
Introducing the Adafruit WICED Feather
WiFi

Created by lady ada

https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi

Last updated on 2024-06-03 01:52:55 PM EDT

©Adafruit Industries Page 1 of 212

11

14

20

30

33

39

42

46

Table of Contents

Overview

Board Layout
• Pin Multiplexing
• Accessing Pins in Software
• Power Config
• 16 Mbit (2MByte) SPI Flash
• PWM Outputs

Assembly
• Header Options!
• Soldering in Plain Headers
• Prepare the header strip:
• Add the breakout board:
• And Solder!
• Soldering on Female Header
• Tape In Place
• Flip & Tack Solder
• And Solder!

Get the WICED BSP
• Adding Adafruit Board Support
• Add the Adafruit BSP List
• Add the Adafruit WICED BSP
• Upgrading From Earlier WICED BSP Releases (<0.6.0)

Windows Setup
• Install Adafruit Windows Drivers
• Install libusb 0.1 Runtime
• Install Python 2.7
• Testing the Python Installation
• Install Python Tools
• Optional: Install AdaLink
• Setup Problems

OS X Setup
• Install dfu-util
• Install Python Tools
• Optional: Install AdaLink

Linux Setup
• UDEV Setup
• Install dfu-util
• Install Python Tools (BSP <= 0.6.2)
• Optional: Install AdaLink
• External Resources

Arduino IDE Setup
• Board Selection
• Setting the 'Section'
• Selecting the Serial Port

©Adafruit Industries Page 2 of 212

52

58

60

• Optional: Updating the Bootloader
• Compiling your Sketch

System Architecture
• WICED WiFi + RTOS + SDEP = FeatherLib
• Arduino User Code
• Inter Process Communication (SDEP)
• Flash Memory Layout
• User Code (256KB + 20KB SRAM)
• Feather Lib (704 KB + 108KB SRAM)
• Config Data (32KB)
• USB DFU Bootloader (32KB)
• USB Setup
• DFU Mode (Fast Blinky)
• Normal Operating Mode (User Code)
• Flash Updates

WICED Feather API
• AdafruitFeather
• AdafruitTCP
• AdafruitUDP
• AdafruitHTTP
• AdafruitMQTT
• AdafruitAIO
• AdafruitSDEP
• Client API

AdafruitFeather
• AdafruitFeather API
• Firmware Version Management
• char const* bootloaderVersion (void)
• char const* sdkVersion (void)
• char const* firmwareVersion (void)
• char const* arduinoVersion (void)
• Scanning
• int scanNetworks (wl_ap_info_t ap_list[], uint8_t max_ap)
• Connecting
• bool connect (void)
• bool connect (const char *ssid)
• bool connect (const char *ssid, const char *key, int enc_type = ENC_TYPE_AUTO)
• bool begin (void)
• bool begin (const char *ssid)
• bool begin (const char *ssid, const char *key, int enc_type = ENC_TYPE_AUTO)
• void disconnect (void)
• Network and Connection Details
• bool connected (void);
• uint8_t* macAddress (uint8_t *mac);
• uint32_t localIP (void);
• uint32_t subnetMask (void);
• uint32_t gatewayIP (void);
• char* SSID (void);
• int32_t RSSI (void);
• int32_t encryptionType (void);
• uint8_t* BSSID (uint8_t* bssid);
• DNS Lookup
• IPAddress hostByName (const char* hostname)

©Adafruit Industries Page 3 of 212

77

80

• bool hostByName (const char* hostname, IPAddress& result)
• bool hostByName (const String &hostname, IPAddress& result)
• Ping
• uint32_t ping (char const* host)
• uint32_t ping (IPAddress ip)
• Factory Reset
• void factoryReset (void)
• void nvmReset (void)
• Hardware Random Number Generator
• bool randomNumber (uint32_t* random32bit)
• Real Time Clock
• bool getISO8601Time (iso8601_time_t* iso8601_time)
• uint32_t getUtcTime (void)
• TLS Root Certificate Management
• bool useDefaultRootCA (bool enabled)
• bool initRootCA (void)
• bool addRootCA (uint8_t const* root_ca, uint16_t len)
• bool clearRootCA (void)
• Print Helpers
• void printVersions (Print& p = Serial)
• void printNetwork (Print& p = Serial)
• void printEncryption (int32_t enc, Print& p = Serial)

AdafruitFeather: Profiles
• Connecting via Profiles
• Profiles API
• bool saveConnectedProfile (void)
• bool addProfile (char* ssid)
• bool addProfile (char* ssid, char* key, wl_enc_type_t enc_type)
• bool removeProfile (char* ssid)
• void clearProfiles (void)
• char* profileSSID (uint8_t pos);
• int32_t profileEncryptionType (uint8_t pos);

AdafruitTCP
• TCP Socket API
• Packet Buffering
• void usePacketBuffering (bool enable)
• TLS/SSL Certificate Verification
• Verifying Certificates with the WICED Feather (Safer)
• Ignoring Certificate Verification (Easier)
• void tlsRequireVerification (bool required)
• Socket Handler Functions
• void getHandle (void)
• Client API
• int connect (IPAddress ip, uint16_t port)
• int connect (const char * host, uint16_t port)
• int connectSSL (IPAddress ip, uint16_t port)
• int connectSSL (const char* host, uint16_t port)
• uint8_t connected (void)
• void stop (void)
• Stream API
• int read (void)
• int read (uint8_t * buf, size_t size)
• size_t write (uint8_t data)
• size_t write (const uint8_t *content, size_t len)

©Adafruit Industries Page 4 of 212

92

97

105

• int available (void)
• int peek (void)
• void flush (void)
• Callback API
• void setReceivedCallback (tcpcallback_t fp)
• void setDisconnectCallback (tcpcallback_t fp)
• Callback Function Signatures
• Example: Callback Based HTTP Request

AdafruitTCPServer
• Constructor
• Functions
• bool begin (void)
• AdafruitTCP accept (void)
• AdafruitTCP available (void)
• void stop (void)
• void setConnectCallback (tcpserver_callback_t fp)
• Example

AdafruitUDP
• UDP Socket API
• UDP API
• uint8_t begin (uint16_t port)
• void stop (void)
• int beginPacket (IPAddress ip, uint16_t port)
• int beginPacket (const char *host, uint16_t port)
• int endPacket (void)
• int parsePacket (void)
• IPAddress remoteIP (void)
• uint16_t remotePort (void)
• Stream API
• int read (void)
• int read (unsigned char* buffer, size_t len)int read (char* buffer, size_t len)
• int peek (void)
• int available (void)
• void flush (void)
• size_t write (uint8_t byte)
• size_t write (const uint8_t *buffer, size_t size)
• Callback Handlers
• void setReceivedCallback (udpcallback_t fp)
• Examples
• UDP Echo Server

AdafruitHTTP
• AdafruitHTTP API
• HTTP Headers
• bool addHeader (const char* name, const char* value)
• bool clearHeaders (void)
• HTTP GET Requests
• bool get (char const* url)
• bool get (char const* host, char const* url)
• HTTP POST Requests
• bool post (char const* url, char const* encoded_data)
• bool post (char const* host, char const* url, char const* encoded_data)
• HTTP GET Example

©Adafruit Industries Page 5 of 212

110

119

133

140

AdafruitHTTPServer
• AdafruitHTTPServer API
• Constructor
• Adding Pages
• Starting/Stopping the HTTP Server
• Complete Example

AdafruitMQTT
• Constructors
• Functions
• Connection Management
• bool connected(void)
• bool connect (IPAddress ip, uint16_t port = 1883, bool cleanSession = true, uint16_t keepalive_sec =
MQTT_KEEPALIVE_DEFAULT);
• bool connect (const char* host, uint16_t port = 1883, bool cleanSession = true, uint16_t keepalive_sec =
MQTT_KEEPALIVE_DEFAULT);
• bool connectSSL (IPAddress ip, uint16_t port = 8883, bool cleanSession = true, uint16_t keepalive_sec =
MQTT_KEEPALIVE_DEFAULT)
• bool connectSSL (const char* host, uint16_t port = 8883, bool cleanSession = true, uint16_t keepalive_sec =
MQTT_KEEPALIVE_DEFAULT)
• bool disconnect (void)
• Messaging
• bool publish (UTF8String topic, UTF8String message, uint8_t qos = MQTT_QOS_AT_MOST_ONCE, bool
retained = false);
• bool subscribe (const char* topicFilter, uint8_t qos, messageHandler mh);
• bool unsubscribe(const char* topicFilter);
• Last Will
• void will (const char* topic, UTF8String message, uint8_t qos = MQTT_QOS_AT_MOST_ONCE, uint8_t retained
= 0);
• Client ID
• void clientID(const char* client)
• Disconnect Callback
• AdafruitMQTT Example

AdafruitMQTTTopic
• Constructor
• Functions
• void retain (bool on)
• Subscribe Callbacks
• bool subscribe (messageHandler_t mh)
• bool unsubscribe (void)
• bool subscribed (void)
• Publishing Data via 'Print'
• Example

AdafruitAIO
• Constructor
• Functions
• Connecting
• bool connect (bool cleanSession = true, uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT)
• bool connectSSL (bool cleanSession = true, uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT)
• Feed Management
• bool updateFeed (const char* feed, UTF8String message, uint8_t qos=MQTT_QOS_AT_MOST_ONCE, bool
retain=true)
• bool followFeed (const char* feed, uint8_t qos, messageHandler_t mh)
• bool unfollowFeed (const char* feed)

©Adafruit Industries Page 6 of 212

149

153

160

167

169

172

173

176

• Example

AdafruitAIOFeed
• Constructor
• Functions
• bool follow (feedHandler_t fp)
• bool unfollow (void)
• bool followed (void)
• Example

AdafruitTwitter
• 1. Creating a WICED Twitter Application
• Enter the Application Details
• Set the Application Permissions
• Manage the Access Keys
• Copy the Appropriate Key Data
• Create your Access Token
• 2. Using the AdafruitTwitter Class

AdafruitSDEP
• AdafruitSDEP API
• Constructor
• Functions
• sdep
• sdep_n
• Error Handling Functions
• err_t errno (void)
• char const* errstr(void)
• char const* cmdstr (uint16_t cmd_id)
• void err_actions (bool print, bool halt)
• Error Handling Example

Client
• Adapting Client Examples
• 1. Update Header Includes
• 2. Change 'WiFi.*' References to 'Feather.*'
• 3. Change WiFiUDP and WiFiTCP Class Types

Constants
• wl_enc_type_t
• err_t
• wl_ap_info_t

Python Tools
• pyresource.py (Convert static files to C headers)
• pycert.py (Python TLS Certificate Converter)
• feather_dfu.py (Python USB DFU Utility)

pyresource.py
• Usage
• HTTPResource Records
• HTTPResource Collection: resources.h

pycert.py
• Downloading the Root Certificate for a Domain

©Adafruit Industries Page 7 of 212

178

181

182

186

188

189

191

193

195

• Parameters
• Usage
• Converting PEM Files
• Parameters
• Usage

feather_dfu.py
• Commands
• arduino_upgrade
• featherlib_upgrade
• enter_dfu
• info
• factory_reset
• nvm_reset
• reboot

SDEP Commands

Generic
• Reset (0x0001)
• Factory Reset (0x0002)
• Enter DFU Mode (0x0003)
• System Information (0x0004)
• NVM Reset (0x0005)
• Error String (0x0006)
• Generate Random Number (0x0101)

Examples
• Accessing the Examples (Arduino 1.6.5)
• Accessing the Examples (Arduino >= 1.6.8)
• Example Folders
• Making Modifications to the Examples

ScanNetworks
• Setup
• Compile and Flash
• Testing the Sketch

Ping
• Setup
• Compile and Flash
• Testing the Sketch

GetHostByName
• Setup
• Compile and Flash
• Testing the Sketch

HttpGetPolling
• Setup
• Compile and Flash
• Testing the Sketch

HttpGetCallback
• Setup

©Adafruit Industries Page 8 of 212

197

199

202

206

211

• Compile and Flash
• Testing the Sketch

HTTPSLargeData
• Setup
• Compile and Flash
• Testing the Sketch

Throughput
• Setup
• Running Netcat
• Compile and Flash
• Testing the Sketch

FeatherOLED
• Setup
• Compile and Flash
• Testing the Sketch

FAQs

Downloads
• Related Documents
• Schematic
• Fabrication Print

©Adafruit Industries Page 9 of 212

©Adafruit Industries Page 10 of 212

Overview

Feather (https://adafru.it/l7B) is the new development board from Adafruit, and like its
namesake it is thin, light, and lets you fly! We designed Feather to be a new standard
for portable microcontroller cores. This is the Adafruit WICED Feather - it's our most
powerful Feather yet! We have other boards in the Feather family, check'em out
here. (https://adafru.it/l7B)

Say "Hi!" the WICED Feather! Perfect for your next Internet connected project, with a
processor and WiFi core that can take anything you throw at it!

©Adafruit Industries Page 11 of 212

https://www.adafruit.com/feather
https://www.adafruit.com/feather
https://www.adafruit.com/feather

The WICED Feather is based on Broadcom's WICED (Wireless Internet Connectivity
for Embedded Devices) platform, and is paired up with a powerful STM32F205 ARM
Cortex M3 processor running at 120MHz, with support for TLS 1.2 to access sites and
web services safely and securely.

