

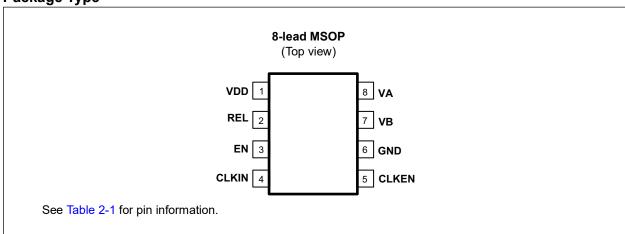
High-Voltage Low-Noise Inductorless EL Lamp Driver

Features

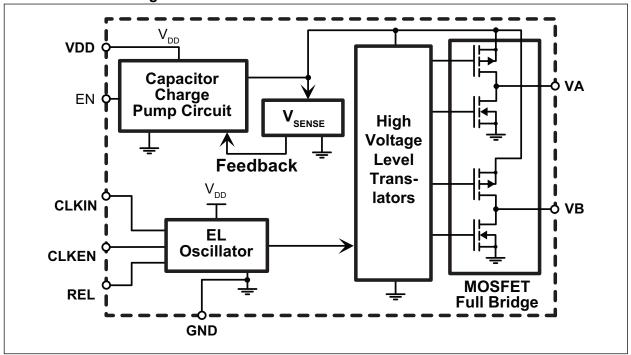
- No External Components required when using an External Electroluminescent (EL) Clock Frequency
- EL Frequency can be set by an External Resistor
- · Low Noise
- · DC to AC Converter
- Drives up to 5 nF Load (Approximately 1.5 in² Lamp)
- · Output Voltage Regulation
- · Enable Function
- EL Lamp Dimming

Applications

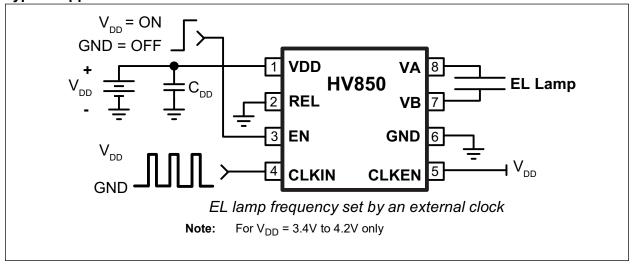
- · Cellphone Keypads and Displays
- Transceivers
- MP3 Plavers
- Watches
- · Pagers
- · Measuring Instruments/Gauge

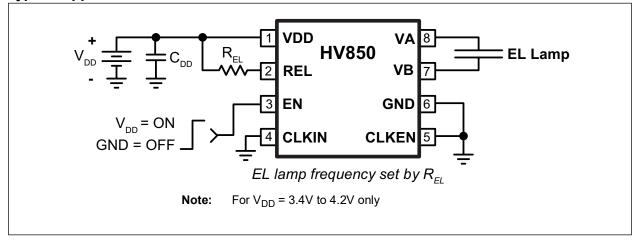

General Description

The HV850 is a high-voltage EL Lamp Driver IC. It is designed to drive EL lamps of up to 1.5 in² with capacitive values of up to 5 nF. The HV850 converts a low-voltage DC input to a high-voltage AC output across an EL lamp. It uses a charge pump scheme to boost the input voltage, eliminating the need for external inductors, diodes, and high-voltage capacitors, components commonly found in conventional topologies.


The charge pump circuit discharges its energy into an EL lamp through a high-voltage H-bridge. Once the voltage reaches its regulated limit, it is turned off to conserve power. The EL lamp is then discharged to ground and the H-bridge changes state to allow the charge pump to charge the EL lamp in the opposite direction.

The EL lamp frequency can be set either by an external resistor, R_{EL} , or by applying an external clock where the clock frequency is divided by 128 to set the EL lamp frequency.


Package Type


Functional Block Diagram

Typical Application Circuit 1

Typical Application Circuit 2

1.0 ELECTRICAL CHARACTERISTICS

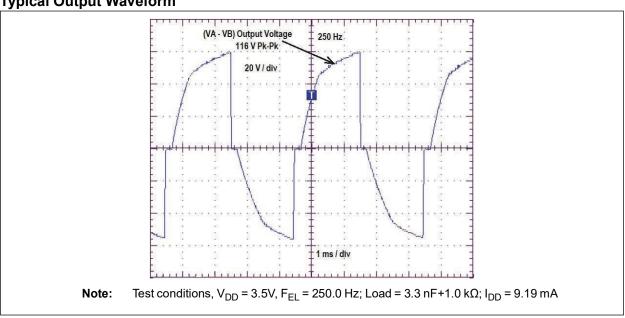
Absolute Maximum Ratings(†)

