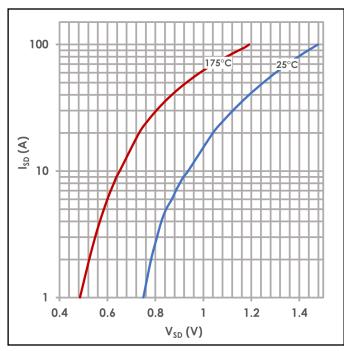


Figure 13: Typical Diode Forward Voltage

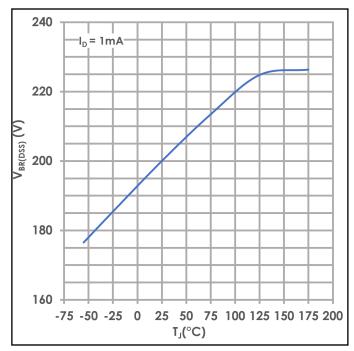


Figure 14: Min Drain-Source Breakdown Voltage

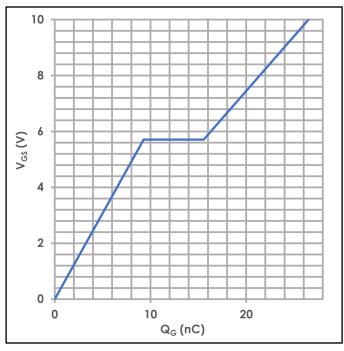


Figure 15: Typical Gate Charge

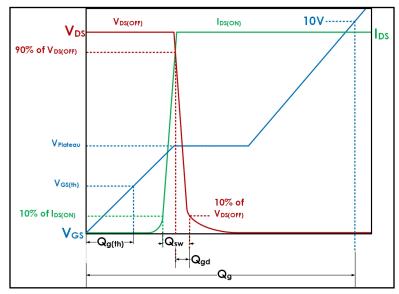
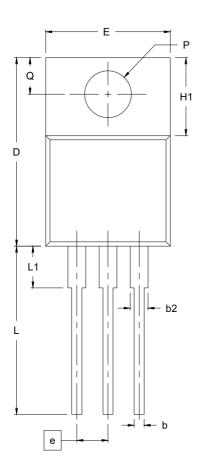
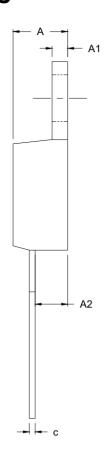


Figure 16: Gate Charge Definitions


DEVICE DECODER RING



- (1) iDEAL Semiconductor product
- Voltage rating divided by 10 (200V)
- M = N-Channel MOSFET, Standard Threshold
- 4 Maximum drain-to-source resistance
- 5 SuperQ™ Generation
- **6** P = TO-220

TO-220 Package Drawing

SYMBOL	MIN	MAX
Α	4.19	4.82
A1	1.14	1.40
A2	2.38	2.92
b	0.63	1.01
b2	1.13	1.78
С	0.31	0.64
D	14.22	16.51
Е	9.66	10.66
е	2.54 BSC	
H1	5.85	6.85
L	12.70	14.73
L1	2.39	4.42
Р	3.54	4.08
Q	2.54	3.42
Markan		-

- All linear dimensions in millimeters
 Dimensions D and E do not include mold flash or protrusions

Revision History				
Version	Date	Comments		
1.0	July 2025	Initial Release		
1.1	September 2025	Gate charge characteristics table updated. Figure 16 added		

IMPORTANT NOTICE AND DISCLAIMER

IDEAL SEMICONDUCTOR DEVICES, INC. ("IDEAL") PROVIDES THE DATASHEET AND ALL SUPPORTING DESIGN RESOURCES, SAFETY INFORMATION, AND OTHER MATERIALS (THE "RESOURCES") "AS IS". IDEAL AND/OR ITS LICENSORS DO NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE RESOURCES OR THAT SUCH RESOURCES WILL BE SUITABLE FOR YOUR APPLICATION. IDEAL HEREBY DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, OR NON-INFRINGEMENT.

You are only permitted to use the Resources and any products provided by iDEAL ("Products") in accordance with the operating parameters set forth in the Resources and iDEAL's standard terms and conditions made available at the time of order placement. Please note that the Resources are intended for skilled, technically-trained developers. You are solely responsible for, and iDEAL disclaims all responsibility and liability for: (a) choosing the Products and evaluating the suitability of such Products for the intended application, as well as determining if the information in the Resources is complete for your application; (b) designing, validating and testing the Products in your system; and (c) ensuring your application meets applicable safety, security, regulatory or other industry requirements and standards. iDEAL assumes no liability for any damage or malfunction resulting from improper handling of Products, or use of Products and Resources outside of the specified parameters. You are responsible for consulting the latest datasheet before placing orders.

iDEAL reserves the right to make corrections, modifications, enhancements, improvements and other change to or otherwise discontinue its Resources and Products in its sole discretion at any time without notice. All Products are sold subject to iDEAL's standard terms and conditions made available at the time of order placement.

Mailing Address:

iDEAL Semiconductor Devices, Inc. 116 Research Drive Bethlehem, Pennsylvania, USA 18015 info@idealsemi.com