We spent a lot of time adding support for this processor and WiFi chipset to the
Arduino IDE you know and love. Programming doesn't rely on any online or third party
tools to build, flash or run your code. You write your code in the Arduino IDE using
many of the same standard libraries you've always used (Wire, SPI, etc.), compile
locally, and the device is flashed directly from the IDE over USB. Note that this
chipset is not identical to the Arduino standard-supported Atmega series and many
libraries that are written for AVR will not compile or work with WICED!

Since the WICED Feather is based on the standard Adafruit Feather (https://adafru.it/
mf2) layout, you also have instant access to a variety of FeatherWings, as well as all
the usual standard breakouts available from Adafruit or other vendors.

After more than a year of full time effort in the making, we think it's the best and most
flexible WiFi development board out there, and the easiest way to get your TCP/IP-
based project off the ground without sacrificing flexibility or security. We even cooked
in some built-in libraries in the WiFi core, such as TCP client and Server, HTTP client
and server, and MQTT client (with easy Adafruit IO interfacing).

The WICED Feather has the following key features:

Measures 2.0" x 0.9" x 0.28" (51mm x 23mm x 8mm) without headers soldered in•

©Adafruit Industries Page 12 of 212

http://www.adafruit.com/feather

Light as a (large?) feather - 5.7 grams
STM32F205RG (https://adafru.it/m9A) 120MHz ARM Cortex M3 MCU
BCM43362 (https://adafru.it/meC) 802.11b/G/N radio
128KB SRAM and 1024KB flash memory (total)
16KB SRAM and 128KB flash available for user code
16MBit (2MB) SPI flash for additional data storage
Built in Real Time Clock (RTC) with optional external battery supply
Hardware SPI and I2C (including clock-stretching)
12 standard GPIO pins, with additional GPIOs available via SPI, UART and I2C
pins
7 standard PWM outputs, with additional outputs available via SPI, UART and I2C
pins
Up to 8 12-bit ADC inputs
Two 12-bit DAC outputs (Pins A4 and SCK/A5)
Up to 3 UARTs (including one with full HW flow control)
TLS 1.2 support to access secure HTTPS and TCP servers
On board single-cell LIPO charging and battery monitoring
Fast and easy firmware updates to keep your module up to date
Based on the excellent community-supported Maple (https://adafru.it/
mpE) project

Comes fully assembled and tested, with a USB bootloader that lets you quickly use it
with the Arduino IDE. We also toss in some headers so you can solder it in and plug
into a solderless breadboard. Lipoly battery (https://adafru.it/e0v) and MicroUSB
cable (https://adafru.it/aM5) not included (but we do have lots of options in the shop
if you'd like!)

•
•
•
•
•
•
•
•
•

•

•
•
•
•
•
•
•

©Adafruit Industries Page 13 of 212

http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1575/LN1433/PF245094
https://www.broadcom.com/products/wireless-connectivity/wireless-lan/bcm43362
https://github.com/rogerclarkmelbourne/Arduino_STM32
https://www.adafruit.com/categories/138
https://www.adafruit.com/index.php?main_page=adasearch&q=microusb%20cable
https://www.adafruit.com/index.php?main_page=adasearch&q=microusb%20cable

Our learn guide will show you everything you need to know to get your projects
online, and connected to the outside world!

Board Layout

The WICED Feather uses the same standard pinout as the rest of the Feather
family (https://adafru.it/m0b), allowing you to use the same Feather Wings across all
your compatible devices.

It has the standard Feather on board LIPO battery charger (simply connect a LIPO
battery and USB power at the same time), and 3.3V voltage regulation from either
USB or VBAT (the LIPO cell) with automatic switching between power supplies.

Pin Multiplexing
The pins on the WICED Feather can be configured for several different purposes, with
the main config options shown in the illustration below:

©Adafruit Industries Page 14 of 212

https://www.adafruit.com/categories/817
https://www.adafruit.com/categories/817

Accessing Pins in Software

For most pin names, you must append 'P' to the pin name shown on the silk screen.
The table below lists the pin names on the silkscreen and their corresponding macro
in your Arduino code:

©Adafruit Industries Page 15 of 212

Other notable pins defined in feather.h (https://adafru.it/CaM) include:

For further details on the board layout, see the schematic here (https://adafru.it/olE).

Power Config
The WICED Feather can be run from either 5V USB power or a standard ~3.7V LIPO
cell, and includes the ability to charge LIPO cells from USB power when both are
connected at the same time.

Slikscreen

WAKE
C3
C2
A3
A2
A1
SCK
MOSI
MISO
RX
TX
DFU
B5
SWCLK
SWDIO
A4
B4
A15
C7
C5
SCL
SDA

Arduino Code

WAKE or PA0
PC3
PC2
PA3
PA2
PA1
SCK or PA5
MOSI or PA7
MISO or PA6
PA10
PA9
PB3
PB5
PA14
PA13
P14
PB4
PA15
PC7
PC5
PB6
PB7

Note(s)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Main Macro Name

BOARD_LED_PIN

Direct Arduino Pin Name

PA15

©Adafruit Industries Page 16 of 212

https://github.com/adafruit/Adafruit_WICED_Arduino/blob/master/variants/feather/feather.h
file:///home/introducing-the-adafruit-wiced-feather-wifi/downloads#schematic

The following pins are included as part of the WICED Feather's power system:

3V: The output of the on-board 3.3V 600mA voltage regulator
RTC: The input for the realt-time clock (RTC) on the STM32F205 (optional)
GND: The common/GND pin which should be connect to GND on any other
boards you use
BAT: The input for the 3.7V LIPO cell
EN: The 'EN' switch for the 3.3V voltage regulator. Set this to GND to disable
power.
VUSB: The 5V USB power input (USB VBUS)
A1: This pin is optionally connected to a 10K+10K voltage divider that allows you
to safely measure the output of the LIPO cell using the internal ADC (analog to
digital converter).

LIPO Cell Power Monitoring (A1)

The LIPO battery level can optionally be monitored via a voltage divider configured
on ADC pin A1.

To enable the 10K + 10K voltage divider (which will divide the LIPO voltage levels in
half so that the ADC pin can safely read them), you need to solder shut the BATADC
solder jumper on the bottom of the PCB:

•
•
•

•
•

•
•

©Adafruit Industries Page 17 of 212

This will allow you to read the voltage level of the LIPO cell using pin A1 where each
value on the ADC is equal to 0.80566mV since:

3300mV / 4096 (12-bit ADC) = 0.80566406mV per LSB

You need to double the calculated voltage to compensate for the 10K+10K voltage
divider, so in reality every value from the ADC is equal to 1.61133mV on the LIPO cell,
although it appears on the ADC at half that level.

16 Mbit (2MByte) SPI Flash
The WICED Feather contains an optional (default = off) 16MBit SPI flash chip that is
controlled by FeatherLib.

In order to keep the maximum number of pins available to customers, the SPI flash is
disabled by default, but can be enabled with USB Mass Storage support so that you
can access the contents on the flash memory from your PC to easily exchange data
and files. Simply solder the SPIFCS solder jumper on the bottom of the device closed,
and make sure you are running FeatherLib version 0.6.0 or higher to enabled flash
and USB mass storage support.

•

The 16MBit SPI Flash is enabled starting with FeatherLib 0.6.0. Please make sure
you are running a recent version of FeatherLib when working with the external
flash memory.

The SPI3 bus used for SPI flash is controlled by FeatherLib, and the four pins
shown below should be avoided in your own sketches when SPI Flash is enabled
in a future FeatherLib release.

©Adafruit Industries Page 18 of 212

SPI flash is disabled by default. It can be enabled by soldering the SPIFCS (A4) solder
jumper on the back of the PCB closed before powering the board up, which will
connect the CS/SSEL of the SPI flash to pin A4:

PWM Outputs
Pins that can be used as PWM outputs are marked with a tilde character ('~') on the
silk screen.

The timers associated with specific PWM outputs are listed below. These timers are
important since all PWM outputs on the same HW timer will use the same period or
pulse width. This means that if you set the pulse width for PA1, which uses HW Timer
5, this will also set the pulse width for PA2 and PA3 which use the same timer
peripheral block.

©Adafruit Industries Page 19 of 212

Assembly
We ship Feathers fully tested but without headers attached - this gives you the most
flexibility on choosing how to use and configure your Feather

Header Options!
Before you go gung-ho on soldering, there's a few options to consider!

Pin Name

PA1

PA2

PA3

PA15

PB4

PB5

PC7

HW Timer

Timer 5

Timer 5

Timer 5

Timer 2

Timer 3

Timer 3

Timer 8

Notes

Status LED

©Adafruit Industries Page 20 of 212

The first option is soldering in plain male
headers, this lets you plug in the Feather
into a solderless breadboard

©Adafruit Industries Page 21 of 212

https://learn.adafruit.com//assets/30192
https://learn.adafruit.com//assets/30192
https://learn.adafruit.com//assets/30201
https://learn.adafruit.com//assets/30201

Another option is to go with socket female
headers. This won't let you plug the
Feather into a breadboard but it will let
you attach featherwings very easily

A few Feather boards require access to
top-side components like buttons or
connectors, making stacking impractical.
Sometimes you can stack in the opposite
order—FeatherWing underneath—or, if
both Feather and Wing require top-side
access, place the boards side-by-side with
a FeatherWing Doubler (http://adafru.it/
2890) or Tripler (http://adafru.it/3417).

©Adafruit Industries Page 22 of 212

https://learn.adafruit.com//assets/30195
https://learn.adafruit.com//assets/30195
https://learn.adafruit.com//assets/30196
https://learn.adafruit.com//assets/30196
https://learn.adafruit.com//assets/117300
https://learn.adafruit.com//assets/117300
https://www.adafruit.com/product/2890
https://www.adafruit.com/product/3417

We also have 'slim' versions of the female
headers, that are a little shorter and give a
more compact shape

©Adafruit Industries Page 23 of 212

https://learn.adafruit.com//assets/30197
https://learn.adafruit.com//assets/30197
https://learn.adafruit.com//assets/30198
https://learn.adafruit.com//assets/30198

Finally, there's the "Stacking Header"
option. This one is sort of the best-of-both-
worlds. You get the ability to plug into a
solderless breadboard and plug a
featherwing on top. But its a little bulky

Soldering in Plain Headers

Prepare the header strip:
Cut the strip to length if necessary. It will
be easier to solder if you insert it into a
breadboard - long pins down

©Adafruit Industries Page 24 of 212

https://learn.adafruit.com//assets/30199
https://learn.adafruit.com//assets/30199
https://learn.adafruit.com//assets/30200
https://learn.adafruit.com//assets/30200
https://learn.adafruit.com//assets/30183
https://learn.adafruit.com//assets/30183

Add the breakout board:
Place the breakout board over the pins so
that the short pins poke through the
breakout pads

And Solder!
Be sure to solder all pins for reliable
electrical contact.

(For tips on soldering, be sure to check out
our Guide to Excellent Soldering (https://
adafru.it/aTk)).

©Adafruit Industries Page 25 of 212

https://learn.adafruit.com//assets/30184
https://learn.adafruit.com//assets/30184
https://learn.adafruit.com//assets/30185
https://learn.adafruit.com//assets/30185
https://learn.adafruit.com//assets/30186
https://learn.adafruit.com//assets/30186
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

Solder the other strip as well.

©Adafruit Industries Page 26 of 212

https://learn.adafruit.com//assets/30187
https://learn.adafruit.com//assets/30187
https://learn.adafruit.com//assets/30188
https://learn.adafruit.com//assets/30188
https://learn.adafruit.com//assets/30189
https://learn.adafruit.com//assets/30189

You're done! Check your solder joints
visually and continue onto the next steps

Soldering on Female Header

Tape In Place
For sockets you'll want to tape them in
place so when you flip over the board they
don't fall out

©Adafruit Industries Page 27 of 212

https://learn.adafruit.com//assets/30190
https://learn.adafruit.com//assets/30190
https://learn.adafruit.com//assets/30203
https://learn.adafruit.com//assets/30203

Flip & Tack Solder
After flipping over, solder one or two
points on each strip, to 'tack' the header in
place

©Adafruit Industries Page 28 of 212

https://learn.adafruit.com//assets/30204
https://learn.adafruit.com//assets/30204
https://learn.adafruit.com//assets/30205
https://learn.adafruit.com//assets/30205
https://learn.adafruit.com//assets/30206
https://learn.adafruit.com//assets/30206

And Solder!
Be sure to solder all pins for reliable
electrical contact.

(For tips on soldering, be sure to check out
our Guide to Excellent Soldering (https://
adafru.it/aTk)).

©Adafruit Industries Page 29 of 212

https://learn.adafruit.com//assets/30207
https://learn.adafruit.com//assets/30207
https://learn.adafruit.com//assets/30208
https://learn.adafruit.com//assets/30208
https://learn.adafruit.com//assets/30209
https://learn.adafruit.com//assets/30209
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

You're done! Check your solder joints
visually and continue onto the next steps

Get the WICED BSP

To use the WICED Feather, you first need to install a board support package (BSP) that
includes all the classes, drivers and example code that make it possible to create
projects that can talk to the STM32F205 MCU and Broadcom radio. This guide will
walk you through the process of getting the BSP setup on your development
machine.

