R1810Z015A-EV # 600 nA IQ Low Quiescent Current Boost DC/DC Converter for Energy Harvester Evaluation Board No.EEV-423-Z015A-250110 R1810Z015A-EV is the evaluation board for R1810 which has the below features, benefits and specification. #### OVERVIEW R1810Z is a boost DC/DC converter for electrical power storage devices, especially dedicated for 1 cell photovoltaic energy harvester since the start-up voltage is Typ.0.35V. This product can start up with only 9uW, and applicable for charging 1 cell photovoltaic element. A system which is working under low-illuminance environment can be composed with the R1810Z. #### **KEY BENEFITS** - Providing a low quiescent current (Iq_vouт =Typ.600 nA), and high efficiency (66%@ Ιουτ=5 μΑ) - Start up with low input energy, 9 μW (low illuminance) is possible. - Maximum power point control function is built-in. #### KEY SPECIFICATIONS Start-up voltage: Typ. 0.35V Max. 0.50V (0°C \leq Ta \leq 65°C), Max. 0.55V (-40°C \leq Ta \leq 85°C) - Input Voltage Range: 0.2 V to 2.1 V (V_{SET}=2.7V) - Output Voltage: 2.7 V - Output Voltage Accuracy: ±5.0% - Low current consumption: Typ.600 nA (Ta = 25°C, at no load) - Start-up power: $9 \mu W (V_{MPSET} = 0.5 V / V_{SET} = 2.6 V)$ - Maximum Power Point Control Voltage: 0.3 V - Input Power Good Function - Output Power Good Function - For more details on R1810 IC, please refer to https://www.nisshinbo-microdevices.co.jp/en/products/dc-dc-switching-regulator/spec/?product=r1810 #### PART NUMBER INFORMATION | Product Name | Package | |---------------|-------------| | R1810Z015A-EV | WLCSP-15-P1 | 015: Output Voltage = 2.7 V Maximum Power Point Control Voltage = 0.3 V OUTPG "High" Detection Voltage = 2.43 V A: Set output power good low (PGL) = Vset x 80% ## **PCB LAYOUT** ### R1810Z (WLCSP-15-P1) Board Layout Diagram Top Layer Bottom Layer No.EEV-423-Z015A-250110 #### **ABSOLUTE MAXIMUM RATINGS** #### **Absolute Maximum Ratings** (GND = 0 V) | Symbol | Parameter | Rating | Unit | |-------------------------|---|--|------| | VIN | Input Pin Voltage | -0.3 to 2.3 | V | | V_{LX} | LX Pin Voltage | -0.3 to 6.5 | V | | Vout | Output Pin Voltage | -0.3 to 6.5 | V | | V_{REG} | Output Voltage of Boost DC to DC Converter for Start-up | -0.3 to 6.5 | V | | V _{CP} | Output Pin Voltage of Charge Pump Circuit | -0.3 to 6.5 | V | | V _{TEST1} to 3 | Pin Voltage for Testing | -0.3 to 6.5 | V | | VINPG | INPG Pin Voltage | -0.3 to 6.5 | V | | I _{INPG} | INPG Pin Current | 10 | mA | | Voutpg | OUTPG Pin Voltage | -0.3 to 6.5 | V | | l _{OUTPG} | OUTPG Pin Current | 10 | mA | | PD | Power Dissipation | Refer to the Power Diss in the supplementary | • | | Tj | Junction Temperature Range | -40 to 85 | °C | | Tstg | Storage Temperature Range | −55 to 125 | °C | #### **ABSOLUTE MAXIMUM RATINGS** Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured. #### RECOMMENDED OPERATING CONDITIONS **Recommended Operating Conditions** | Symbol | Parameter | Rating | Unit | |--------|-----------------------------|-------------|------| | VIN | Input Voltage (Vset=2.7V) | 0.20 to 2.1 | V | | Ta | Operating Temperature Range | -40 to 85 | °C | #### **RECOMMENDED OPERATING CONDITIONS** All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. The semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions. #### **ELECTRICAL CHARACTERISTICS** VINPGL INPG "Low" Output Voltage The specifications