OSRAM LB Y1SG **Datasheet**

Micro SIDELED® 2808

LB Y1SG

Micro SIDELED is a SMT LED with side emission. Due to its low package height it is ideal for applications in limited space environments.

Applications

- Access Control & Security
- Factory Automation
- Home & Building Automation

- Material Processing
- Projection & Display
- Robotics

Features

- Package: white SMT package, colorless clear resin
- Chip technology: InGaN on Sapphire
- Typ. Radiation: 120° (Lambertian emitter)
- Color: λ_{dom} = 470 nm (• blue)
- Optical efficacy: 25 lm/W
- Corrosion Robustness Class: 1B
- ESD: 2 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)

LB Y1SG DATASHEET

			-	1-5-		-4:	
U	ΙU	ei i	IIIQ	11110	Ш	ation	ı

Luminous Intensity 1) Ordering Code Type

 $I_{F} = 20 \text{ mA}$

ľ

LB Y1SG-T1U2-35-1 280 ... 710 mcd Q65113A3369

Maximum Ratings			
Parameter	Symbol		Values
Operating Temperature	T _{op}	min.	-40 °C
	op.	max.	85 °C
Storage Temperature	T _{stg}	min.	-40 °C
	3.9	max.	100 °C
Junction Temperature	T _j	max.	95 °C
Forward current	I _E	min.	5 mA
$T_A = 25 ^{\circ}C$	·	max.	30 mA
Surge Current t \leq 10 µs; D = 0.005 ; T _A = 25 °C	I _{FS}	max.	300 mA
ESD withstand voltage acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)	V_{ESD}		2 kV
Reverse voltage ²⁾	V_R		Not designed for reverse operation

Characteristics

 $I_F = 20 \text{ mA}; T_A = 25 \text{ }^{\circ}\text{C}$

Parameter	Symbol		Values
Dominant Wavelength ³⁾	$\lambda_{\sf dom}$	min. typ. max.	464 nm 470 nm 476 nm
Viewing angle at 50% I _v	2φ	typ.	120 °
Forward Voltage ⁴⁾ I _F = 20 mA	V _F	min. typ. max.	2.40 V 2.85 V 3.20 V
Reverse current ²⁾	I _R		Not designed for reverse operation
Real thermal resistance junction/solderpoint 5)	$R_{ ext{thJS real}}$	typ. max.	113 K / W 148 K / W
Electrical thermal resistance junction/solderpoint $^{5)}$ with efficiency $\eta_{\rm e}$ = 44 %	$R_{ ext{thJS elec.}}$	typ. max.	63 K / W 83 K / W

Brightness Groups

Group	Luminous Intensity 1) I _F = 20 mA	Luminous Intensity. 1) I _F = 20 mA	Luminous Flux ⁶⁾ I _F = 20 mA
	min.	max.	typ.
	l _v	I _v	Φ_{V}
T1	280 mcd	355 mcd	950 mlm
T2	355 mcd	450 mcd	1210 mlm
U1	450 mcd	560 mcd	1520 mlm
U2	560 mcd	710 mcd	1910 mlm

Forward Voltage Groups

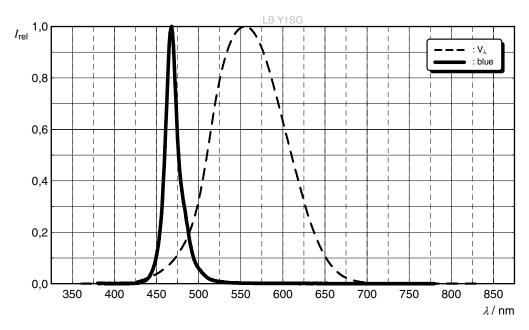
Group	Forward Voltage 4) I _F = 20 mA min. V _F	Forward Voltage ⁴⁾ I _F = 20 mA max. V _F	
J	2.40 V	2.60 V	
K	2.60 V	2.80 V	
L	2.80 V	3.00 V	
M	3.00 V	3.20 V	

Wavelength Groups

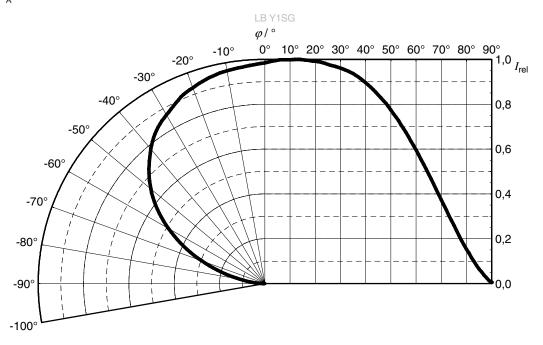
Group Dominant Wavelength 3)		Dominant Wavelength 3)	
	min.	max.	
	$\lambda_{\sf dom}$	λ_{dom}	
3	464 nm	468 nm	
4	468 nm	472 nm	
5	472 nm	476 nm	