The WICED BSP installation procedure for 0.6.0 and higher is completely
different than the manual installation procedure from earlier versions. See the
notes at the bottom of this page if you are upgrading.

This guide is based on Arduino 1.6.5 or higher. You will need a similar version of
the Arduino IDE to follow this guide, which was tested with 1.6.11.

©Adafruit Industries Page 30 of 212

https://learn.adafruit.com//assets/30210
https://learn.adafruit.com//assets/30210
https://learn.adafruit.com//assets/30211
https://learn.adafruit.com//assets/30211

Adding Adafruit Board Support
The first thing you will need to do is start the IDE and navigate to the Preferences
menu. You can access it from the File menu in Windows or Linux, or the Arduino
menu on OS X.

A dialog like this will pop up:

We will be adding a URL to the new Additional Boards Manager URLs option. The list
of URLs is comma separated, and you will only have to add each URL once. New
Adafruit boards and updates to existing boards will automatically be picked up by the
Board Manager each time it is opened. The URLs point to index files that the Board
Manager uses to build the list of available & installed boards.

Add the Adafruit BSP List

We will only need to add one URL to the IDE in this example, but you can add multiple
URLS by separating them with commas. Copy and paste the link below into
the Additional Boards Manager URLs option in the Arduino IDE preferences.

https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

You should see something like this:

If you don't see the Additional Boards Manager URLs box, make sure you
downloaded the Arduino IDE from arduino.cc! Older versions and derivatives of
the IDE may not have it

©Adafruit Industries Page 31 of 212

Click OK to save the new preference settings. Next we will look at installing boards
with the Board Manager.

Add the Adafruit WICED BSP

Adding the link to the Adafruit board support package does not actually install
anything, it only tells the Arduino IDE where to find the software.

Now that you have added the appropriate URLs to the Arduino IDE preferences, you
can open the Boards Manager by navigating to the Tools->Board menu item.

Once the Board Manager opens, click on the category drop down menu on the top
left hand side of the window and select Contributed. You will then be able to select
and install the boards supplied by the URLs added to the prefrences.

Find the example named Adafruit WICED from the list and click the Install button:

Next, quit and reopen the Arduino IDE to ensure that all of the boards are properly
installed. You should now be able to see the new boards listed in the Tools->Board
menu.

Finally follow the OS specific steps in this guide for your platform to finish the
installation - basically installing drivers and permissions management.

©Adafruit Industries Page 32 of 212

Upgrading From Earlier WICED BSP
Releases (<0.6.0)
If you are using an earlier version of the WICED SDK (< 0.6.0), you will need to remove
the old files from the /hardware/Adafruit_WICED_Arduino folder before starting
this guide. You may also need to delete the ' arduino15/staging ' dir in the Arduino
installation folder before the BSP appears.

Windows Setup
To setup the WICED Feather on Windows, the following steps are necessary:

Install Adafruit Windows Drivers
If you are using a Windows based system, you will need to install a set of drivers for
the USB DFU, USB CDC and other USB interfaces used by the WICED Feather to
perform fimware updates and communicate with the device.

Adafruit provides a convenient Adafruit Windows Drivers (https://adafru.it/
mb8) installer that takes care of the details for you. Simply download and install the
package below:

Visit the Adafruit Windows Drivers
download page

https://adafru.it/mb8

This page assumes you have already installed the WICED Feather BSP, as
detailed earlier in this guide.

©Adafruit Industries Page 33 of 212

https://github.com/adafruit/Adafruit_Windows_Drivers/releases
https://github.com/adafruit/Adafruit_Windows_Drivers/releases

Once the installation process is complete, you should be able to plug your WICED
Feather into your system and it will be recognized thanks to the signed drivers you
just installed.

Install libusb 0.1 Runtime
To use libusb (which is required to communicate with the WICED Feather), you will
first need to install a pre-compiled libusb runtime.

You can install this by downloading and running libusb-win32 driver (https://adafru.it/
mb9), taking care to select the file named libusb-win32-devel-filter-1.2.6.0.exe.

Download libusb-win32-devel-
filter-1.2.6.0.exe from SourceForge

https://adafru.it/mba

Make sure to DISABLE the 'Launch filter installer wizard' option at the end of the
installation process!

©Adafruit Industries Page 34 of 212

https://sourceforge.net/projects/libusb-win32/?source=typ_redirect
https://sourceforge.net/projects/libusb-win32/files/libusb-win32-releases/1.2.6.0/libusb-win32-devel-filter-1.2.6.0.exe/download

Install Python 2.7
Python is used by the WICED Feather for a number of cross-platform tools and scripts,
meaning that you will need to install Python 2.7 (https://adafru.it/mbb) (ideally 2.7.9 or
higher) on your system in order to communicate with the board.

Depending on whether you are running a 32-bit (x86) or a 64-bit (AMD x64) version of
Windows, download the installer linked below and start the installation process:

Click here to download the Python
2.7.11 Windows 32-bit (x86) Installer

https://adafru.it/mbc

Click here to download the Python
2.7.11 Windows 64-bit (AMD x64)

Installer
https://adafru.it/mbd

During the installation process make sure that you enable the option to add Python to
the system path (the option is disabled by default). This is required for the Arduino
IDE to be able to access the python scripts it needs to communicate with the WICED
Feather:

©Adafruit Industries Page 35 of 212

https://www.python.org/downloads/release/python-2711/
https://www.python.org/ftp/python/2.7.11/python-2.7.11.msi
https://www.python.org/ftp/python/2.7.11/python-2.7.11.amd64.msi

Testing the Python Installation

Once the installer is finished you can open the command line and enter the following
command to test the availability of Python on your system:

python --version

You should see something like this:

Python 2.7.11

Install Python Tools

The WICED Feather BSP uses a few Python based tools to allow the Arduino IDE to
talk to the hardware in a platform-independent manner (specifically tools/source/
feather_dfu/feather_dfu.py).

To use these Python tools, you will need a few additional libraries to make the python
scripts work.

Update: Recent versions of the BSP now include a pre-compiled version of the
feather_dfu tool in the '/tools/win32-x86/feather_dfu' folder, which should run on
most systems once the libusb dependencies above are installed. You will still
need python for the pycert tool though.

©Adafruit Industries Page 36 of 212

Running the following command from the command line will install these
dependencies:

pip install --pre pyusb
pip install click

This will display some basic progress data on the installation process, and you should
end up with something resembling the following output:

C:\Users\me>pip install --pre pyusb
Collecting pyusb
 Downloading pyusb-1.0.0rc1.tar.gz (53kB)
 100% |################################| 57kB 1.3MB/s
Installing collected packages: pyusb
 Running setup.py install for pyusb
Successfully installed pyusb-1.0.0rc1

Testing the Installation

You can test if Python is setup correctly by going to the '/tools/source/feather_dfu'
folder in the WICED Feather BSP and running the following command with the WICED
Feather connected:

cd \tools\source\feather_dfu
python feather_dfu.py info

This should display something resembling the following output:

Feather
ST32F205RGY
353231313533470E00420037
FF:FF:FF:FF:FF:FF
1.0.0
3.5.2
0.5.0
0.5.0
Mar 8 2016

This step assumes you have already installed the Arduino IDE and the WICED
Feather BSP, detailed earlier in this learning guide.

If you don't see any output when running this tool and you are using a new
board, you may need to flash a user sketch to the module via the Arduino IDE.
See the 'Arduino IDE Setup' page in this guide for details on how to flash a user
sketch.

©Adafruit Industries Page 37 of 212

Optional: Install AdaLink
If you ever need to reflash the USB DFU bootloader on the WICED Feather (which will
require either a Segger J-Link (http://adafru.it/1369) or an STLink/V2 (http://adafru.it/
2548)), you will also need to install a utility called AdaLink (https://adafru.it/fPq).

AdaLink acts as a simple python-based abstraction layer between various HW
debuggers, and the different ARM MCU families that we use at Adafruit.

For installation instructions on AdaLink see the Readme file (https://adafru.it/fPq) in
the git repository.

Setup Problems
If you are having problems after running through all of the setup steps above, you
may find the following information useful:

I can get my device in DFU mode (fast blinky on the red
LED), but the two USB CDC (COM) ports never enumerate.
I have the USB drivers installed, though. What's wrong?

On Windows, you can check if the device is enumerating properly with the
following free tool: http://www.nirsoft.net/utils/usb_devices_view.html (https://
adafru.it/w4e)

If everything is working correctly, and the WICED Feather is plugged in and
enumerating properly, the 'Adafruit Industries' devices will be highlighted in green:

If your board isn't connected, the Adafruit Industries devices options above should
still appear in gray, which means that the drivers are at least installed correctly.

If you can only get your board to work in DFU mode (either every time it starts up, or
by forcing DFU mode by setting the DFU pin to GND and resetting), you probably
need to reflash FeatherLib as well as a valid sketch, which is described in this
FAQ (https://adafru.it/w4A). However, you can also update FeatherLib directly from the
Arduino IDE as follows:

Set the DFU pin to GND on your WICED Feather•

©Adafruit Industries Page 38 of 212

https://www.adafruit.com/product/1369
https://www.adafruit.com/products/2548
https://github.com/adafruit/Adafruit_Adalink
https://github.com/adafruit/Adafruit_Adalink
http://www.nirsoft.net/utils/usb_devices_view.html
file:///home/introducing-the-adafruit-wiced-feather-wifi/faqs#faq-6
file:///home/introducing-the-adafruit-wiced-feather-wifi/faqs#faq-6

Reset the device with DFU connected to GND, which will force it to enter USB
DFU mode, and you should see a fast blinky pattern on the RED LED, indicating
that you are in DFU mode.
Disconnect the DFU pin from GND.
With Adafruit WICED Feather selected as the Board Target, changed the section
to Feather Lib (Release).
Now compile any simple sketch, and flash it to the device. This will compile the
sketch, but Feather Lib will actually be flashed, not the sketch you just compiled.
Once the flashing process is done, change the section back to User Code and
then flash your sketch again, which will now flash a simple sketch. A blinky
example is best since you can see the results.
When you reset your device, you should now have an updated FeatherLib as
well as a valid user sketch, meaning that the two USB CDC ports can enumerate,
since a valid code entry point has been found in the valid user sketch.

If you continue to have problems, please post to the Adafruit Support Forum (https://
adafru.it/dYq) with the following information:

A screenshot from the USB Device View tool showing the Adafruit Industries
entries if present (to validate driver installation)
Indicate whether you can successfully enter DFU mode by connected the DFU
pin to GND and resetting.
The results of running the dfu-util -l command with the WICED Feather
connected, which will let us know if the USB DFU device was detected

OS X Setup
To setup the WICED Feather on OS X, the following steps are necessary:

Install dfu-util
The WICED Feather uses USB DFU to perform firmware updates from the Arduino
IDE. To enable to Arduino IDE to talk to the board you will need to install dfu-util.

The easiest way to install dfu-util is to use homebrew (https://adafru.it/df3), which can
be installed with the following command if it doesn't already exist on your system:

•

•
•

•

•

•

•

•

•

This page assumes you have already installed the WICED Feather BSP, as
detailed earlier in this guide.

©Adafruit Industries Page 39 of 212

https://forums.adafruit.com/
http://brew.sh/

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
master/install)"

Once homebrew is installed you can install dfu-util from the command line with the
following command:

brew install dfu-util

Testing the Installation

You can check if dfu-util was installed correctly by running the following command
with the WICED Feather connected:

dfu-util --list

This should give you results resembling the following output:

dfu-util 0.8

Copyright 2005-2009 Weston Schmidt, Harald Welte and OpenMoko Inc.
Copyright 2010-2014 Tormod Volden and Stefan Schmidt
This program is Free Software and has ABSOLUTELY NO WARRANTY
Please report bugs to dfu-util@lists.gnumonks.org

Deducing device DFU version from functional descriptor length
Found DFU: [239a:0008] ver=0200, devnum=12, cfg=1, intf=0, alt=0, name="@Internal
Flash /0x08000000/02*016Ka,02*016Kg,01*064Kg,07*128Kg", serial="00000000001C"

Install Python Tools
The WICED Feather BSP uses a few Python based tools (see the tools/ folder for
details).

To use these Python tools, you will need to have Python available on your system
(which OS X does by default), but you will also need a few additional libraries to make
the Python scripts work.

You will also need the pip utility (https://adafru.it/19KF) if it is not already on your
system.

Make sure your board is in DFU mode before running this command. You can
enter DFU mode by double-clicking the RESET button quickly, or by setting the
DFU pin to GND at startup. You'll know that are in DFU mode because the status
LED will blink at a 5Hz rate.