surrounded by \square are guaranteed by design at -40° C \leq Ta \leq 85°C, not mass production tested. #### **R1810Z Electrical Characteristics** $(Ta = 25^{\circ}C)$ **Symbol Parameter Conditions** Min. Max. Unit Typ. $V_{IN} = 0.5V$ **VOUT Pin Quiescent Current** 600 3000 nΑ I_{Q_VOUT} $V_{OUT} = 4.5 V$, at no switching $V_{IN} = 0.5 V$, VIN Pin Quiescent Current 400 I_{Q_VIN} nΑ Vout = 4.5 V, at no switching V_{SET} V_{SET} ٧ Vout Output Pin Voltage $V_{\text{IN}} > V_{\text{MP}}$ ×0.95 ×1.05 -5 5 % Vout = Vset VMPSet ≥0.5V Accuracy of Maximum V_{MP} Power Point Control Voltage 50 Vout = Vset, Vmpset < 0.5V -50 mV xxxA: 2.6V ≤ V_{SET} V_{SET} OUTPG "High" Threshold xxxB: 3.1V ≤ V_{SET} V_{SET} VSET V Voutpgh Voltage xxxC: 3.6V ≤ V_{SET} $\times 0.87$ $\times 0.93$ 0.90 xxxD: 4.3V ≤ V_{SET} VSET V_{SET} VSET xxxA: $2.6V \le V_{SET} < 3.3V$ × (PGL × × (PGL V $xxxB: 3.1V \le V_{SET} < 3.3V$ **PGL** -0.05) +0.05) OUTPG "Low" Threshold Voutpgl xxxA: 3.3V ≤ V_{SFT} Voltage V_{SET} V_{SET} VSET xxxB: 3.3V ≤ V_{SET} × (PGL × (PGL × xxxC: 3.6V ≤ V_{SET} **PGL** -0.04)+0.04)xxxD: 4.3V ≤ V_{SET} V_{MPSET} V V_{INPGH} INPG "High" Threshold Voltage × 1.05 V_{MPSET} ٧ VINPGL INPG "Low" Threshold Voltage × 0.95 2.11 ٧ Voutuvlor Voutuvlo Release Voltage 1.55 V Voutuvlof Voutuvlo Detection Voltage V_{SET} ٧ Voutpgh OUTPG "High" Output Voltage IOUTPG=-1µA ×0.9 V_{SET} VINPGH INPG "High" Output Voltage V I_{INPG}=-1µA ×0.9 Voutpgl 0.1 V OUTPG "Low" Output Voltage IOUTPG=1µA All test items listed under Electrical Characteristics are done under the pulse load condition (Tj \approx Ta = 25°C). Test circuit is operated with "Open Loop Control" (GND = 0 V), unless otherwise specified. $I_{INPG}=1\mu A$ 0.1 | R1 | 810x | |--|-------| | No.EEV-423-Z015A-25 | 50110 | | The specifications surrounded by are guaranteed by design engineering at −40°C ≤ Ta ≤ 85°C | | | R1810ZxxxA Product-specific Electrical Characteristics | | | Product | Output Voltage [V] | | | Maximum Power Point
Control Voltage [V] | | | OUTPG"High"
Detection Voltage [V] | | | |------------|--------------------|------|-------|--|------|-------|--------------------------------------|------|-------| | Name | Min. | Тур. | Max. | Min. | Тур. | Max. | Min. | Тур. | Max. | | R1810Z015A | 2.565 | 2.7 | 2.835 | 0.250 | 0.3 | 0.350 | 2.349 | 2.43 | 2.511 | If VSET < 2.6V, the OUTPG function cannot be used. ## **APPLICATION INFORMATION** **R1810x Typical Application Circuit** #### **Recommended External Components** | Symbol | Descriptions Value | |------------------|--------------------| | Cin | 22 µF | | Сср | 0.022µF | | C _{REG} | 4.7 µF | | Соит | 4.7 μF | | L | 22 µH | XThe bill of materials will be attached on the shipment of each purchased evaluation board. ## **PIN DESCRIPTIONS** R1810Z (WLCSP-15-P1) Pin Configuration R1810Z Pin Description | Symbol | Description | | Pin No. | |--------|---|-----|---------| | Symbol | Description | I/O | R1810Z | | VIN | Power Supply Input Pin. Apply input voltage between VIN pin and GND. Connect the input capacitor between the VIN pin and GND. | I | С3 | | VOUT | Output voltage pin of step-up DC / DC converter. Connect the output load between VOUT pin and GND. Connect the output capacitor between VOUT pin and GND. | 0 | D1,E1 | | INPG | Power good output pin for power input voltage (V _{IN}). "High" level of the output voltage for CMOS output is