

The DMM-3535-B MEMS microphones are integrated with a specialized preamplification ASIC to provide high sensitivity and high SNR output from a capacitive audio sensor. They are packaged for surface mounting and hightemperature reflow assembly. The data format is single-bit PDM.

Key Features:

- -35dB sensitivity
- 66.5dB Signal-to-Noise
- Digital output
- Small 3.5mm x 2.65mm surface-mount package

Specifications (VDD = 1.8 V)

Parameters		Values	Units	
Operating Power Supply Voltage Range (V _S)		$1.6 \le V_S \le 3.3$	V_{DC}	
Rated Power Supply Voltage (V _S)		1.8	V_{DC}	
Dhaga Dagnanga	Minimum	-5	D	
Phase Response	Maximum	5	Degrees	
Directivity		Omnidirectional	-	
Weight		<0.3	Grams	
Operating Temperature		$-40 \le T_0 \le 85$	°C	
Storage Temperature		$-40 \le T_S \le 100$	°C	
Environmental Compliances		RoHS/Halogen Free	-	
MSL (Moisture Sensitivity Level)*		1	-	

^{*}MSL level dependent on product remaining in sealed packaging until use.

Specifications: Standard Mode (Clock Frequency 2.4 MHz, VDD = 1.8 V)

Parameters		Values	Units	
Sensitivity				
f = 1kHz		-35 ±1	dBFS	
0dBV =1V with 1Pa acoustic inp	out			
Current congumntion	Typical	900	^	
Current consumption	Maximum	1150	μA	
Signal-to-Noise Ratio				
f = 1kHz		66.5	dB	
Acoustic input = 94 dBSPL				
A-weighted				
Frequency Range		$20 \le f \le 10,000$	Hz	
Max. Total Harmonic Distortion				
Acoustic input = 94 dBSPL		0.5	%	
f = 1kHz				

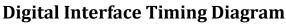
This document contains data proprietary to PUI Audio Inc. Any use or reproduction, in any form, without prior written permission of PUI Audio Inc. is prohibited.

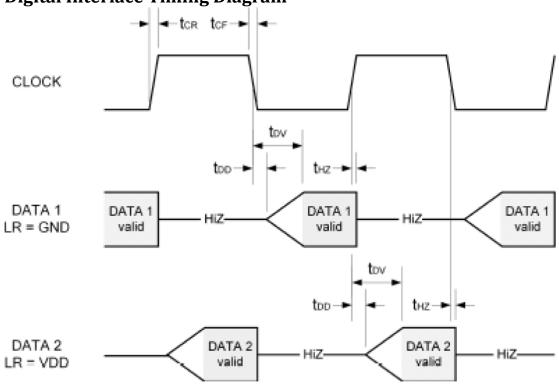
© 2025, PUI Audio Inc.

Max. Acoustic Overload Point (AOP) f = 1kHz THD = 10%	130	dB
Power Supply Rejection (PSR) 100mV _{P-P} Square Wave f = 217Hz A-weighted	-95	dB

Specifications: Low Power Mode (Clock Frequency 768 kHz, VDD = 1.8 V)

Parameters		Values	Units
Sensitivity			
f = 1kHz		-21 ±1	dBFS
0dBV =1V with 1Pa acousti	c input		
Current consumption	Typical	310	^
Current consumption	Maximum	410	μΑ
Signal-to-Noise Ratio			
f = 1kHz		65	dB
Acoustic input = 94 dBSPL		65	иь
A-weighted			
Frequency Range		$20 \le f \le 10,000$	Hz
Max. Total Harmonic Distortion			
Acoustic input = 94 dBSPL		0.5	%
f = 1kHz			
Max Acoustic Overload Point	(AOP)		
f = 1kHz		117	dB
THD = 10%			
Power Supply Rejection (PSF	R)		
100mV _{P-P} Square Wave		-85	dB
f = 217Hz		-05	ub
A-weighted			