LB Y1SG DATASHEET

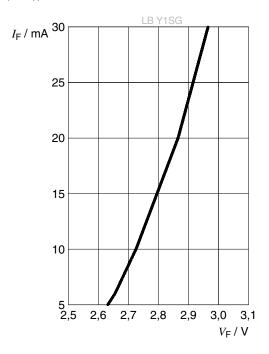
Group Name on Label


Example: T1-3-J

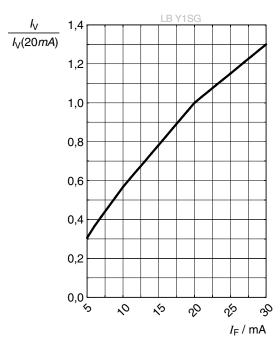
Brightness	Wavelength	Forward Voltage
T1	3	J


Relative Spectral Emission 6)

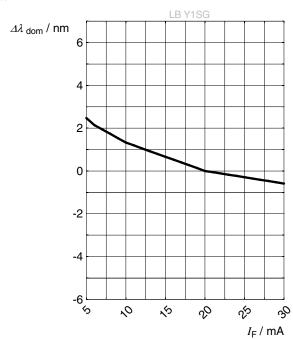
 I_{rel} = f (λ); I_F = 20 mA; T_A = 25 °C


Radiation Characteristics 6)

 $I_{rel} = f(\phi); T_A = 25 °C$

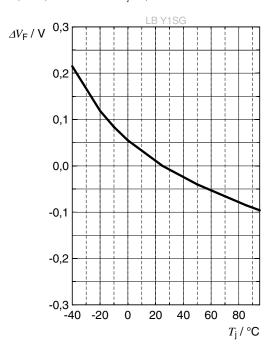

Forward current 6)

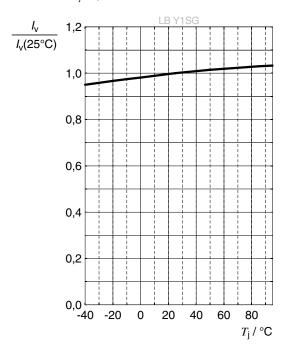
$$I_F = f(V_F); T_A = 25 °C$$


Relative Luminous Intensity 6), 7)

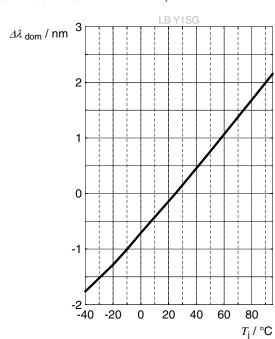
$$I_{V}/I_{V}(20 \text{ mA}) = f(I_{F}); T_{A} = 25 \text{ °C}$$

Dominant Wavelength 6)


$$\Delta\lambda_{dom} = f(I_F); T_A = 25 \text{ °C}$$

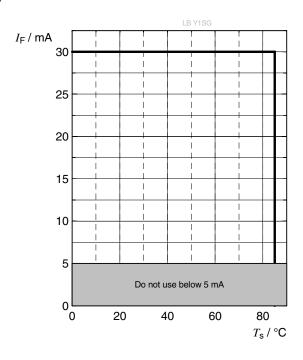

Forward Voltage 6)

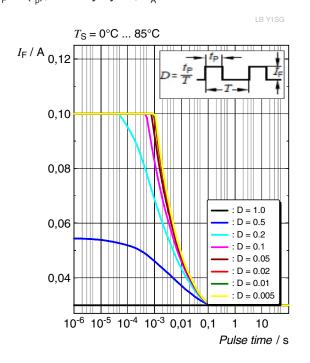
$$\Delta V_{_F} = V_{_F} - V_{_F} (25~^{\circ}C) = f(T_{_j}); \ I_{_F} = 20~mA$$


Relative Luminous Intensity 6)

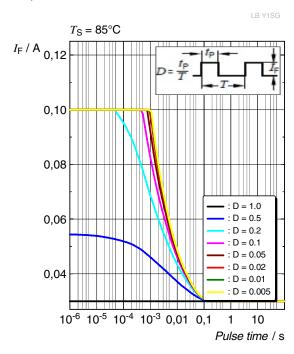
$$I_{v}/I_{v}(25 \text{ °C}) = f(T_{i}); I_{F} = 20 \text{ mA}$$

Dominant Wavelength 6)

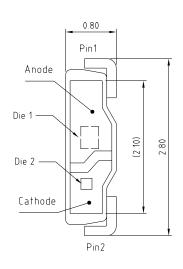

$$\Delta\lambda_{\text{dom}} = \lambda_{\text{dom}} - \lambda_{\text{dom}} (25 \text{ °C}) = f(T_j); I_F = 20 \text{ mA}$$