Supply Voltage, V _{DD}	
Operating Ambient Temperature Range, T _A	
Storage Temperature Range, T _S	
Power Dissipation:	
8-lead MSOP	

RECOMMENDED OPERATING CONDITIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Input Voltage	V _{DD}	3	_	4.2	V	
EL Lamp Frequency	f _{EL}	50	_	500	Hz	
EL Lamp Capacitance	C _{LOAD}	0	_	5	nF	
Operating Ambient Temperature	T _A	-25	_	+85	°C	

ELECTRICAL CHARACTERISTICS


Electrical Specifications: V _{DD} = 3.5V and T _A = 25°C unless otherwise specified.									
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions			
Quiescent Current	I _{DDQ}	_	_	150	nA	EN = 0V			
Peak Output Voltage	V _A or V _B	63	70	77	V	No load			
Peak-to-Peak Output Voltage	V _A –V _B	126	140	154	V	No load			
EL Lamp Frequency	f _{EL}	225	250	275	Hz	REL = 1.65 M Ω or CLK = 32 kHz			
Operating Current	I _{DD}	_	_	16	mA	V _{DD} = 3.5V,			
Peak Output Voltage	V _A or V _B	54	_	74	V	$R_{EL} = 1.5 M\Omega,$			
Peak-to-Peak Output Voltage	V _A –V _B	108	_	148	V	Load = $3.3 \text{ nF} + 1 \text{ k}\Omega$			
EL Lamp Frequency	f _{EL}	250	294	338	Hz	(See Figure 3-1.)			
Output Voltage Rise Time	t _{rout}	1.5	_	_	ms	f _{EL} = 250 Hz, 1 in ² lamp, 10% to 90% of final value			
LOGIC INPUTS									
Input Logic Low Voltage	V _{IL}	0	_	0.5	V				
Input Logic High Voltage	V _{IH}	2	_	V_{DD}	V				
Input Logic Low Current	I _{IL}	_	_	1	μA				
Input Logic High Current	I _{IH}	_	_	1	μA				
Enable Input Rise Time (For Delay Turn-on)	EN _{rise}	0.01	_	10	ms	Using external R-C circuit			
Enable Input Fall Time (For Delay Turn-off)	EN _{fall}	10µ	_	5	s	(See Figure 3-2.)			
Logic Input Capacitance	C _{IN}	_	_	10	pF				

[†] **Notice:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
TEMPERATURE RANGE						
Storage Temperature	T _S	-65	_	+150	°C	
Operating Ambient Temperature	T _A	-25	_	+85	°C	
PACKAGE THERMAL RESISTANCE						
8-lead MSOP	θ_{JA}	_	216	_	°C/W	

Typical Output Waveform

2.0 PIN DESCRIPTION

The details on the pins of HV850 are listed in Table 2-1. Refer to **Package Type** for the location of pins.

TABLE 2-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	VDD	Input supply voltage pin
2	REL	An external resistor to VDD will set the EL lamp frequency. The EL lamp frequency is inversely proportional to the resistor value.
3	EN	Enable input pin. Logic high will turn on the device. An external R-C circuit can be added for a delayed turn-off. Logic low will turn off the device only for V_{DD} = 3.4V to 4.2V. For V_{DD} lower than 3.4V, logic low will not turn off the device.
4	CLKIN	Logic input pin. An external logic clock applied to this pin can be used to set the EL lamp frequency. (See Figure 3-3.) This is useful for applications requiring the EL lamp to be synchronized to a system clock. Connect to ground when not in use.
5	CLKEN	Logic input pin. Logic high will cause the EL lamp frequency to be set by the CLKIN input. Logic low will cause the EL lamp frequency to be set by the external R _{EL} resistor.
6	GND	IC ground pin
7	VB	EL lamp driver output pin. The EL lamp is connected across VA and VB terminals.
8	VA	EL lamp driver output pin. The EL lamp is connected across VA and VB terminals.

3.0 APPLICATION INFORMATION

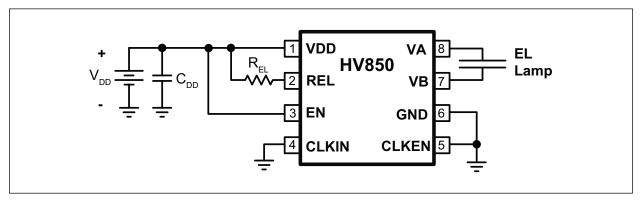
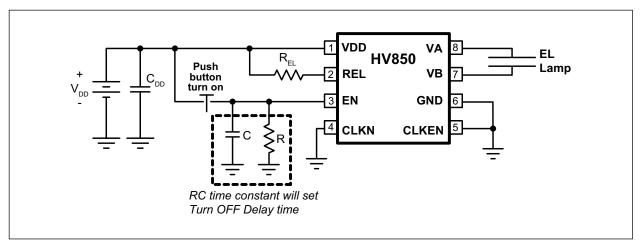


FIGURE 3-1: Typical Application Circuit (without Enable Function).