©Adafruit Industries Page 40 of 212

https://pypi.org/project/pip/

Running the following command from the command line will install these
dependencies:

On versions of OS X from 10.11.5 onward run ...
sudo pip install pyusb
sudo pip install click

On versions of 0S X before 10.11.5 run ...
sudo pip install --pre pyusb
sudo pip install click

Testing the Installation

You can test if Python is setup correctly by going to the '/tools/source' folder in the
WICED Feather BSP and running the following command with the WICED Feather
connected:

cd tools/source/feather_dfu
python feather_dfu.py info

This should display something resembling the following output:

Feather
ST32F205RGY
353231313533470E00420037
FF:FF:FF:FF:FF:FF
1.0.0
3.5.2
0.5.0
0.5.0
Mar 8 2016

Depending on your system setup you may need to run the pip commands with
'sudo'

If you get an error like '-bash: pip: command not found' you can install pip via
'sudo easy_install pip'

As of BSP release 0.6.5 and higher the feather_dfu Python tool has been
converted to a binary tool called wiced_dfu, and the section below should only
be followed on earlier versions of the BSP. Version 0.6.5 and higher ship with pre-
compiled versions of wiced_dfu, or you can build the binary yourself using the
makefile in the tools/wiced_dfu folder.

©Adafruit Industries Page 41 of 212

Optional: Install AdaLink
If you ever need to reflash the USB DFU bootloader on the WICED Feather (which will
require either a Segger J-Link (http://adafru.it/1369) or an STLink/V2 (http://adafru.it/
2548)), you will also need to install a utility called AdaLink (https://adafru.it/fPq).

AdaLink acts as a simple python-based abstraction layer between various HW
debuggers, and the different ARM MCU families that we use at Adafruit.

For installation instructions on AdaLink see the Readme file (https://adafru.it/fPq) in
the git repository.

Linux Setup
To setup the WICED Feather on Linux (Ubuntu 14.04 was used here) the following
steps are necessary:

UDEV Setup
On Linux you will need to add a small udev rule to make the WICED board available to
non-root users. If you don't have this rule then you'll see permission errors from the
Arduino IDE when it attempts to program the board.

Create or edit a file called /etc/udev/rules.d/99-adafruit-boards.rules and add the
following lines:

This file is used to gain permission for the WICED Feather module
Copy this file to /etc/udev/rules.d/

ACTION!="add|change", GOTO="adafruit_rules_end"
SUBSYSTEM!="usb|tty|hidraw", GOTO="adafruit_rules_end"

Please keep this list sorted by VID:PID

WICED Feather in DFU mode
ATTRS{idVendor}=="239a", ATTRS{idProduct}=="0008", MODE="664", GROUP="plugdev"

WICED Feather in Application mode
ATTRS{idVendor}=="239a", ATTRS{idProduct}=="0010", MODE="664", GROUP="plugdev"
ATTRS{idVendor}=="239a", ATTRS{idProduct}=="8010", MODE="664", GROUP="plugdev"

LABEL="adafruit_rules_end"

PID 0008 = DFU Mode, 0010 = Application Mode/CDC, 8010 = Application Mode/
CDC + USB Mass Storage

©Adafruit Industries Page 42 of 212

https://www.adafruit.com/product/1369
https://www.adafruit.com/products/2548
https://github.com/adafruit/Adafruit_Adalink
https://github.com/adafruit/Adafruit_Adalink

Depending on your distribution you might need to change GROUP="plugdev" to a
different value like "users" or "dialout" . The dialout group should work for
Ubuntu.

Then restart udev with:

sudo restart udev

Or on systemd-based systems like the latest Debian or Ubuntu 15.04+ restart udev
with:

sudo systemctl restart udev

Install dfu-util
The WICED Feather uses USB DFU to perform firmware updates from the Arduino
IDE. To enable to Arduino IDE to talk to the board you will need to install dfu-util.

Many Linux distributions include a binary version of dfu-util in their package
management system, but they are often out of date and lower than the 0.8 version
required by the WICED Feather.

If you are using Ubuntu 15.04 or higher, you can install dfu-util 0.8 via the following
command:

sudo apt-get install dfu-util

If you are using an older version of Ubuntu or if ' dfu-util -v ' displays an older
version like 0.5 you will need to buid dfu-util from source, as described below.

Building dfu-util From Source (Ubuntu 14.04 etc.)

Ubuntu 14.04 and several other distributions use dfu-util 0.5 which is too old for the
WICED Feather (which requires dfu-util version 0.8 or higher).

To build dfu-util from source run the following commands (Ubuntu 14.04 is assumed
here), first install the required build dependencies:

sudo apt-get install git
sudo apt-get build-dep dfu-util
sudo apt-get install libusb-1.0-0-dev

©Adafruit Industries Page 43 of 212

Then download the git repo containing the dfu-util source:

git clone https://git.code.sf.net/p/dfu-util/dfu-util
cd dfu-util

Then build the dfu-util from source:

./autogen.sh

./configure # on most systems
make

You can then install and verify dfu-util via the following commands, which should show
version 0.8 or 0.9 for dfu-util:

sudo make install
hash -r
dfu-util -V

Testing the Installation

You can check if dfu-util was installed correctly by running the following command
with the WICED Feather connected:

dfu-util --list

This should give you the following output:

dfu-util 0.9

Copyright 2005-2009 Weston Schmidt, Harald Welte and OpenMoko Inc.
Copyright 2010-2016 Tormod Volden and Stefan Schmidt
This program is Free Software and has ABSOLUTELY NO WARRANTY
Please report bugs to http://sourceforge.net/p/dfu-util/tickets/

Found DFU: [239a:0008] ver=0200, devnum=6, cfg=1, intf=0, path="2-1", alt=0,
name="@Internal Flash /0x08000000/02*016Ka,02*016Kg,01*064Kg,07*128Kg",
serial="00000000001C"

Install Python Tools (BSP <= 0.6.2)
As of BSP release 0.6.5 and higher the feather_dfu Python tool has been
converted to a binary tool called wiced_dfu, and the section below should only
be followed on earlier versions of the BSP. Version 0.6.5 and higher ship with pre-
compiled versions of wiced_dfu, or you can build the binary yourself using the
makefile in the tools/wiced_dfu folder.

©Adafruit Industries Page 44 of 212

The WICED Feather BSP uses a few Python based tools to allow the Arduino IDE to
talk to the hardware in a platform-independent manner (specifically tools/feather_dfu/
feather_dfu.py).

To use these Python tools, you will need to have Python available on your system
(which most Linux distributions do by default), but you will also need a few additional
libraries to make the python scripts work.

Running the following command from the command line will install these
dependencies:

sudo pip install --pre pyusb
sudo pip install click

Testing the Installation

You can test if Python is setup correctly by going to the '/tools/feather_dfu' folder in
the WICED Feather BSP and running the following command with the WICED Feather
connected:

cd tools/feather_dfu
sudo python feather_dfu.py info

This should display something resembling the following output:

Feather
ST32F205RGY
353231313533470E00420037
FF:FF:FF:FF:FF:FF
1.0.0
3.5.2
0.5.0
0.5.0
Mar 8 2016

Optional: Install AdaLink
If you ever need to reflash the USB DFU bootloader on the WICED Feather (which will
require either a Segger J-Link (http://adafru.it/1369) or an STLink/V2 (http://adafru.it/
2548)), you will also need to install a utility called AdaLink (https://adafru.it/fPq).

AdaLink acts as a simple python-based abstraction layer between various HW
debuggers, and the different ARM MCU families that we use at Adafruit.

©Adafruit Industries Page 45 of 212

https://www.adafruit.com/product/1369
https://www.adafruit.com/products/2548
https://github.com/adafruit/Adafruit_Adalink

For installation instructions on AdaLink see the Readme file (https://adafru.it/fPq) in
the git repository.

External Resources
For further details on setting up Linux for the WICED Feather see the following links:

Adafruit Feather WICED and Ubuntu 14.04 (https://adafru.it/mRc)

Arduino IDE Setup
Once you have the WICED Feather board support package set up -- as described in
Get the WICED BSP (https://adafru.it/rod) earlier in this guide -- you can start
compiling code against FeatherLib or update the firmware on your device directly
from the Arduino IDE.

To make sure that the Arduino IDE has access to all of the tools, libraries and config
data it needs, however, you will first need to make some adjustments in the IDE:

Board Selection
The first thing to do (assuming that you already have the WICED BSP installed on your
system, as describe in Get the WICED BSP earlier in this guide!) is to make sure that
you have Adafruit WICED Feather selected as the Board target.

To change the board target, simply click the Tools > Board menu item and then
select Adafruit WICED Feather under the 'Adafruit Feather Boards' heading:

•

Selecting the right board target is critical since the board target is what causes
the FeatherLib support files to be included as part of the build process!

©Adafruit Industries Page 46 of 212

https://github.com/adafruit/Adafruit_Adalink
http://x10linux.blogspot.com.es/2016/04/adafruit-feather-wiced-and-ubuntu-1404.html
file:///home/introducing-the-adafruit-wiced-feather-wifi/get-the-wiced-bsp

The actual position of the board in your menu will depend on your system setup, but it
should resemble the following image:

Setting the 'Section'
As described in the System Architecture page in this guide, the WICED Feather is
broken up into three separate firmware images: the user code, FeatherLib, and the
USB DFU bootloader.

Each of these firmware images exists in a specific section of the flash memory on the
STM32F205 MCU, and you can switch between the two user-modifiable sections via
the Tools > Section menu:

©Adafruit Industries Page 47 of 212

The following sections are available in the menu:

User Code: This section (which consists of 128KB flash and 16KB SRAM) is where
your user sketches go, which is the project that you compile in the Arduino IDE.
This is the section you will want to use 99% of the time!

Feather Lib: This is the library that contains the low level WiFi stack and security
layer, manage the RTOS (real time operating system) that schedules different
tasks on the system, and does all of the heavy lifting for you. By selecting
'Feather Lib' as the section and then flashing your WICED Feather like you
would for a normal project you can either reflash or update the FeatherLib on
your hardware. If you update the WICED Feather BSP and a new version of
FeatherLib is available, you would do this once to update your device and then
switch back to 'User Code'.

Feather Lib (Release): This will flash the latest release version of
FeatherLib
Feather Lib (Beta): This will flash the latest BETA release of FeatherLib if
one is available. If no BETA version is available, this is generally identical
to the release files. You should check the FeatherLib version numbers to
verify if there is a difference.

Factory Reset: Selecting this 'section' and then flashing your device is a bit of a
hack since it won't actually flash a sketch, but it will use the feather_dfu.py tool
to perform a factory reset on your device in case it went off into the weeds
somehow.
NVM Reset: Similar to the factory reset above, selectiing this section and then
flashing your device will cause the non-volatile config memory on your WICED
Feather to be reset to factory defaults (although the rest of the device, such as
the user code, will be left untouched).

To flash the appropriate code to the device (or perform a factory reset or NVM reset),
you simply need to change the section and click the Sketch > Upload tools menu, or
click the arrow icon in the Arduino IDE (the second icon from the left below):

•

•

◦

◦

•

•

If you select FeatherLib, Factory Reset or NVM Reset (which require no code
compilation themselves) a full project compilation will still take place before
FeatherLib is flashed or a reset is performed. The compiled user code will not be

©Adafruit Industries Page 48 of 212

Selecting the Serial Port
Note: Per the forums (https://adafru.it/ven):

When there is no sketch loaded, the WICED enters DFU mode
automatically, and no comms ports will display.
You do not need comms ports to load a Sketch, just the libusb driver. When
you load a none empty Sketch, featherlib is supposed to now enumerate
the comms ports.
Reload the Feather Lib with a non empty Sketch, then the comms ports will
show up.
So in tools, select "section" "Feather Lib (Release)", and flash it with the
"blink" code loaded in the IDE. If that doesn't work, switch to "User Code"
and now flash "blink".

By default, two USB CDC serial ports will be enumerated with the WICED Feather.
 One serial port will be used for general purpose serial data and is connected to
the Serial Monitor. This is the port you should normally select in the Arduino IDE.

The second port that is enumerated is for basic debugging and for future expansion,
and enumerates a currently unused AT Parser that only supports a very basic set of
commands (for example 'ATI' will return some basic information about the module).

used, but the compilation process can't be avoided due to the nature of sections
in the Arduino IDE.

If you are not seeing a USB CDC port and are using a new WICED board, please
see this FAQ: https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-
wifi/faqs#faq-6

©Adafruit Industries Page 49 of 212

https://forums.adafruit.com/viewtopic.php?f=57&t=95321&p=478637&hilit=wiced+wiced+port#p478726
https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi/faqs#faq-6
https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi/faqs#faq-6

With the right serial port selected (normally the numerically lowest number is the
Serial Monitor COM port, though it´s random and may change from one system to the
next), you can open the Serial Monitor and you can send and receive serial data like
you would with any other Arduino development board.

On Windows, you can verify which COM port corresponds to which function by
opening the Device Manager and examining the list of serial ports. COM35 below is
the Serial Monitor port (WICED Feather Serial) and COM36 is the AT parser port
(WICED Feather ATParser).

©Adafruit Industries Page 50 of 212

Optional: Updating the Bootloader
While you should never have to update the USB DFU bootloader on your WICED
Feather, if you have a Segger J-Link (http://adafru.it/1369) or an STLink/V2 (http://
adafru.it/2548) you can reflash the normally read-only bootloader from within the
Arduino IDE.

A J-Link or STLink is required since this is the only way to talk to the STM32F205 if
the bootloader is somehow erased.

To reflash the bootloader hook the SWDIO, SWCLK, RESET and GND pins up to the
pins of the same name on the WICED Feather (see the JLink or STLink/V2 pinout to
know where to find these pins on your debugger). If you are using a JLink, make sure
to also connect the VTRef pin to 3.3V on the WICED Feather since it needs to know
the logic level for the target device.