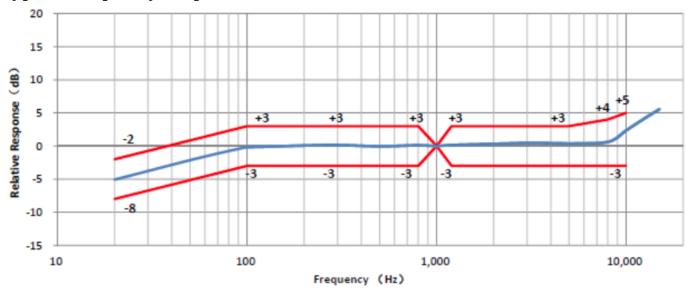

Specifications: Digital

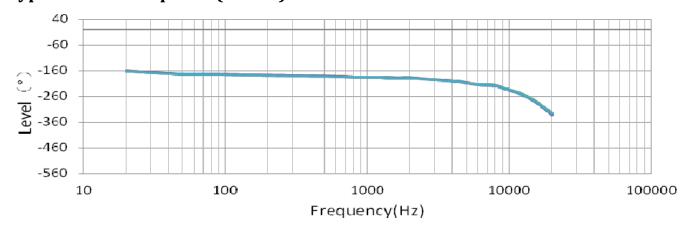

Parameters			Values	Units
		Minimum		
	Sleep	Typical		
		Maximum	320	
Mode Dit Cleak Engage	Love	Minimum	450	
Mode Bit-Clock Frequency	Low Power	Typical	768	kHz
Range	Power	Maximum	850	
		Minimum	1200	
	Standard	Typical	3072	
		Maximum	3300	
Logic Input High		Minimum	$0.65V_{ m DD}$	V
Logic Input High		Maximum	$V_{DD} + 0.3$	V
Logia Input Lovy		Minimum	-0.3	V
Logic Input Low		Maximum	$0.28 \mathrm{V}_{\mathrm{DD}}$	V
Logic Output High		Minimum	$0.7 \mathrm{V}_{\mathrm{DD}}$	V
		Maximum		V
Logic Output Low		Minimum		V
		Maximum	$0.3V_{ m DD}$	V

This document contains data proprietary to PUI Audio Inc. Any use or reproduction, in any form, without prior written permission of PUI Audio Inc. is prohibited.

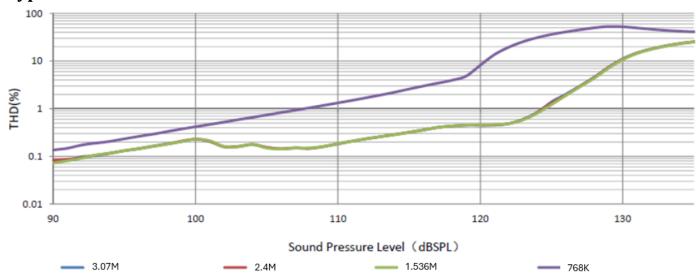
©2025, PUI Audio Inc.

Load Canacitanas	Minimum		F	
Load Capacitance	Maximum	200	pF	
Data Valid Catur Time	Minimum		ms	
Data Valid Setup Time	Maximum	20		
Sensitivity Setup Time	Minimum	20	ma	
Response sensitivity accuracy: ±0.2dBV	Maximum		ms	