TABLE 3-1: TYPICAL PARAMETERS

Load (Lamp Equivalent)	R _{EL} (MΩ)	V _{DD} (V)	I _{DD} (mA)	Peak V _A (V)	f _{EL} (Hz)
		3	8.9	53	
3.3 nF + 1 kΩ	1.5	3.5	10.2	61	294
		4	10.4	66	

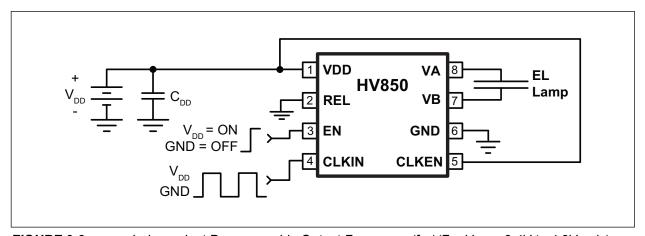

Note 1: $C_{DD} = 2.2 \mu F, 6.3 \text{V low ESR}$

TABLE 3-2: TYPICAL PERFORMANCE

Lamp Size	R _{EL} (MΩ)	V _{DD} (V)	I _{DD} (mA)	Peak V _A (V)	f _{EL} (Hz)	Brightness (cd/m²)
		3	8.4	53		7.31
1	1.65	3.5	9.4	62	250	10.35
		4	9.9	66	1	12.62
		3	5.5	62		11.54
0.5	2	3.5	5.3	68	210	14.33
		4	4.9	68	1	14.9
		3	5.6	62		8.55
1	3.3	3.5	5.4	67	128	10.29
		4	5	68	1	10.94
		3	4.6	64		8.25
0.5	3.3	3.5	4.1	68	128	9.62
		4	3.8	68	1	9.95
		3	4.8	64		6.02
1	4.7	3.5	4.4	68	89	7.5
		4	5	68		10.94

FIGURE 3-2: Push Button Turn-on with Delay Turn-off (For $V_{DD} = 3.4V$ to 4.2V only).

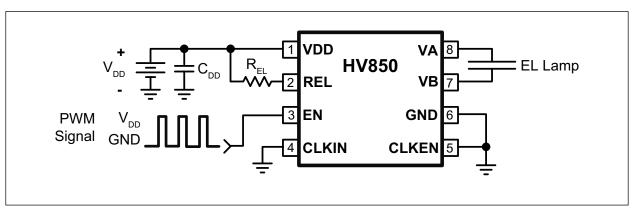


FIGURE 3-3: Independent Programmable Output Frequency (f_{EL}) (For $V_{DD} = 3.4V$ to 4.2V only).

3.1 EL Lamp Dimming Using PWM

EL lamp dimming can be achieved by applying a PWM signal to the Enable pin. The PWM signal duty cycle is proportional to the lamp brightness. This is done by

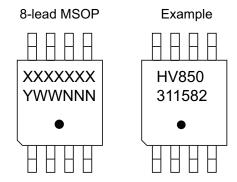

pulse skipping the output pulses. The PWM frequency should be kept below the EL frequency but above 50 Hz to avoid flickering.

FIGURE 3-4: PWM Dimming Circuit (For $V_{DD} = 3.4V$ to 4.2V only).

4.0 PACKAGING INFORMATION

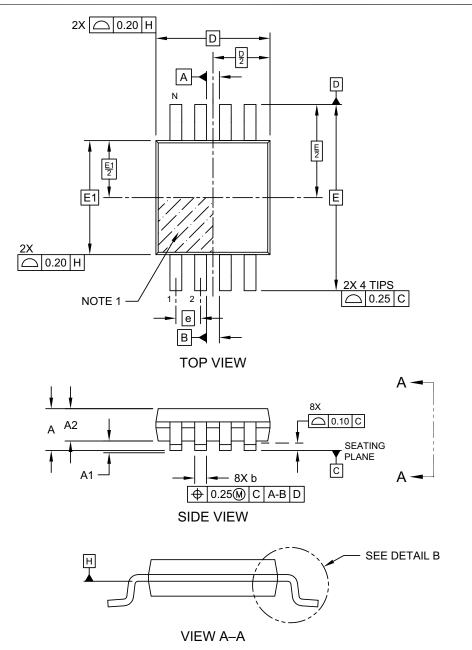
4.1 **Package Marking Information**

Legend: XX...X Product Code or Customer-specific information

> Υ Year code (last digit of calendar year) ΥY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01')

