PIN Silicon Photodiode

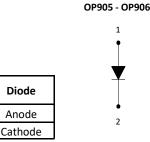
OP905, OP906

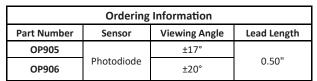
Features:

- Clear epoxy package
- Linear response vs. irradiance
- Fast switching time
- · Narrow receiving angle
- T-1 package style
- Small package style ideal for space-limited applications

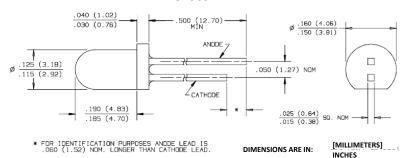
Description:

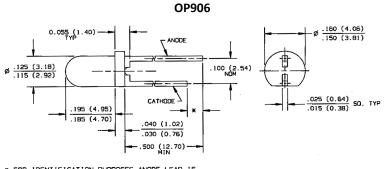
Each **OP905** and **OP906** device consists of a PIN silicon photodiode molded in a clear polysulfone package that allows spectral response from visible to infrared light wavelengths. The T-1 package style is ideal for space-limited applications. Both devices have a narrow receiving angle, which provides excellent on-axis coupling. Both are also 100% production tested using infrared light for close correlation with OPTEK's GaAs and GaAlAs emitters.


Please refer to Application Bulletin 210 for additional thermal design information.


Applications:

- Non-contact reflective object sensor
- Assembly line automation
- Machine automation
- Machine safety
- End of travel sensor
- Door sensor


Pin#


2

OP905

Pb

▼ FOR IDENTIFICATION PURPOSES ANODE LEAD IS .060 (1.52) NOM. LONGER THAN CATHODE LEAD.

DIMENSIONS ARE IN INCHES (MILLIMETERS)

CONTAINS POLYSULFONE

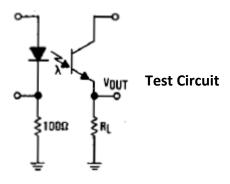
To avoid stress cracking, we suggest using ND Industries' **Vibra-Tite** for thread-locking. **Vibra-Tite** evaporates fast without causing structural failure in OPTEK'S molded plastics.

General Note

TT Electronics | OPTEK Technology 2900 E. Plano Pkwy, Plano, TX 75074 | Ph: +1 972 323 2200 www.ttelectronics.com | sensors@ttelectronics.com OP905, OP906

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

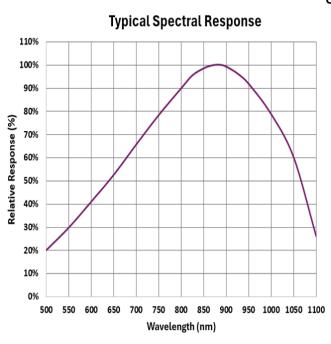

Reverse Breakdown Voltage	60 V
Storage & Operating Temperature Range	-40° C to +100° C
Lead Soldering Temperature [1/16 inch (1.6 mm) from the case for 5 sec. with soldering iron] (1)	260° C
Reverse Breakdown Voltage	60 V
Power Dissipation ⁽²⁾	100 mW

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
I _L ⁽³⁾	Reverse Light Current OP905 OP906	14 16	-	32 35	μΑ	$V_R = 5 \text{ V}, E_E = 0.50 \text{ mW/cm}^2$
I _D ⁽⁴⁾	Reverse Dark Current	-	1	60	nA	$V_R = 30 \text{ V}, E_E = 0$
$V_{(BR)}$	Reverse Breakdown Voltage	60	-	-	V	Ι _R = 100 μΑ
V_{F}	Forward Voltage	-	-	1.2	٧	I _F = 1 mA
C _T	Total Capacitance	-	4	-	pF	V _R = 20 V, E _E = 0, f = 1.0 MHz
t _r	Rise Time	-	5	-	nc	$V_R = 20 \text{ V}, \lambda = 850 \text{ nm}, R_L = 50 \Omega$
t _f	Fall Time	-	5	-	ns	V _R - 20 V, Λ - 650 IIII, K _L = 50 Ω

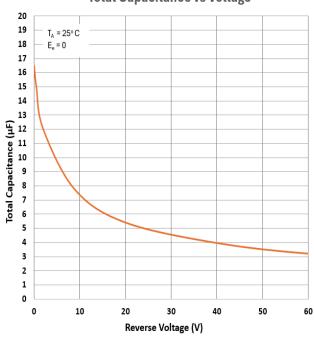
Notes:

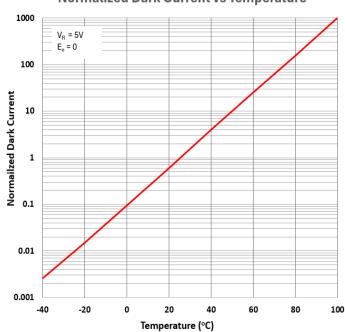
- (1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. A maximum of 20 grams force may be applied to leads when soldering.
- (2) Derate linearly 1.07 mW/° C above 25° C.
- (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935 nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the photodiode being tested. (4) Calculate the typical dark current in nA using the formula $I_D = 10^{(0.042T_A^{-1.5})}$ where T_A is ambient temperature in °C.



PIN Silicon Photodiode

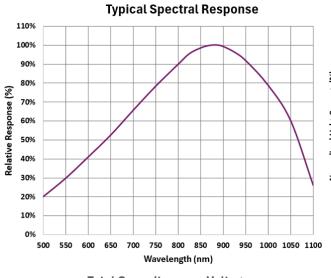

OP905, OP906

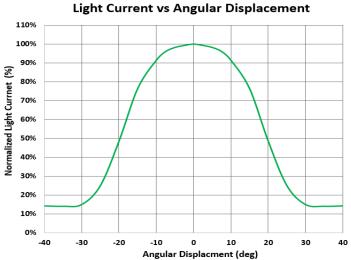

Typical Performance OP905

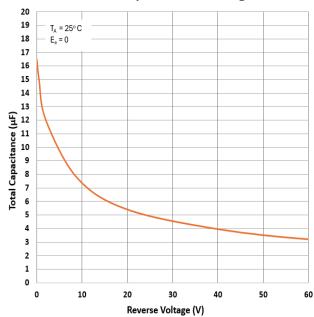

Light Current vs Angular Displacement

Total Capacitance vs Voltage

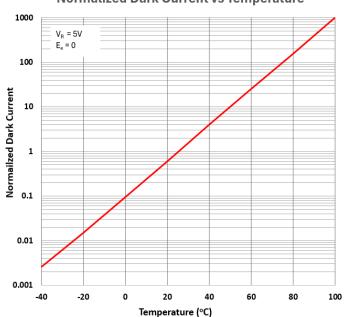
Normalized Dark Current vs Temperature




OP905, OP906


Typical Performance

OP906



Total Capacitance vs Voltage

Normalized Dark Current vs Temperature