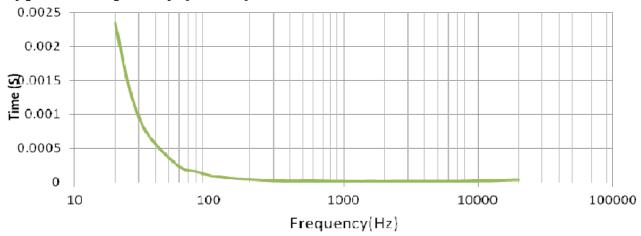


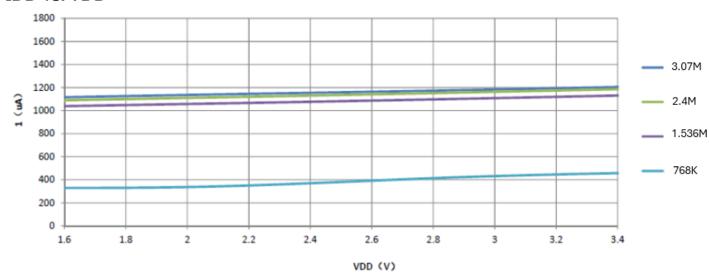

Specifications: Digital Interface

Parameters	eters Symbol			Values	Units
	-	f _{CLK} ≤	Minimum	45	
	CLIZ	2.4MHz	Maximum	55	0/
Clock Duty Cycle (Note 1)	CLK_{DC}	f _{CLK} >	Minimum	50	
		2.4MHz	Maximum	30	
Clock Rise-Time	+		Minimum		na
$10\% \le V_{\text{CLOCK}} \le 90\%$	t_{CR}		Maximum	13	ns
Clock Fall-Time	t _{CF}		Minimum		na
$90\% \le V_{CLOCK} \le 10\%$			Maximum	13	ns
D. D.L. II. D.	t _{DD}		Minimum	24	200
Data Delay to Line Driven			Maximum		ns
Delay to Valid Data	_		Minimum		200
Normal Mode	t_{DV_nm}		Maximum	100	ns
Delay to Valid Data	+		Minimum		na
Low Power Mode	$t_{\rm DV_lpm}$		Maximum	185	ns
Delay Time to High-Z	t _{HZ}		Minimum	14	nc
			Maximum	22	ns

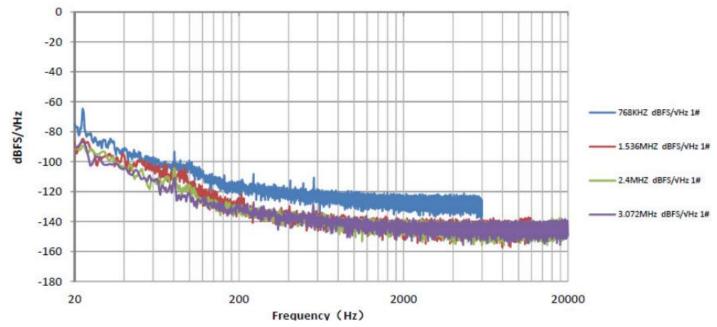

Typical Frequency Response

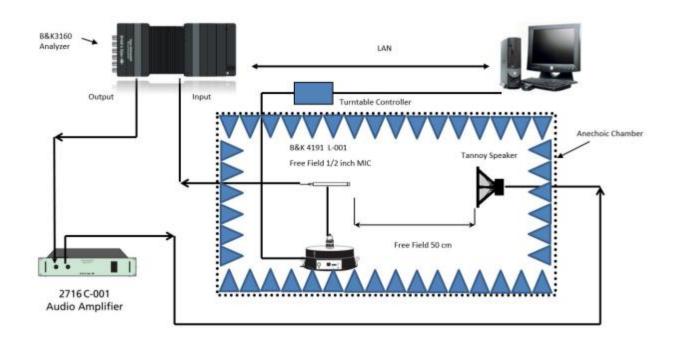
Typical Phase Response (2.4MHz)

