Filter specification **TFS 281** 1/5 Microchip

Measurement condition

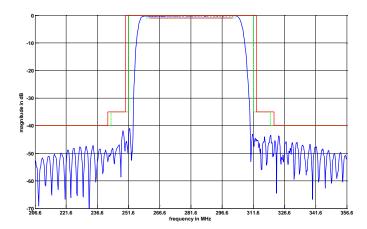
°C Ambient temperature: 23 Input power level: 0 dBm Terminating impedance: *

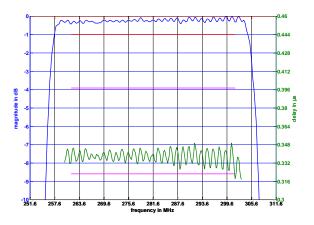
183 Ω || -12.5 pF 172 Ω || -12.6 pF Input: Output:

Characteristics

The reference level for the relative attenuation a_{rel} of the TFS281 is the minimum of the pass band attenuation. This value is defined as the insertion loss a_e . The nominal frequency f_N is fixed at 281,6 MHz without any tolerance. The values of relative attenuation a_{rel} are guaranteed for the whole operating temperature range. The frequency shift of the filter in the operating temperature range is included in the production tolerance scheme.

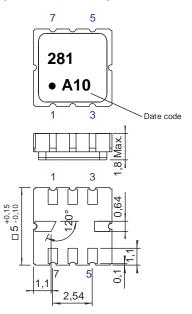
D a t a typ. val		value	toler	tolerance / limit		
Insertion loss (reference level)	a _e	9	dB	max.	12,0	dB
Nominal frequency	f _N				281,6	MHz
Passband	РВ	47,2	MHz	f _N ±	20,0	MHz
Pass band ripple p-p		0,4		max.	1	dB
Relative attenuation	a _{rel}					
f_N f_N ± 20 N	ИHz	0,4	dB	max.	1	dB
10 MHz f _N - 40 M	ИHz	47	dB	min.	40	dB
	ИHz	41	dB	min.	37	dB
f_N + 40 MHz f_N + 31,2 M	ИHz	43	dB	min.	37	dB
f_N + 40 MHz f_N + 220 M	ИHz	43	dB	min.	40	dB
Group delay ripple within PB		35	ns	max.	75	ns
Return loss within PB		14	dB	min.	10	dB
Input power level		-		max.	15	dBm
Operating temperature range	OTR	-		- 40 °C + 85 °C		
Storage temperature range		-		- 40 °C + 85 °C		
Temperature coefficient of frequency	TCf ***	-95	ppm/K		-	

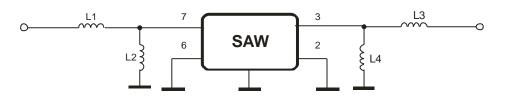

^{*)} The terminating impedances depend on parasitics and q-values of matching elements and the board used, and are to be understood as reference values only. Should there be additional questions do not hesitate to ask for an application note or contact our design team.


**) $\Delta f_C(Hz) = T_{Cf(ppm/K)} \times (T - T_0) \times f_N \text{ (MHz)}.$

Generated:		
Checked / Approved:		

Microchip Filter specification TFS 281 2/5


Filter characteristic


Construction and pin connection

(All dimensions in mm)

Date code: Year + week X 2009 A 2010 B 2011 ...

50 Ω Test circuit

Microchip Filter specification TFS 281 3/5

Stability characteristics, reliability

After the following tests the filter shall meet the whole specification:

1. Shock: 500g, 1 ms, half sine wave, 3 shocks each plane;

DIN IEC 68 T2 - 27

2. Vibration: 10 Hz to 500 Hz, 0,35 mm or 5 g respectively, 1 octave per min, 10 cycles per plane, 3 planes;

DIN IEC 68 T2 - 6

3. Change of

temperature: -55 °C to 125 °C / 30 min. each / 10 cycles

DIN IEC 68 part 2 - 14 Test N

4. Resistance to

solder heat (reflow): reflow possible: three times max.;

for temperature conditions refer to the attached "Air reflow temperature conditions" on page 4;

5. ESD MIL-STD-883E using coupling network of ISO 10605 and EN 6100-4-2

HBM:250V;

This filter is RoHS compliant (2002/95/EG, 2005/618/EG)

Packing

Tape & Reel: IEC 286 – 3, with exception of value for N and minimum bending radius;

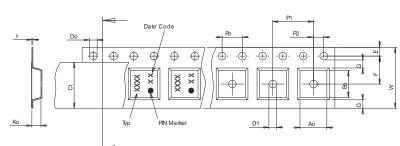
tape type II, embossed carrier tape with top cover tape on the upper side;

max. pieces of filters per reel:

reel of empty components at start:

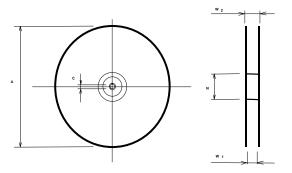
reel of empty components at start including leader:

min. 300 mm


min. 500 mm

min. 300 mm

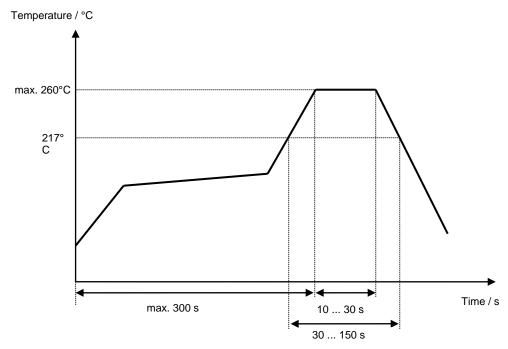
Pull Off Direction


Tape (all dimensions in mm)

W 12,00 Po 4.00 Do 1,50 Е 1,75 G(min) P2 P1 2.00 8,00 1,50 D1(min) 5,30 Αo Во 5,30 9,5

Reel (all dimensions in mm)

A :330 W1 : 12,4 W2(max) : 18,4 N(min) : 50 C : 13,0


The minimum bending radius is 45 mm.

Microchip Filter specification TFS 281 4/5

Air reflow temperature conditions

Conditions	<u>Exposure</u>		
Average ramp-up rate (30°C to 217°C)	less than 3°C/second		
> 100°C	between 300 and 600 seconds		
> 150°C	between 240 and 500 seconds		
> 217°C	between 30 and 150 seconds		
Peak temperature	max. 260°C		
Time within 5°C of actual peak temperature	between 10 and 30 seconds		
Cool-down rate (Peak to 50°C)	less than 6°C/second		
Time from 30°C to Peak temperature	no greater than 300 seconds		

Chip-mount air reflow profile

Microchip Filter specification TFS 281 5/5

History			
Version	Reason of Changes	Name	Date
1.0	- Generation of development specification	Chilla	03.06.2009
1.1	- Changed relative attenuation	Chilla	03.07.2009
1.2	 Created filter specification Added terminating impedance Added typical values Changed pin connection Added filter characteristics Added test circuit 	Chilla	15.12.2009
2.0	- Update of stopband attenuation on customer request	Chilla	12.03.2010
2.1	- Customer request improve rej f $_{\rm N}$ ±31,2 MHzf $_{\rm N}$ ±40 MHz, was 35dB	Jaffer	30.03.2010
2.2	Added temperature coefficient of frequencyChanged remark	Chilla	24.06.2010