Select the appropriate debugger from the Tools > Programmer menu (only the J-Link
or STLink options will work!):

You can then click the Burn Bootloader menu entry and the Arduino IDE will attempt
to use the JLink or STLink (via AdaLink (https://adafru.it/fPq)) to reflash the bootloader
for you.

Compiling your Sketch
At this point you're ready to start flashing your projects to the WICED Feather as you
would with any other Arduino compatible development board!

©Adafruit Industries Page 51 of 212

https://www.adafruit.com/product/1369
https://www.adafruit.com/products/2548
https://github.com/adafruit/Adafruit_Adalink

If you run into any problems, make sure that the WICED Feather BSP is properly
configured, that you have installed the appropriate ARM Cortex M3 toolchain, and that
the IDE is setup with the following values:

Board: Adafruit WICED Feather
Section: User Code
Serial Port: Typically the numerically lowest WICED CDC port, but it should be
set to the COM port that appears as 'WICED Feather Serial' in the Device
Manager on Windows where the order of enumeration may change.

Then just click the 'Upload' arrow icon, and the compilation and USB DFU flashing
process should start, which will result in the following output:

System Architecture
One of the key challenges creating the WICED Feather is that it is based on the
Broadcom WICED WiFi stack, and due to the license terms we're unable to release
any of the source files.

•
•
•

The 'Error during download get_status' message can be ignored and is related to
the USB DFU interface as implemented on the MCU.

©Adafruit Industries Page 52 of 212

This poses a bit of a dilemma since we tested almost every embedded WiFi stack out
there, and WICED easily climbed to the top in terms of features, performance and
reliability. We want that reliability and speed, but we also want to make sure
customers have the flexibility to bring all kind of projects to life as well, without having
to sign restrictive license agreements themselves.

So how do we make this available to customers in a way they can use in the real
world, without signing NDAs themselves?

The answer wasn't obvious at first, but FeatherLib was the end result of a lot of head
scratching and firmware dead ends.

WICED WiFi + RTOS + SDEP = FeatherLib
The proprietary Broadcom WICED WiFi stack is designed around an RTOS (Real Time
Operating System), which handles all of the various tasks involved in WiFi, such as
async data requests, security and cryptography, etc. (If you're not familiar with them,
an RTOS breaks tasks into 'threads', and then shares MCU cycles between those
threads, allowing you to effectively multi-task on a single MCU.)

The RTOS and all of the proprietary Broadcom WiFi stack and code runs behind the
scenes in a binary black box we call the FeatherLib (see the Flash Memory Layout
section below for details). By providing a binary black box, we solve the legal hurdles
of working with WICED, but this still leaves the problem of exposing the WiFi
functionality to end user.

We solved this by essentially 'wrapping' every useful function in the WICED stack with
a custom command (using an in house protocol called SDEP), and then routing these
commands between the Broadcom SDK in FeatherLib and end users. We can freely
expose the source related to the SDEP commands (since we wrote 100% of it), while
still hiding the proprietary Broadcom functions, header files and structs. The lawyers
are happy, and hopefully our customers are too!

By basically reimplementing the entire Broadcom WICED WiFi stack with a new set of
SDEP commands and a more focused custom API, you get access to Broadcom's high
quality stack, without any of the legal headaches. The headaches were all on our
side reimplementing the wheel just to solve a legal problem. :)

©Adafruit Industries Page 53 of 212

Arduino User Code
This left the problem of how to allow users to write code themselves that talks to
FeatherLib via SDEP.

Since FeatherLib runs on an RTOS, we start a single RTOS 'thread' at startup that is
used for the user code. FeatherLib will start the Broadcom WiFi stack, and as part of
that process it also start the 'user code' thread that runs the custom code that you
write and compile in the Arduino IDE.

This custom user code is built in the Arduino IDE like you would for any other MCU,
and gets written into a dedicated section of flash memory with it's own chunk of
SRAM reserved purely for the user code in Arduino land.

This setup allows you to share the MCU processing time between your own code and
the lower level WiFi stack, but the process should normally be invisible to you, and
you never really need to worry about the FeatherLib black box.

Inter Process Communication (SDEP)
Communication between the user code and the Feather lib happens via an in-memory
messaging system, sending and receiving commands using a custom protocol we call
SDEP (Simple Data Exchange Protocol).

An SDEP command is sent to the Feather lib, and a standard response is sent back
and interpretted, allowing the two binary blobs to exist entirely independent of each
other, and be updated separately.

You normally never need to deal with SDEP commands directly since the commands
are all hidden in the public WICED Feather helper classes (AdafruitFeather,
AdafruitHTTP, etc.). These helper classes and functions send the SDEP commands for
you, and convert the responses into meaningful data.

There is a special AdafruitSDEP helper class that allows you to send SDEP commands
directly if the need does every arise, though, and the SDEP commands are all
documented elsewhere in this learning guide.

©Adafruit Industries Page 54 of 212

Flash Memory Layout
To keep things as simple as possible, and to make updates easy, the flash-memory
and SRAM on the STM32F205 MCU is broken up into several Sections, as shown in
the diagram below.

Keeping the sections independent allows you to update the user code without having
to recompile and reflash the rest of the system, significantly speeding up build and
write times.

User Code (256KB + 20KB SRAM)

Your own code ('User Code') will be compiled directly by the Arduino IDE, and has
access to 256KB of flash and 20KB of SRAM.

Feather Lib (704 KB + 108KB SRAM)

The low level WiFi stack from Broadcom ('Feather Lib') is provided as a single pre-
compiled .hex file that gets flashed to a dedicated location in flash memory on the
STM32F205 MCU. Because most of the heavy lifting is done here, it has access to
most of the flash and SRAM.

Earlier versions of the WICED Feather (<0.6.0) only reserved 128KB flash and
16KB SRAM for user code. If you have an older board, just update your
FeatherLib and reset the board to benefit from the new 256KB flash and 20KB
SRAM limit on FeatherLib 0.6.0 and higher.

©Adafruit Industries Page 55 of 212

Config Data (32KB)

Two identical sets of non-volatile config data are stored in this section, and when any
changes are made the bank used is switched to make sure that no data is lost during
the updates. Normally you will never access this memory directly, and this is managed
by the Feather Lib.

USB DFU Bootloader (32KB)

This code runs as soon as your device powers up and starts the Feather Lib, and also
checks if any User Code is available.

This is what allows you to update the User Code or Feather Lib using USB DFU.

The bootloader code itself can be updated from the Arduino IDE as well, but it
requires you have either a Segger J-Link or an STLink/V2 connected to the SWDIO
and SWCLK pins on the WICED Feather, and you will normally never need to update
the bootloader yourself.

USB Setup
The WICED Feather enumerates several USB classes, depending on the operating
mode that the board is in.

DFU Mode (Fast Blinky)

When the WICED Feather is in DFU mode (which you can detect thanks to a fast,
constant rate blinky on the LED), the following USB classes are available:

DFU - Allows you to update the firmware on your board using dfu-util

When running in DFU mode the WICED Feather enumerates with the following VID/
PID values:

VID: 0x239A
PID: 0x0008

•

•
•

©Adafruit Industries Page 56 of 212

Normal Operating Mode (User Code)

When the WICED Feather is running in normal operating mode, meaning it is running
user code, three USB classes are enumerated:

WICED Feather Dummy: Allows SDEP commands to be sent to the WICED
Feather using the USB control endpoint (to force a reset, change operating
modes, etc.). Note that this is actually just a work around to gain access to the
USB control transfer endpoint with libusb since we can't access control transfers
directly, ergo the name 'Dummy'.
Serial Monitor CDC: This USB CDC class is used to handle Serial Monitor input
and output
AT Parser CDC: This (currently unused) USB CDC class enumerates for future
expansion and currently exposes an AT Parser with a very limited set of
commands, but may be repurposed for other uses in the future.

When running in normal operating mode, the WICED Feather will enumerate with the
following VID/PID:

VID: 0x239A
PID: 0x0010

The WICED Feather also contains a currently unused 16 MBit (2MB) SPI Flash that will
be enabled in a future firmware update. When the solder jumper on the bottom of the
WICED Feather is enabled, an addition USB Mass Storage class will enumerate that
points to the SPI flash. This feature is not yet enabled, but when enabled the WICED
Feather will use the following VID/PID combination:

VID: 0x239A
PID: 0x8010

Flash Updates
All flash updates happen using USB DFU. There is no serial bootloader on the
WICED Feather and the USB CDC ports are not required to perform a firmware
update.

•

•

•

•
•

•
•

©Adafruit Industries Page 57 of 212

To perform a firmware update, the 'Enter DFU Mode' SDEP command is sent to the
WICED Feather using the WICED Feather Dummy endpoint, which will cause the
device to reset into DFU mode. At this point, dfu-util will be used to update the flash
contents of the chip with the appropriate firmware image.

WICED Feather API
In order to simplify the most common activities with the WICED Feather, several
helper classes have been added to the board support package.

These helper classes are described below, and detailed explanations of each class
can be found later in this guide.

AdafruitFeather
This is the main class you will use to configure the WICED Feather. It contains
functions to connect or disconnect to an AP, ping another device, set certificate
details when using TLS and HTTPS, as well as a few more specialized commands like
some MQTT commands to use the internal MQTT stack in the WICED Feather WiFi
stack.

For detailed information see: AdafruitFeather (https://adafru.it/
mfa) and AdafruitFeather: Profiles (https://adafru.it/mfb)

AdafruitTCP
The AdafruitTCP class provides helper functions to open, close and work with TCP
based socket connections. There are convenient callback functions for the socket
disconnect events, as well as when data is received, and you can start an open or SSL
based connection.

If FeatherLib is present, but no valid user code is available, the board will go into
DFU mode by default.

Please note that if you have any errors in your user code, such as a blocking
delay that the RTOS task manager can't escape from, you may see problems
enumerating some USB interfaces like CDC. To resolve this problem, simply
flash a valid user sketch and reset the device. USB CDC is not required to flash
firmware images to the board.

©Adafruit Industries Page 58 of 212

file:///home/introducing-the-adafruit-wiced-feather-wifi/adafruitfeather
file:///home/introducing-the-adafruit-wiced-feather-wifi/adafruitfeather-profiles

For detailed information see: AdafruitTCP (https://adafru.it/
mfc) and AdafruitTCPServer (https://adafru.it/mfd)

AdafruitUDP
The AdafruitUDP class provides helper functions to open, close and work with UDP
based socket connections. There is a callback function to handle data receive events.

For detailed information see: AdafruitUDP (https://adafru.it/mfe)

AdafruitHTTP
This class provides a convenient wrapper for the most common HTTP activities,
including a callback for when data is received, and helpers to deal with response
headers and and TLS (for secure HTTPS connections).

For detailed information see: AdafruitHTTP (https://adafru.it/mff)

AdafruitMQTT
This class provides a basic MQTT client, allowing you to connect to remote MQTT
brokers over a standard TCP connection. You can establish open or secure
connections to the MQTT broker, publish to topics, subscribe to up to eight topics
(including using subscribe wildcards like 'adafruit/+' to subscribe to all changes above
'/adafruit'), and capture subscribe events via a convenient callback handler.

For detailed information see: AdafruitMQTT (https://adafru.it/
mfg) and AdafruitMQTTTopic (https://adafru.it/mfh)

AdafruitAIO
The AdafruitAIO family is a specialized version of the AdafruitMQTT classes, and is
designed to work specifically with Adafruit IO (https://adafru.it/eIC).

For detailed information see: AdafruitAIO (https://adafru.it/
mfi) and AdafruitAIOFeed (https://adafru.it/mfj)

©Adafruit Industries Page 59 of 212

file:///home/introducing-the-adafruit-wiced-feather-wifi/adafruittcp
file:///home/introducing-the-adafruit-wiced-feather-wifi/adafruittcpserver
file:///home/introducing-the-adafruit-wiced-feather-wifi/adafruitudp
file:///home/introducing-the-adafruit-wiced-feather-wifi/adafruithttp
file:///home/introducing-the-adafruit-wiced-feather-wifi/adafruitmqtt
file:///home/introducing-the-adafruit-wiced-feather-wifi/adafruitmqtttopic
http://io.adafruit.com
file:///home/introducing-the-adafruit-wiced-feather-wifi/adafruitaio
file:///home/introducing-the-adafruit-wiced-feather-wifi/adafruitaiofeed

AdafruitSDEP
This class handles sending and receiving SDEP messages between the user code and
the lower level feather lib. Normally you will never need to send SDEP messages
yourself, and you will use the higher level helper classes mentionned elsewhere on
this page, but AdafruitHTTP inherits from AdafruitSDEP, so you have access to all of
the functions in AdafruitSDEP via the standard Feather object, such as
Feather.sdep_n(...), Feather.errno(), etc.

For detailed information see: AdafruitSDEP (https://adafru.it/mfk)

Client API
The WICED Feather board support package also includes support for the standard
Arduino Client (https://adafru.it/lFj) interface, which is common to almost every
networking device in the Arduino family. The Adafruit helper classes mentionned
above expose many standard Client functions, and you should be able to adapt Client
based example code to the WICED Feather with minimal changes and effort.