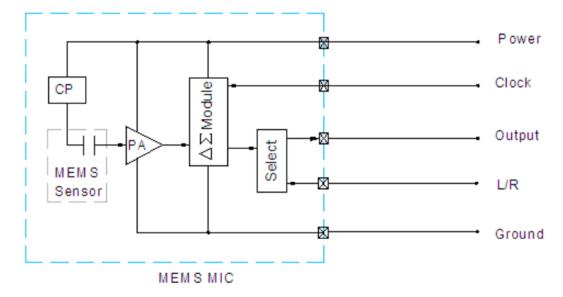

Typical THD vs. SPL

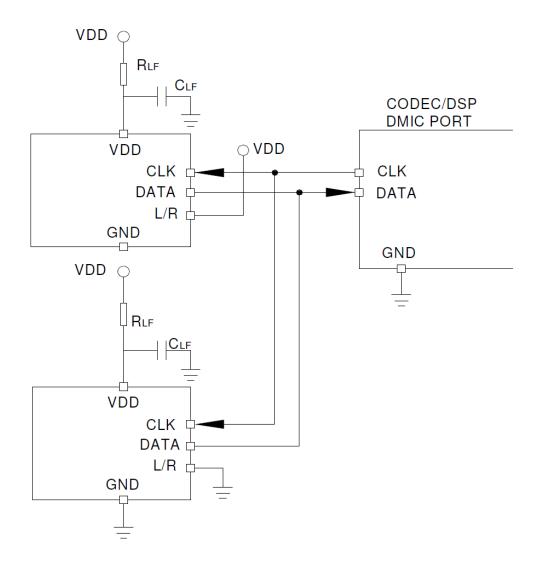

This document contains data proprietary to PUI Audio Inc. Any use or reproduction, in any form, without prior written permission of PUI Audio Inc. is prohibited.

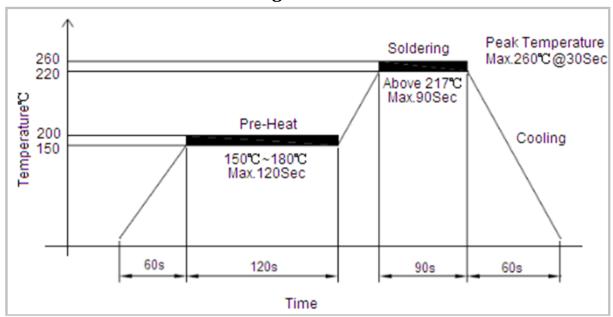
© 2025, PUI Audio Inc.


Typical Group Delay (2.4MHz)


IDD vs. VDD


Typical Noise Floor

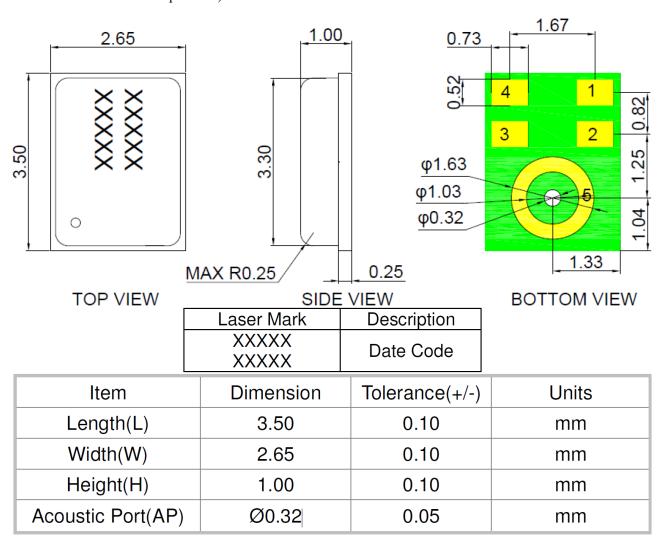

Measurement Method


Recommended Drive Circuit

Recommended Drive Circuit (Continued)

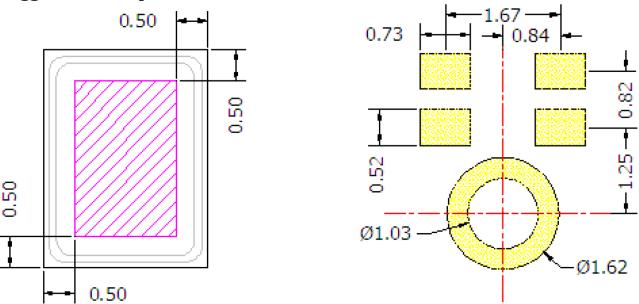
Recommended Reflow Soldering Procedure

Important Notes to minimize device damage:


- 1. Do not boards wash or clean after the reflow process.
- 2. Do not apply over 0.3Mpa of air pressure into the port hole.
- 3. Do not expose to ultrasonic processing or cleaning.
- 4. Do not pull a vacuum over port hole of the microphone.