Alphanumeric traceability code NNN

Pb-free JEDEC® designator for Matte Tin (Sn) (e3)

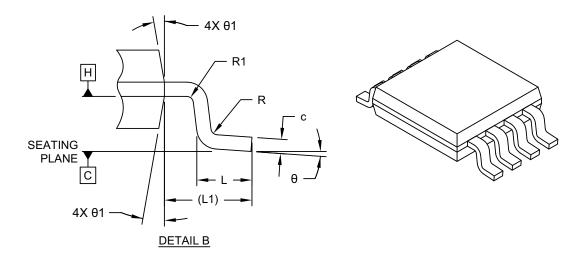

This package is Pb-free. The Pb-free JEDEC designator (@3)

can be found on the outer packaging for this package.

In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

8-Lead Plastic Micro Small Outline Package (A3X) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-111-A3X Rev F Sheet 1 of 2

© 2022 Microchip Technology Inc.

8-Lead Plastic Micro Small Outline Package (A3X) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

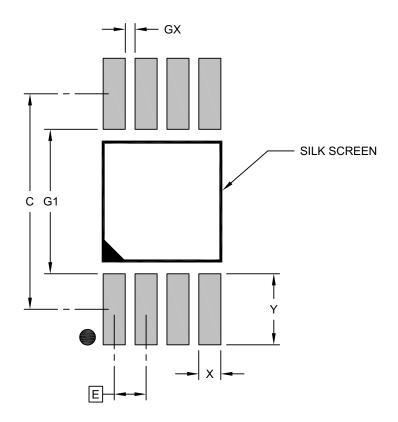
	MILLIMETERS					
	Dimension Limits	MIN	NOM	MAX		
Number of Terminals	N		8			
Pitch	е		0.65 BSC			
Overall Height	А	-	_	1.10		
Standoff	A1	0.00	_	0.15		
Molded Package Thickness	A2	0.75	0.85	0.95		
Overall Length	D	3.00 BSC				
Overall Width	E	4.90 BSC				
Molded Package Width	E1	3.00 BSC				
Terminal Width	b	0.22	_	0.40		
Terminal Thickness	С	0.08	_	0.23		
Terminal Length	L	0.40	0.60	0.80		
Footprint	L1	0.95 REF				
Lead Bend Radius	R	0.07 – –				
Lead Bend Radius	R1	0.07 – –				
Foot Angle	θ	0°	_	8°		
Mold Draft Angle	θ1	5°	_	15°		

Notes:

- Pin 1 visual index feature may vary, but must be located within the hatched area.
 Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111-A3X Rev F Sheet 2 of 2

© 2022 Microchip Technology Inc.

8-Lead Plastic Micro Small Outline Package (A3X) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	Dimension Limits			MAX	
Contact Pitch	0.65 BSC				
Contact Pad Spacing	С		4.40		
Contact Pad Width (X8) X				0.45	
Contact Pad Length (X8)	Υ			1.45	
Contact Pad to Contact Pad (X4)	G1	2.95			
Contact Pad to Contact Pad (X6)	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2111-A3X Rev F

© 2022 Microchip Technology Inc.

APPENDIX A: REVISION HISTORY

Revision A (September 2023)

- Converted Supertex Doc# DSFP-HV850 to Microchip DS20005904A
- Changed the package marking format
- · Updated the package outline drawing
- Made minor text changes throughout the document

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	<u> </u>		- <u>х</u> - <u>х</u>	Ex	ample:	
Device	Package Options		Environmental Media Type	a)	HV850MG-G:	High-Voltage Low-Noise Inductor- less EL Lamp Driver, 2500/Reel
Device:	HV850	=	High-Voltage Low-Noise Inductorless EL Lamp Driver			
Package:	MG	=	8-lead MSOP			
Environmental:	G	=	Lead (Pb)-free/RoHS-compliant Package			
Media Type:	(blank)	=	2500/Reel for an MG Package			

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPlC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-3112-5

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support: http://www.microchip.com/

support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan

Tel: 86-769-8702-9880 China - Guangzhou

Tel: 86-20-8755-8029 China - Hangzhou

Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai

Tel: 86-21-3326-8000 China - Shenyang

Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300 China - Xian

Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040 ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung

Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Thailand - Bangkok

Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100 **EUROPE**

Austria - Wels Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910

Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820 France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820