the output voltage (V _{OUT}) of the step-up DC / DC converter. Outputs "High" when V _{IN} exceeds V _{MPSET} and V _{OUT} exceeds V _{OUTUVLOR} *1. Please left open when not in use. | 0 | A1 | | VREG | Output pin of step-up DC / DC converter (internal power supply) for startup. Supply voltage to the main DC / DC converter circuit that produces VOUT at startup. Please connect a capacitor between VREG pin and GND for voltage stabilization. | 0 | C1 | | LX | The drain of the internal MOSFET. Connect an inductor between VIN pin and LX pin. | 0 | D2,D3 | | VCP | Output pin of the startup internal step-up charge pump (internal power source). Supply voltage to the start-up DC / DC converter circuit that generates the VREG voltage at startup. Please connect a capacitor between the VCP pin and GND for voltage stabilization. | 0 | B1 | No.EEV-423-Z015A-250110 | OUTPG | Power good output pin for Vout. "High" level of the output voltage for CMOS output is Vout. Outputs "High" when Vout is Voutpgh*1 or higher, and outputs "Low" when Vout is Voutpgl*1 or lower. Please left open when not in use. | 0 | A2 | |---------------|--|---|----------| | TEST
1,2,3 | Test pins for the IC. Be sure to connect to AGND. | _ | C2,B2,A3 | | AGND | Analog ground of the internal circuit. Please connect to the PGND and GND. | _ | В3 | | PGND | Power ground of the internal circuit. Please connect to the AGND and GND. | _ | E2,E3 | | NC | No connection. It is recommended to make it open to prevent short circuit with adjacent pins during mounting. | _ | _ | #### %1 : Refer to electrical characteristics. | Product | OUTPG"Low" Detection Voltage [V] | | | INPG"High" Detection Voltage [V] | INPG"Low"
Detection Voltage [V] | | |------------|----------------------------------|-------|-------|----------------------------------|------------------------------------|--| | Name | Min. | Тур. | Max. | Min. | Max. | | | R1810x015A | 2.025 | 2.160 | 2.295 | 0.315 | 0.285 | | If VSET < 2.6V, the OUTPG function cannot be used. No.EEV-423-Z015A-250110 #### **TECHNICAL NOTES** The performance of the IC largely depends on the external components and circuitry layout. Especially, design the circuit carefully not to exceed each rating (voltage, current, power) for each component and the IC and consider the best layout pattern. Use a ceramic capacitor with low ESR (equivalent series resistance). We recommend 22uF as CIN which is set between V_{IN} and GND. We recommend 4.7uF ceramic capacitor or 10uF or more ceramic capacitor with large capacity of electrical storage device as Cout. The capacitors should cover the operating temperature range, and effective capacitance should be more than our recommendation capacity with 0 bias. Note that insulation resistance should not be too small. If insulation resistance is small, the leakage current may increase. Such a system cannot be recommended. We recommend an inductor with equal or more current rating (400mA or more), ESR, DC superimposition characteristics as our recommendation part. If ESR is large, or bad DC superimposition characteristics may lead to the bad efficiency. If the current rating is too small, the inductor may be broken down. If other than GND level is connected to the TEST1,2,3 pins, by the shoot current of logic circuits inside the IC, consumption current may increase. Make sure to connect these pins to the ground level.