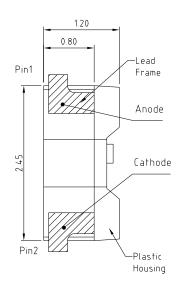

Max. Permissible Forward Current 5)

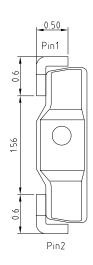
 $I_F = f(T)$


Permissible Pulse Handling Capability

 $I_F = f(t_p)$; D: Duty cycle; $T_A = 25 \, ^{\circ}C$


Permissible Pulse Handling Capability


 $I_F = f(t_p)$; D: Duty cycle; $T_A = 85 \, ^{\circ}C$



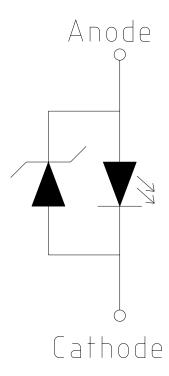
Dimensional Drawing 8)

General tolerance ± 0.1 lead finish Ag

C67062-A0424-A1-01

Further Information:

Approximate Weight: 5.0 mg

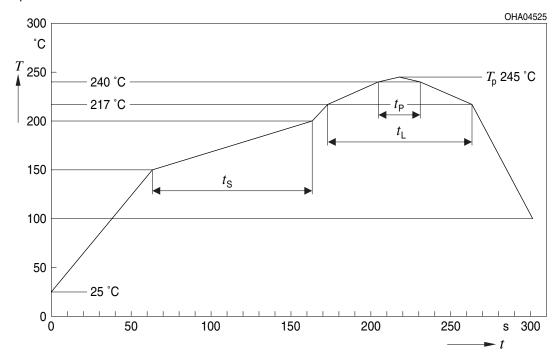

Corrosion test: Class: 1B

Test condition: 25°C / 75 % RH / 200ppb $\mathrm{SO_2}$, 200ppb $\mathrm{NO_2}$, 10ppb $\mathrm{H_2S}$,

10ppb Cl₂ / 21 days (EN 60068-2-60 (Method 4))

Electrical Internal Circuit

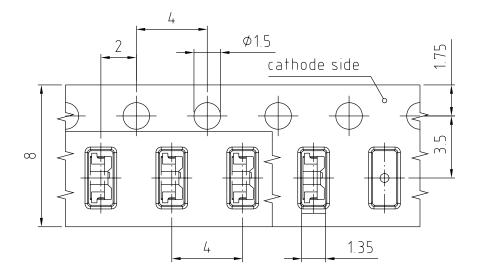
Recommended Solder Pad 8)

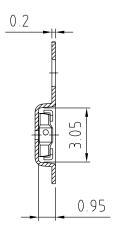

E067.0346.21-01

For superior solder joint connectivity results we recommend soldering under standard nitrogen atmosphere. Package not suitable for ultra sonic cleaning.

Reflow Soldering Profile

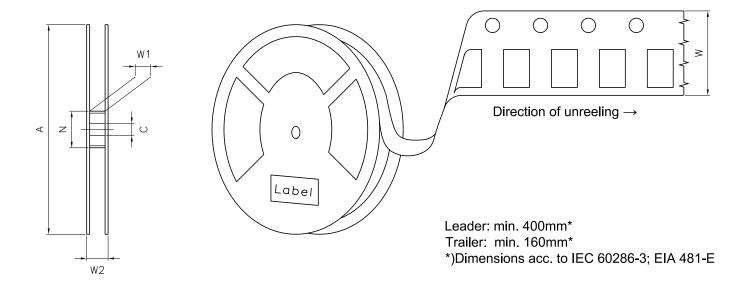
Product complies to MSL Level 4 acc. to JEDEC J-STD-020E


Profile Feature	Symbol	Pb	-Free (SnAgCu) Ass	Unit	
		Minimum	Recommendation	Maximum	
Ramp-up rate to preheat*) 25 °C to 150 °C			2	3	K/s
Time t_s T_{smin} to T_{smax}	t _s	60	100	120	S
Ramp-up rate to peak*) T_{Smax} to T_{P}			2	3	K/s
Liquidus temperature	T_{L}		217		°C
Time above liquidus temperature	$t_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		80	100	S
Peak temperature	T _P		245	260	°C
Time within 5 °C of the specified peak temperature T _P - 5 K	t _P	10	20	30	S
Ramp-down rate* T _p to 100 °C			3	6	K/s
Time 25 °C to T _P				480	S


All temperatures refer to the center of the package, measured on the top of the component