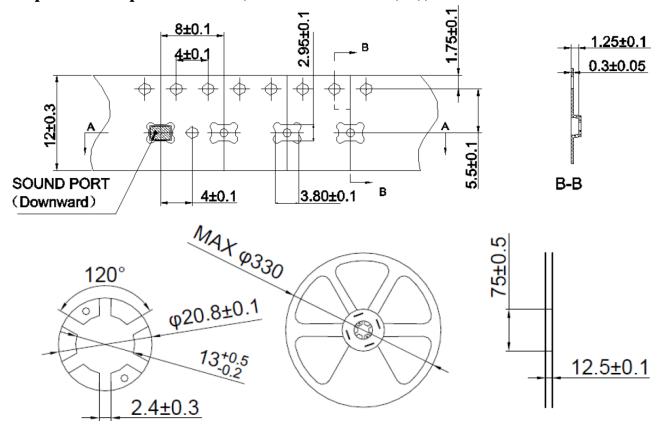
Reliability Testing

Type of Test	Test Specifications
High Temperature	105°C for 1000 hours, then recover for 2 hours.
Low Temperature	-40°C for 1000 hours, then recover for 2 hours.
Humidity Test	65°C, with 95%RH for 168 hours, then recover for 12 hours.
Temperature Shock	Each cycle shall consist of 15 minutes at -40°C, 15 minutes at +125°C. The test duration is for 100 cycles, starting from cold to hot temperature. Then, let it recover for 2 hours.
ESD Sensitivity	Perform ESD sensitivity threshold measurements for each contact according to MIL-STD-883G, Method 3015.7 for Human Body Model. Identify the ESD threshold levels indicating passage of 8000V Human Body Model.
Vibration Test	Vibrate randomly along three perpendicular directions for 12 minutes in each direction, from $20\sim2000$ Hz with a peak acceleration of 20 Gs. Then, let it recover for 2 hours.
Shock Test	Subject samples to half-sine shock pulses (10000 g for 0.1ms) in each direction x, y, z, 3 times each.
Drop Test	Drop samples from 1.5m height onto a slippery marble floor, in 4 corners, 4 times, and on 6 faces, 4 times; inspected for mechanical damage.
Operation Life	Subject samples to +125°C for 168 hours under full maximum rated voltage.


Microphone frequency response and sensitivity shall not deviate more than ±3 dB.

Dimensions and Pin Configuration and Function (All dimensions in mm; ±0.15mm tolerance unless otherwise specified.)

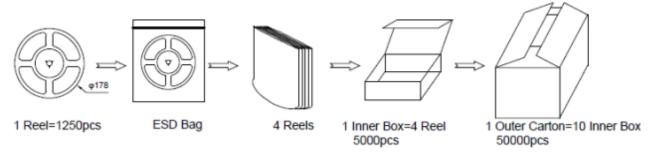
Pin #	Pin Name	Туре	Description
1	Output	Signal	Output Signal
2	L/R	L/R Channel	Channel select
3	CLK	Clock	Clock input
4	V_{DD}	Power	Power Supply
5	GND	Ground	Ground


Suggested Pickup Tool Location and Land Pattern*

Recommended Pickup Location

Recommended Solder Pad Layout

Tape & Reel Specifications (All dimensions in millimeter (mm).)



^{*}This land pattern is advisory only and its use or adaptation is entirely voluntary. PUI Audio disclaims all liability of any kind associated with the use, application, or adaptation of this land pattern.

This document contains data proprietary to PUI Audio Inc. Any use or reproduction, in any form, without prior written permission of PUI Audio Inc. is prohibited.

©2025, PUI Audio Inc.

Packaging

1 reel =1250pcs

1 Inner Carton = 4 Reels = 5000pcs

1 Outer Carton = 10 Inner Cartons = 50000pcs

Specifications Revisions

Revision	Description		Approve
A	Released from engineering	8/19/2025	JL

Note:

- 1. Unless otherwise specified:
 - A. All dimensions are in millimeters.
 - B. Default tolerances are ± 0.5 mm and angles are $\pm 3^{\circ}$.
- 2. Specifications subject to change or withdrawal without notice.