For detailed information see: Client

AdafruitFeather
AdafruitFeather is the main class that you will use for common operations like
connecting to an access point (AP), checking error codes, getting your IP address, or
working with stored AP profiles.

AdafruitFeather API
The following functions are available in AdafruitFeather (which is normally accessible
as Feather.* in all of your sketches, for example ' Feather.factoryReset() ').

char const* bootloaderVersion (void);
char const* sdkVersion (void);
char const* firmwareVersion (void);
char const* arduinoVersion (void);

int scanNetworks (wl_ap_info_t ap_list[], uint8_t max_ap);

bool connect (void);
bool connect (const char *ssid);
bool connect (const char *ssid, const char *key, int enc_type =
ENC_TYPE_AUTO);

©Adafruit Industries Page 60 of 212

file:///home/introducing-the-adafruit-wiced-feather-wifi/adafruitsdep
https://www.arduino.cc/en/Reference/ClientConstructor

bool begin (void);
bool begin (const char *ssid);
bool begin (const char *ssid, const char *key, int enc_type =
ENC_TYPE_AUTO);

void disconnect (void);

bool connected (void);
uint8_t* macAddress (uint8_t *mac);
uint32_t localIP (void);
uint32_t subnetMask (void);
uint32_t gatewayIP (void);
char* SSID (void);
int32_t RSSI (void);
int32_t encryptionType (void);
uint8_t* BSSID (uint8_t* bssid);

IPAddress hostByName (const char* hostname);
bool hostByName (const char* hostname, IPAddress& result);
bool hostByName (const String &hostname, IPAddress& result);

uint32_t ping (char const* host);
uint32_t ping (IPAddress ip);

void factoryReset (void);
void nvmReset (void);

bool randomNumber (uint32_t* random32bit);

bool getISO8601Time (iso8601_time_t* iso8601_time);
uint32_t getUtcTime (void);

bool useDefaultRootCA (bool enabled);
bool initRootCA (void);
bool addRootCA (uint8_t const* root_ca, uint16_t len);
bool clearRootCA (void);

void printVersions (Print& p = Serial);
void printNetwork (Print& p = Serial);
void printEncryption (int32_t enc, Print& p = Serial);

void setDisconnectCallback (void (*fp) (void));

Firmware Version Management
Since the Arduino/user code, FeatherLib binary, Broadcom WICED SDK and
bootloader version need to work with each other, it's important to make sure that the
version numbers of the various components of the WICED Feather are in sync.

The following helper functions are provided to retrieve the current version numbers
for the the various components used by your device.

char const* bootloaderVersion (void)

Returns the current bootloader version string.

©Adafruit Industries Page 61 of 212

Parameters: None

Returns: A null-terminated string containing the current bootloader version in the
MAJOR, MINOR, REVISION format, ex: "1.0.0".

char const* sdkVersion (void)

Returns the current Broadcom WICED SDK version string.

Parameters: None

Returns: A null-terminated string containing the current Broadcom WICED
SDK version in the MAJOR, MINOR, REVISION format, ex: "3.5.2".

char const* firmwareVersion (void)

Returns the current FeatherLib version string.

Parameters: None

Returns: A null-terminated string containing the current FeatherLib version in the
MAJOR, MINOR, REVISION format, ex: "0.5.0".

char const* arduinoVersion (void)

Returns the current Arduino library version string. This corresponds to the library used
when building code in the Arduino IDE, which handles the low level communication to
FeatherLib.

Parameters: None

Returns: A null-terminated string containing the current Arduino library version in the
MAJOR, MINOR, REVISION format, ex: "0.5.0".

Scanning
The following function initiates an access point (AP) scan to determine which APs are
in range of the WICED Feather.

©Adafruit Industries Page 62 of 212

int scanNetworks (wl_ap_info_t ap_list[], uint8_t max_ap)

Initiates a new access point scan and returns the device details for any access
point(s) within range of the WICED Feather.

Parameters:

ap_list: A pointer to an wl_ap_info_t array where the details for any AP found
should be inserted. This array needs to be large enough to hold up to 'max_ap'
entries!
max_ap: The maximum number of access points to write to 'ap_list'.

Returns: The number of APs written into ap_list.

Connecting
The following functions are used to connect to an access point.

bool connect (void)

This function will attempt to connect using the list of Profiles stored in non-volatile
config memory on the WICED Feather. See the AdafruitFeather: Profiles page in this
learning guide for details on how to use the profile system.

Parameters: None

Returns: 'True' (1) if a connection was established with an AP based on the stored
profile data, otherwise 'false' (0).

bool connect (const char *ssid)

Attempts to connect to the open (security type = ENY_TYPE_OPEN) access point
matching the 'ssid' parameter.

•

•

See the 'Constants' page in this learning guide for details on the wl_ap_info_t
struct.

©Adafruit Industries Page 63 of 212

Parameters:

ssid: A string containing the name of the SSID to attempt to connect to.

Returns: 'True' (1) if the connection was successful, otherwise 'false' (0).

bool connect (const char *ssid, const char *key, int
enc_type = ENC_TYPE_AUTO)

Attempts to connect to the specified SSID using the supplied password ('key') and
optionally a specific security type ('enc_type').

The security type is optional and if no value is provided the WICED Feather will
attempt to determine the security type on it's own, but the connection process will
terminate more quickly if you provide the appropriate security type since this avoids
the need to perform a full access point scan before the connection attempt starts.

Parameters:

ssid: A string containing the name of the SSID to attempt to connect to.
key: The password to use when connecting to the AP
enc_type: The wl_enc_type_t value that indicates what type of security is used
by the AP. The default value for this field is ENC_TYPE_AUTO which will cause
the WICED Feather to determine this information for you, at the expense of a
slower connection interval since we first have to perform a full access point
scan. See the Constants page in this learning guide for a list of possible values
for this parameter.

Returns: 'True' (1) if the connection was successful, otherwise 'false' (0).

bool begin (void)

This is an alias for ' bool connect(void) ' described above, and is provided to
match the Arduino Client interface.

•

•
•
•

©Adafruit Industries Page 64 of 212

bool begin (const char *ssid)

This is an alias for ' bool connect(const char* ssid) ' described above, and is
provided to match the Arduino Client interface.

bool begin (const char *ssid, const char *key, int enc_type
= ENC_TYPE_AUTO)

This is an alias for ' bool connect(const char *ssid, const char *key, int
enc_type) ' described above, and is provided to match the Arduino Client interface.

void disconnect (void)

Disconnects from the current access point.

Parameters: None

Returns: Nothing

Network and Connection Details
The following functions provide information about the connection or the network
setup when your device is connected to an access point (AP).

bool connected (void);

Checks if you are currently connected to an AP or not.

Parameters: None

Returns: 'True' (1) if you are currently connected to an access point (AP), otherwise
'false' (0).

uint8_t* macAddress (uint8_t *mac);

Gets the HW mac address for the WICED Feather.

©Adafruit Industries Page 65 of 212

Parameters:

mac: The 6-byte uint8_t array to assign the mac address to. If you don't wish to
use this field and use the optional 'return value' instead simply provide NULL to
this parameter.

Returns: A pointer to a 6-byte array containing the 48-bit HW MAC address for your
WICED Feather.

uint32_t localIP (void);

Returns the IPv4 address for your WICED Feather.

Parameters: None

Returns: A 32-bit integer containing the four bytes that make up the IPv4 address for
your device.

uint32_t subnetMask (void);

Returns the IPv4 subnet mask.

Parameters: None

Returns: A 32-bit integer containing the four bytes that make up the IPv4 subnet
mask.

uint32_t gatewayIP (void);

Returns the IPv4 gateway IP.

Parameters: None

Returns: A 32-bit integer containing the four bytes that make up the IPv4 gateway
address.

•

©Adafruit Industries Page 66 of 212

char* SSID (void);

Returns the SSID for the current access point (AP).

Parameters: None

Returns: A null-terminated string containing the SSID name for the current AP.

int32_t RSSI (void);

Returns the current return signal strength indicator (RSSI) in dBm, which indicate the
strength of the connection between the WICED Feather and the remote access point.
 The larger the number, the strong the signal is (ex. -90dBm is weaker than -65dBm).

Parameters: None

Returns: The return signal strength indicated in dBm.

int32_t encryptionType (void);

Returns the current encryption type used by the AP. See wl_enc_type_t on the
constants page for a list of possible encryption types.

Parameters: None

Returns: An integer corresponding to the wl_enc_type_t enum list described on
the constants page in this learning guide.

uint8_t* BSSID (uint8_t* bssid);

Gets the access point mac address for the remote AP used by the WICED Feather.

Parameters:

bssid: The 6-byte uint8_t array to assign the BSSID address to. If you don't wish
to use this field and use the optional 'return value' instead simply provide NULL
to this parameter.

•

©Adafruit Industries Page 67 of 212

Returns: A pointer to a 6-byte array containing the 48-bit MAC address for the access
point your WICED Feather is connected to.

DNS Lookup

The following helper functions allow you to look up a host name on the DNS server,
converting it to an IP address:

IPAddress hostByName (const char* hostname)

Parameters:

hostname: A string representing the domain name to lookup (ex.
"www.adafruit.com").

Returns: The IPAddress (https://adafru.it/lGd) corresponding to the specified
hostname.

bool hostByName (const char* hostname, IPAddress&
result)

Looks up the domain name specified in the 'hostname' string, and assigns it to the
IPAddress (https://adafru.it/lGd) referenced by the 'result'.

Parameters:

hostname: A string representing the domain name to lookup (ex.
"www.adafruit.com").
result: the IPAddress (https://adafru.it/lGd) object that the lookup results will be
assigned to.

Returns: 'True' (1) if the DNS lookup was successful, otherwise 'false' (0).

•

•

•

©Adafruit Industries Page 68 of 212

https://www.arduino.cc/en/Reference/EthernetIPAddress
https://www.arduino.cc/en/Reference/EthernetIPAddress
https://www.arduino.cc/en/Reference/EthernetIPAddress

bool hostByName (const String &hostname, IPAddress&
result)

Looks up the domain name specified in the 'hostname' string, and assigns it to the
IPAddress (https://adafru.it/lGd) referenced by the 'result'.

Parameters:

hostname: A string representing the domain name to lookup (ex.
"www.adafruit.com").
result: the IPAddress (https://adafru.it/lGd) object that the lookup results will be
assigned to.

Returns: 'True' (1) if the DNS lookup was successful, otherwise 'false' (0).

Ping
Ping can be used to detect of another server or device is available (although not all
devices respond to ping requests!). The following helpers are available for this
purpose:

uint32_t ping (char const* host)

Pings the domain name specified in the 'host' string.

Parameters:

host: The domain name to ping (ex. "www.adafruit.com").

Returns: The response time in milliseconds if the domain responded to the ping
request, or '0' if the ping failed.

uint32_t ping (IPAddress ip)

Pings the specified IPAddress (https://adafru.it/lGd).

•

•

•

©Adafruit Industries Page 69 of 212

https://www.arduino.cc/en/Reference/EthernetIPAddress
https://www.arduino.cc/en/Reference/EthernetIPAddress
https://www.arduino.cc/en/Reference/EthernetIPAddress

Parameters:

ip: The IPAddress (https://adafru.it/lGd) to ping.

Returns: The response time in milliseconds if the IP address responded to the ping
request, or '0' if the ping failed.

Factory Reset
If you set your WICED Feather modules into an unknown state of encounter
unexpected behaviour, you can try to perform a full factory reset or reset the non-
volatile config memory using these helper functions.

void factoryReset (void)

Performs a full factory reset on the module, with the following consequences:

Erases all config data in non-volatile memory (NVM)
Erases any user code ('Arduino' code) from flash memory
Resets the device to the same state as when it shipped from the factory
(although the current FeatherLib will be kept intact)
Performs a system reset, which will send the device into DFU mode since no
user code is present on the device.

Parameters: None

Returns: Nothing

void nvmReset (void)

Erases the non-volatile config memory on the WICED module, resetting the config
settings to factory defaults.

Parameters: None

Returns: Nothing

•

•
•
•

•

©Adafruit Industries Page 70 of 212

https://www.arduino.cc/en/Reference/EthernetIPAddress

Hardware Random Number Generator
The STM32F205 includes a HW white-noise random number generator that provides
better results than a purely software based approach.

This can be used to generate random strings or numeric values for security purposes.

bool randomNumber (uint32_t* random32bit)

Assigns a random unsigned 32-bit integer value to 'random32bit'.

Parameters:

random32bit: A pointer to the variable where the random number should be
assigned

Returns: 'True' (1) if the random number generation was successful, otherwise 'false'
(0).

Real Time Clock
The STM32F205 includes a real time clock, and as soon as you connect to an AP with
internet access it will try to update the RTC clock based on an NTP server.

The RTC can be read in both Linux Epoch (UTC) (https://adafru.it/lNA) time or
ISO8601 (https://adafru.it/lNB) format.

Epoch time returns a 32-bit unsigned integer value representing the number of
seconds since 1 January 1970. For example '1456472597' would convert to:

Fri, 26 Feb 2016 07:43:17 GMT

ISO8601 format timestamps return the time as a specifically formatted string similar
to the timestamp below:

2016-02-18T17:12:46.061104

•

©Adafruit Industries Page 71 of 212

https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/ISO_8601

bool getISO8601Time (iso8601_time_t* iso8601_time)

Updates 'iso8601_time' with the current timestamp in ISO8601 format.