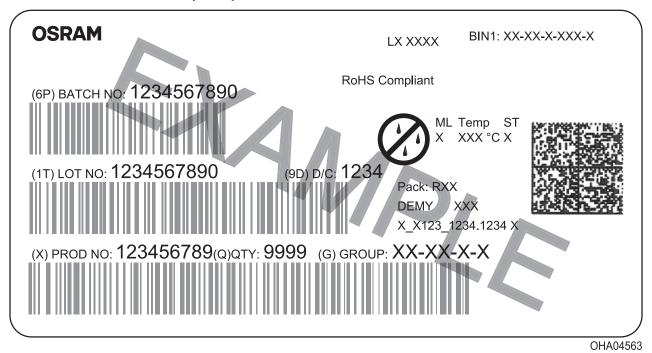
^{*} slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range

Taping 8)

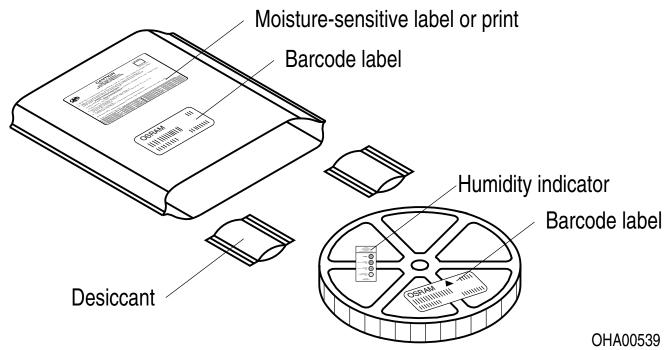


C67062-A0424-B1-01

Tape and Reel 9)



Reel Dimensions


Α	W	N_{\min}	W_1	$W_{2 max}$	Pieces per PU
180 mm	8 + 0.3 / - 0.1 mm	60 mm	8.4 + 2 mm	14.4 mm	2000

Barcode-Product-Label (BPL)

Dry Packing Process and Materials 8)

Moisture-sensitive product is packed in a dry bag containing desiccant and a humidity card according JEDEC-STD-033.

LB Y1SG **DATASHEET**

Notes

The evaluation of eye safety occurs according to the standard IEC 62471:2006 (photo biological safety of lamps and lamp systems). Within the risk grouping system of this IEC standard, the device specified in this data sheet fall into the class exempt group (exposure time 10000 s). Under real circumstances (for exposure time, conditions of the eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices. As a matter of principle, however, it should be mentioned that intense light sources have a high secondary exposure potential due to their blinding effect. When looking at bright light sources (e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation.

Subcomponents of this device contain, in addition to other substances, metal filled materials including silver. Metal filled materials can be affected by environments that contain traces of aggressive substances. Therefore, we recommend that customers minimize device exposure to aggressive substances during storage, production, and use. Devices that showed visible discoloration when tested using the described tests above did show no performance deviations within failure limits during the stated test duration. Respective failure limits are described in the IEC60810.

For further application related information please visit https://ams-osram.com/support/application-notes

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version on our website.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Product and functional safety devices/applications or medical devices/applications

Our components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.

Our products are not qualified at module and system level for such application.

In case buyer – or customer supplied by buyer – considers using our components in product safety devices/ applications or medical devices/applications, buyer and/or customer has to inform our local sales partner immediately and we and buyer and /or customer will analyze and coordinate the customer-specific request between us and buyer and/or customer.

Glossary

- Brightness: Brightness groups are tested at a current pulse duration of 25 ms and a tolerance of ±11 %.
- 2) Reverse Operation: Not designed for reverse operation. Continuous reverse operation can cause migration and damage of the device.
- 3) Wavelength: Wavelengths are tested at a current pulse duration of 25 ms and a tolerance of ±1 nm.
- 4) Forward Voltage: Forward voltages are tested at a current pulse duration of 1 ms and a tolerance of ±0.1 V.
- 5) Thermal Resistance: Rth max is based on statistic values (6σ) used for Derating.
- 6) Typical Values: Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- Characteristic curve: In the range where the line of the graph is broken, you must expect higher differences between single devices within one packing unit.
- Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm.
- 9) Tape and Reel: All dimensions and tolerances are specified acc. IEC 60286-3 and specified in mm.

LB Y1SG DATASHEET

Revision History

Version	Date	Change
1.0	2021-09-20	Initial Version
1.1	2022-03-17	New Layout Derating (Diagrams)
1.2	2024-03-08	Applications Notes

EU RoHS and China RoHS compliant product 此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准, 不含有毒有害物质或元素。

Published by ams-OSRAM AG

Tobelbader Strasse 30, 8141 Premstaetten, Austria Phone +43 3136 500-0 ams-osram.com © All rights reserved