Time is based on GMT and will need to be adjusted for your local timezone,
depending on your specific location and any seasonal adjustments (daylight savings
time, etc.).

Parameters:

iso8601_time: A pointer to the 'iso8601_time_t' struct that will hold the
timestamp data. (The typedef itself is defined in adafruit_constants.h.)

Returns: 'True' (1) if the timestamp was successfully assigned, otherwise 'false' (0).

ISO8601 timestamps use the following struct (defined in 'adafruit_constants.h') to
convert the timestamp into something that can be printed as a null-terminated string,
but also easily manipulated in code:

typedef struct ATTR_PACKED
{
 char year[4]; /**< Year */
 char dash1; /**< Dash1 */
 char month[2]; /**< Month */
 char dash2; /**< Dash2 */
 char day[2]; /**< Day */
 char T; /**< T */
 char hour[2]; /**< Hour */
 char colon1; /**< Colon1 */
 char minute[2]; /**< Minute */
 char colon2; /**< Colon2 */
 char second[2]; /**< Second */
 char decimal; /**< Decimal */
 char sub_second[6]; /**< Sub-second */
 char Z; /**< UTC timezone */

 char nullterm; // not part of the format, make printf easier
} iso8601_time_t;

uint32_t getUtcTime (void)

Returns the current 'Epoch' time (the number of seconds since the 1 January 1970).

Time is based on GMT and will need to be adjusted for your local timezone,
depending on your specific location and any seasonal adjustments (daylight savings
time, etc.).

•

©Adafruit Industries Page 72 of 212

Parameters: None

Returns: A 32-bit unsigned integer representing the number of seconds since the
'Epoch', or 1 January 1970.

TLS Root Certificate Management
Connecting to secure TLS/SSL based servers requires a root certificate to verify that
the certificate data from the remote server is valid. A set of common root certificates
is included in the Featherlib by default, but custom certificates can also be added to
the chain via the .addRootCA helper function, described below.

See the AdafruitTCP documention for more information on TLS and connecting to
secure servers.

Default Root Certificates

By default, the following root certificates are included in Featherlib, meaning you only
need to add a root certificate authority if it isn't included in the list below.

These default root certificates cover many common websites without any additional
effort on your part:

Baltimore CyberTrust Root

adafruit-download.s3.amazonaws.com (may include other Amazon S3
servers)

DigiCert High Assurance EV Root CA

twitter.com
facebook.com
github.com

GeoTrust Global CA

google.com

GeoTrust Primary Certification Authority - G3

adafruit.com

Starfield Services Root Certificate Authority - G2

aws.amazon.com

•

◦

•

◦
◦
◦

•

◦

•

◦

•

◦

©Adafruit Industries Page 73 of 212

bool useDefaultRootCA (bool enabled)

Enables the default list of root CAs in FeatherLib.

Note: These will be enabled automatically by default if you try to use the .connectSSL
functions without having previously added any custom root CAs via .addRootCA. This
function is provided primarily to disable the default root certificates since they
consume a reasonable chunk of heap memory.

Parameters:

enabled: Set this to 'true' (1) to enable the default root CA list, or 'false' (0) to
disable them.

Returns: 'True' (1) if the operation succeeded, otherwise 'false' (0).

bool initRootCA (void)

This function allocates memory for the default list of root certificates and any custom
root certificates present.

Normally this function never needs to be called directly, and will be call on an as-
needed bases by .addRootCA or .connectSSL. It is provided as a public function so
that other classes can have access to it (AdafruitTCP, etc.).

Parameters: None

Returns: 'True' (1) if the root CA initialisation was successful, otherwise 'false' (0).

bool addRootCA (uint8_t const* root_ca, uint16_t len)

This will add the supplied root certificate to the default root certificate list. The
combined root list (default plus custom root CAs) will be used when trying to verify
any certificate chains provided by a remote secure server.

•

The default root CA list will be enabled by default unless
Feather.enableRootCA(false) or Feather.clearRootCA() is called explicitly.

©Adafruit Industries Page 74 of 212

The root certificate chain suppied via 'root_ca' can contain more than one certificate,
but must be a byte array converted from a binary .der file, generated using the python
tool included in the '/tools/pycert' folder of the board support package.

Parameters:

root_ca: A pointer to the .der file byte array generated by `/tools/pycert/
pycert.py'
len: The size in bytes of the .der byte array

Returns: 'True' (1) if the root certificate chain was successfully set, otherwise 'false' (0).

bool clearRootCA (void)

Clears any root certificates currently used by the system (freeing up associated heap
memory in FeatherLib).

Parameters: None

Returns: 'True' (1) if the operation succeeded, otherwise 'false' (0).

Print Helpers
The following functions are provided to print out common data and simplify user
sketches:

void printVersions (Print& p = Serial)

Displays the bootloader and firmware versions used by the WICED Feather in the
following order:

Bootloader version
Broadcom WICED SDK version
FeatherLib version
Arduino (User Code) version

•

•

•
•
•
•

©Adafruit Industries Page 75 of 212

Parameters:

p: The 'Print' implementation to use. Leave this field empty and it will default to
'Serial' which is used for the Serial Monitor output.

Returns: Nothing.

void printNetwork (Print& p = Serial)

Displays the following network details when connected to an AP:

SSID Name
SSID Encryption Method
MAC Address
Local IP Address
Gateway Address
Subnet Mask

Parameters:

p: The 'Print' implementation to use. Leave this field empty and it will default to
'Serial' which is used for the Serial Monitor output.

Returns: Nothing.

void printEncryption (int32_t enc, Print& p = Serial)

Displays a string that corresponds to the specified encryption type (see
.encryptionType elsewhere in this class):

Parameters:

enc: The security encryption type used by the AP
p: The 'Print' implementation to us. Leave this field empty and it will default to
'Serial' which is used for the Serial Monitor output.

Returns: Nothing

•

•
•
•
•
•
•

•

•
•

©Adafruit Industries Page 76 of 212

AdafruitFeather: Profiles
The WICED Feather API allows you to store 'profiles', which contain all of the settings
about a specific AP (access point).

This means that you only need to enter your AP details once, and once connected
you can store them in non-volatile config memory for later use, simplifying project
management and speeding up connection time in certain instances.

This is useful in situations where your project might move from one physical location
to another, and the AP will change between locations (for example at home and at the
office).

Connecting via Profiles
To connect to an AP using the stored profile data, simply call the bare
Feather.connect() function with no parameters. This will attempt to connect to the
profiles stored in non-volatile memory from the first entry to the last, and will return
false is we were unable to connect to any of the stored APs.

Profiles API
The profile management API includes the following functions (defined as part of
the AdafruitFeather class which is normally available as Feather.*):

bool saveConnectedProfile (void); // Save currently connected AP
bool addProfile (char* ssid); // Open
bool addProfile (char* ssid, char* key, wl_enc_type_t enc_type);
bool removeProfile (char* ssid);
bool checkProfile (char* ssid); // Check if profile exists
void clearProfiles (void);
char* profileSSID (uint8_t pos);
int32_t profileEncryptionType (uint8_t pos);

bool saveConnectedProfile (void)

Saves the currently connected access point details as a Profile. You must be
connected when calling this functions.

Up to FIVE profiles can be stored at a time in non-volatile memory.

©Adafruit Industries Page 77 of 212

Parameters: None

Returns: 'true' (1) if the profile was successfully added, otherwise 'false' (0).

bool addProfile (char* ssid)

Saves the specified open SSID to the profile list. This function should only be used
with open access points that have no security/encoding enabled.

Parameters:

ssid: A string containing the access point's SSID/name.

Returns: 'true' (1) if the profile was successfully added, otherwise 'false' (0).

bool addProfile (char* ssid, char* key, wl_enc_type_t
enc_type)

Saves the specified secure SSID to the profile list. This function should not be used
with open access points.

Parameters:

ssid: A string containing the access point's SSID/name.
key: A string containing the pass key for the SSID
enc_type: The security encoding type for the access point, which can be one of
the following values:

Encoding Types (wl_enc_type_t):

ENC_TYPE_WEP
WEP security with open authentication
ENC_TYPE_WEP_SHARED
WEP security with shared authentication
ENC_TYPE_WPA_TKIP
WPA security with TKIP
ENC_TYPE_WPA_AES
WPA security with AES

•

•
•
•

•
•
•

•
•
•

©Adafruit Industries Page 78 of 212

ENC_TYPE_WPA_MIXED
WPA security with AES and TKIP
ENC_TYPE_WPA2_TKIP
WPA2 security with TKIP
ENC_TYPE_WPA2_AES
WPA2 security with AES
ENC_TYPE_WPA2_MIXED
WPA2 security with TKIP and AES
ENC_TYPE_WPA_TKIP_ENT
WPA enterprise security with TKIP
ENC_TYPE_WPA_AES_ENT
WPA enterprise security with AES
ENC_TYPE_WPA_MIXED_ENT
WPA enteprise security with TKIP and AES
ENC_TYPE_WPA2_TKIP_ENT
WPA2 enterprise security with TKIP
ENC_TYPE_WPA2_AES_ENT
WPA2 enterprise security with AES
ENC_TYPE_WPA2_MIXED_ENT
WPA2 enterprise security with TKIP and AES
ENC_TYPE_WPS_OPEN
WPS with open security
ENC_TYPE_WPS_SECURE
WPS with AES security
ENC_TYPE_IBSS_OPEN
BSS with open security

Returns: 'true' (1) if the profile was successfully added, otherwise 'false' (0).

bool removeProfile (char* ssid)

Removes the profile with the matching ssid from non-volatile memory.

Parameters:

ssid: A string containing the access point's SSID/name.

Returns: 'true' (1) if the profile was successfully found and removed, otherwise 'false'
(0).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 79 of 212

void clearProfiles (void)

Clears all profiles from non-volatile memory.

Parameters: None

Returns: Nothing

char* profileSSID (uint8_t pos);

Returns a string containing the SSID name for the profile stored at the specified
position.

Parameters:

pos: The position in NVM for the profile, which can be a value between 0 and 4
(since the position is a zero-based integer).

Returns: NULL if no profile was found at the specified 'pos', otherwise a string
corresponding to SSID name for the stored profile.

int32_t profileEncryptionType (uint8_t pos);

Returns the `wl_enc_type_t` value for the profile stored at the specified position.

Parameters:

pos: The position in NVM for the profile, which can be a value between 0 and 4
(since the position is a zero-based integer).

Returns: '-1' if no profile was found at the specified 'pos', otherwise an integer
corresponding to one of the entries in 'wl_enc_type_t' (see the list of options
in addProfile above).

AdafruitTCP
AdafruitTCP makes it easier to work with raw TCP sockets. You can open sockets --
including SSL based secure socket connections -- and send and receive data using a
few basic commands.

•

•

©Adafruit Industries Page 80 of 212

The class also and exposes two convenient (optional) callbacks:

Data Received Callback: Fires whenever incoming data is available (which can
then be read via the .read() and related commands)
Disconnect Callback: Fires whenever the TCP server cause you to disconnect

You're also free to 'poll' for incoming data and connection status, but these callbacks
help keep your TCP code easy to understand and more maintainable as your project
grows in complexity.

TCP Socket API
The AdafruitTCP class includes the following functions:

// Misc Functions
void usePacketBuffering (bool enable);
void tlsRequireVerification (bool required);
uint32_t getHandle (void);

// Client API
virtual int connect (IPAddress ip, uint16_t port);
virtual int connect (const char * host, uint16_t port);
virtual int connectSSL (IPAddress ip, uint16_t port);
virtual int connectSSL (const char* host, uint16_t port);
virtual uint8_t connected (void);
virtual void stop (void);

// Stream API
virtual int read (void);
virtual int read (uint8_t * buf, size_t size);
virtual size_t write (uint8_t);
virtual size_t write (const uint8_t *content, size_t len);
virtual int available (void);
virtual int peek (void);
virtual void flush (void);

// Set callback handlers
void setReceivedCallback (tcpcallback_t fp);
void setDisconnectCallback (tcpcallback_t fp);

Packet Buffering
The AdafruitTCP class includes the option to enable or disable packet buffering.

If packet buffering is enabled, outgoing data will be buffered until the buffer is full
(~1500 bytes) or until .flush() is called to manually force the buffered data to be sent.

If packet buffering is disabled, any write commands will send the data immediately,
regardless of the packet or data size. This ensure writes happen right away, but at

•

•

©Adafruit Industries Page 81 of 212

the cost of slower overall throughput since data can't be grouped together into larger
packets.

void usePacketBuffering (bool enable)

This will enable or disable packet buffering with AdafruitTCP data.

Parameters:

enable: Set this to 'true' (1) to enable packet buffering, otherwise 'false' (0)

Returns: Nothing

TLS/SSL Certificate Verification
When opening a secure TCP connection to a TCP server, the client and server will
begin to communicate with each other in an open connection to choose their cipher
suite (AES, etc.), and the server will then send the client it's certificate and public key
data to start the secure connection.

Normally at this point, the client will verify the server's certificate using it's root
certificate chains. If verification is OK, the connection will continue, otherwise the
connection will be rejected since the server has probably provided a false or invalid
certificate and can't be trusted.

The problem with this approach on small embedded systems is that it takes a great
deal of space (in embedded terms) to store all root certificate chains to verify server
certificates against all certificate issuing authorities. We do store a default list of the
most common root certificate chains, but it isn't possible on a small MCU with limited
flash storage space to store every possible root certificate option.

The WICED Feather proposes two solutions to this problem, depending on if you
prefer a more secure or a simpler solution:

By default packet buffering is DISABLED in AdafruitTCP

•

©Adafruit Industries Page 82 of 212

Verifying Certificates with the WICED Feather (Safer)

Instead of storing all root certificates, the WICED Feather allows you to generate a
certificate chain for a specific domain, and then use that in your sketch, which
typically requries 1-4KB of flash memory or less per domain.

This is the most secure choice but requires some additional work on your part, and
you have to know in advance which sites you will access.

The procedure to convert, load and use a custom root certificate list is as follows:

You use a python script (provided in the '/tools/pycert' folder) to read the root
certificate data for your target domain. The script then converts the binary .der
format data into a byte array in a C header (.h) file.
You then pass the root certificate data into the WICED API via
Feather.addRootCA (from AdafruitFeather), which allows you to add your root
certificate chain to the list of default certificates used when verifying the target
domain
You can then enable certificate verification via tlsRequireVerification(true) in this
class, which means that all server certificates must pass verification against the
root certificate list on the WICED Feather or the certificate and connection will
be rejected.

Ignoring Certificate Verification (Easier)

If you aren't able to store the certificate data for a specific site, or don't know which
sites you will access, you can also ignore the verification process which has the
effect of accepting every certificate as valid.

This still allows for an encrypted connection (using AES, etc.), but there is no
guarantee that the server you are talking to is actually the server you think you're
talking to, making it a less secure option.

The approach you take will depend on your project requirements, but in either case
you can indicate to the WICED Feather API whether you want to verify server
certificates via the following function:

1.

2.

3.

By default certificate verification is enabled on WICED Feather boards. You can
disable verification via 'tlsRequireVerification(false)', which will cause any
certificate to be accepted, but it will also allow man-in-the-middle type attacks.

©Adafruit Industries Page 83 of 212

Default Root Certificates

By default, the following root certificates are included in Featherlib, meaning you only
need to add a root certificate authority if it isn't included in the list below.

These default root certificates cover many common websites without any additional
effort on your part:

Baltimore CyberTrust Root

adafruit-download.s3.amazonaws.com (may include other Amazon S3
servers)

DigiCert High Assurance EV Root CA

twitter.com
facebook.com
github.com

GeoTrust Global CA

google.com

GeoTrust Primary Certification Authority - G3

adafruit.com

Starfield Services Root Certificate Authority - G2

aws.amazon.com

void tlsRequireVerification (bool required)

Indicates whether the certificate data provided by the remote server should be
verified against the local root certificate list or not. (Note: you can add new records to
the root certificate list is set in the AdafruitFeather class via 'Feather.addRootCA'.)

Parameters:

required: Set this to 'true' (1) if certificate validation is required, or 'false' (0) if no
verification is required (meaning that every certificate provided by a remote
server will be considered valid!).

Returns: Nothing

•

◦

•

◦
◦
◦

•

◦

•

◦

•

◦

•

©Adafruit Industries Page 84 of 212

Socket Handler Functions
In specialised cases (mostly when implementing sub-classes of AdafruitTCP) you may
need access to the 'handle' for the TCP socket. The .getHandle function provides
access to this.

void getHandle (void)

Returns the internal TCP socket handler value that uniquely identifies this TCP socket.
 This might be necessary when creating special sub-classes based on AdafruitTCP.

Parameters: None

Returns: The uint32_t socket handler value that uniquely identifies this TCP socket.

Client API
The Client API (https://adafru.it/lFj) includes the following functions to connect to a
TCP server:

int connect (IPAddress ip, uint16_t port)

Attempts to connect to the specified IP address and port

Parameters:

ip: The IPAddress (https://adafru.it/lGd) where the TCP server is located
port: The port number to connect to (0..65535)

Returns: 'true' (1) if the connection was successfully established, otherwise 'false' (0).

int connect (const char * host, uint16_t port)

Attempts to connect to the specified domain name and port

Parameters:

host: A string containing the domain name to connect to

•
•

•

©Adafruit Industries Page 85 of 212

https://www.arduino.cc/en/Reference/ClientConstructor
https://www.arduino.cc/en/Reference/EthernetIPAddress

port: The port number to connect to (0..65536)

Returns: 'true' (1) if the connection was successfully established, otherwise 'false' (0).

int connectSSL (IPAddress ip, uint16_t port)

Connects to a secure server using SSL/TLS at the specified IP address and port.

Parameters:

ip: The IPAddress (https://adafru.it/lGd) where the TCP server is located
port: The port number to connect to (0..65536)

Returns: 'true' (1) if the connection was successfully established, otherwise 'false' (0).

Note: A set of common root certificates are already included in the WICED Feather
SDK, so most HTTPS websites will work out of the box, but if you need to add a new
root certificate chain the TLS/certificate data is set using the following function in the
Adafruit Feather class (accessible as `Feather.addRootCA(...)`):

bool addRootCA(uint8_t const* root_certs_der, uint16_t len);

int connectSSL (const char* host, uint16_t port)

Attempts to connect to a secure server using SSL/TLS at the specified domain name
and port.

Parameters:

host: A string containing the domain name to connect to
port: The port number to connect to (0..65536)

Returns: 'true' (1) if the connection was successfully established, otherwise 'false' (0).

•

•
•

If certificate verification fails when trying to connect to a secure server you will
get ERROR_TLS_UNTRUSTED_CERTIFICATE (5035).

•
•

If certificate verification fails when trying to connect to a secure server you will
get ERROR_TLS_UNTRUSTED_CERTIFICATE (5035).

©Adafruit Industries Page 86 of 212

https://www.arduino.cc/en/Reference/EthernetIPAddress

Note: A set of common root certificates are already included in the WICED Feather
SDK, so most HTTPS websites will work out of the box, but if you need to add a new
root certificate chain the TLS/certificate data is set using the following function in the
Adafruit Feather class (accessible as `Feather.addRootCA(...)`):

bool addRootCA(uint8_t const* root_certs_der, uint16_t len);

uint8_t connected (void)

Indicates whether we are currently connected to the TCP server or not

Parameters: None

Returns: 'true' (1) if we are currently connected to the TCP server, otherwise 'false' (0).

void stop (void)

Closes the current connection to the TCP server (if a connection is open).

Parameters: None

Returns: Nothing

Stream API
AdafruitTCP implements the Stream (https://adafru.it/lGe) class, with the following
method overrides present in AdafruitTCP:

int read (void)

Reads the first available byte from the data buffer (if any data is available).

Parameters: None

Returns: The first byte of incoming data available, or -1 if no data is available.

©Adafruit Industries Page 87 of 212

https://www.arduino.cc/en/Reference/Stream

int read (uint8_t * buf, size_t size)

Reads up to the specified number of bytes from the data buffer (if any data is
available).

Parameters:

buf: A pointer to the buffer where data should be written if any data is available
size: The maximum number of bytes to read and copy into buf.

Returns: The actual number of bytes read back, and written in buf.

size_t write (uint8_t data)

Transmits a single byte to the TCP Server (or into the outgoing buffer until it can be
sent if buffering is enabled).

Parameters:

data: The byte of data to transmit

Returns: The number of bytes written. It is normally not necessary to read this value.

size_t write (const uint8_t *content, size_t len)

Transmits a number of bytes to the TCP Server (or into the outgoing buffer until the
data can be sent if buffering is enabled).

Parameters:

content: A pointer to the buffer containing the data to send
len: The number of bytes contained in content

Returns: The number of bytes successfully written.

int available (void)

Checks the number of bytes available in the incoming data buffer.

•
•

•

•
•

©Adafruit Industries Page 88 of 212

Parameters: None

Returns: The number of bytes available in the incoming data buffer, or 0 if no data is
available.

int peek (void)

Reads the first available byte from the incoming data buffer without removing it from
the buffer.

Parameters: None

Returns: The value of the first available byte, or -1 if no data is available.

void flush (void)

Forces any buffered data to be transmitted to the TCP server, regardless of the size of
the content.

Parameters: None

Returns: Nothing

Callback API
To make working with TCP sockets easier, a simple callback API is available in
AdafruitTCP based on the following functions:

void setReceivedCallback (tcpcallback_t fp)

Registers the data received callback handler.

Parameters:

fp: The name of the function that will be executed when received data is
available from the TCP server. See the example below for details on the
function signature.

Returns: Nothing

•

©Adafruit Industries Page 89 of 212

void setDisconnectCallback (tcpcallback_t fp)

Registers the disconnect callback handler (fired when you are disconnected from the
TCP server).

Parameters:

fp: The name of the function that will be executed when you are disconnected
from the TCP server. See the example below for details on the function
signature.

Returns: Nothing

Callback Function Signatures

The data received and disconnect callbacks both require a specific function definition
to work. The function names ('receive_callback' and 'disconnect_callback') can
change, but the exact signatures are shown below:

void receive_callback (void);
void disconnect_callback (void);

You then register the callbacks with the dedicated set callback functions:

// Set the callback handlers for RX and disconnect
tcp.setReceivedCallback(receive_callback);
tcp.setDisconnectCallback(disconnect_callback);

To read incoming data in the receive callback handler, you need to use the pTCP
pointer, as shown in the sample code below:

void receive_callback(void)
{
 int c;

 // Print out any bytes available from the TCP server
 while ((c = tcp.read())> 0)
 {
 Serial.write((isprint(c) || iscntrl(c)) ? ((char)c) : '.');
 }
}

void disconnect_callback(void)
{

•

Make sure you register the callbacks BEFORE calling the .connect function!

©Adafruit Industries Page 90 of 212

 Serial.println();
 Serial.println("-------------------");
 Serial.println("DISCONNECT CALLBACK");
 Serial.println("-------------------");
 Serial.println();
}

Example: Callback Based HTTP Request

The following example shows how you can register and use the two TCP callbacks,
and performs a simple TCP operation. It opens a TCP socket to an HTTP server using
port 80, requests a page, displays any incoming response data, and then waits for the
HTTP server to close the TCP connection (which will show up as a disconnect
callback):

#include <adafruit_feather.h>

#define WLAN_SSID "SSID"
#define WLAN_PASS "PASSWORD"
#define WLAN_SECURITY ENC_TYPE_AUTO

#define TCP_DOMAIN "www.adafruit.com"
#define TCP_FILENAME "/testwifi/index.html"
#define TCP_PORT 80

void receive_callback (void);
void disconnect_callback (void);

AdafruitTCP tcp;

void setup()
{
 Serial.begin(115200);

 // Wait for Serial port to connect. Needed for native USB port only
 while (!Serial) { delay(1); }

 // Attempt to connect to the AP using the specified SSID/key/encoding
 if (!Feather.connect(WLAN_SSID, WLAN_PASS, WLAN_SECURITY))
 {
 err_t err = Feather.errno();
 Serial.println("Connection Error:");
 switch (err)
 {
 case ERROR_WWD_ACCESS_POINT_NOT_FOUND:
 // SSID wasn't found when scanning for APs
 Serial.println("Invalid SSID");
 break;
 case ERROR_WWD_INVALID_KEY:
 // Invalid SSID passkey
 Serial.println("Invalid Password");
 break;
 default:
 // The most likely cause of errors at this point is that
 // you are just out of the device/AP operating range
 Serial.print(err);
 Serial.print(":");
 Serial.println(Feather.errstr());
 break;
 }
 // Wait around here forever!
 while(1);

©Adafruit Industries Page 91 of 212

 }

 // Optional: Disable TLS certificate verification (accept any server)
 Feather.tlsRequireVerification(false);

 // Optional: Set the default TCP timeout to 10s
 tcp.setTimeout(10000);

 // Set the callback handlers for RX and disconnect
 tcp.setReceivedCallback(receive_callback);
 tcp.setDisconnectCallback(disconnect_callback);

 // Try to connect to the HTTP Server
 if (tcp.connect(TCP_DOMAIN, TCP_PORT))
 {
 Serial.println("Connected to server");
 // Make a basic HTTP request
 tcp.printf("GET %s HTTP/1.1\r\n", TCP_FILENAME);
 tcp.printf("host: %s\r\n", TCP_DOMAIN);
 tcp.println();
 }
 else
 {
 Serial.printf("TCP connection failed: %s (%d)", tcp.errstr(), tcp.errno());
 Serial.println();
 while(1);
 }
}

void loop()
{
 // put your main code here, to run repeatedly:
}

void receive_callback(void)
{
 int c;

 // Print out any bytes available from the TCP server
 while ((c = tcp.read())> 0)
 {
 Serial.write((isprint(c) || iscntrl(c)) ? ((char)c) : '.');
 }
}

void disconnect_callback(void)
{
 Serial.println();
 Serial.println("-------------------");
 Serial.println("DISCONNECT CALLBACK");
 Serial.println("-------------------");
 Serial.println();
}

AdafruitTCPServer
This class allows you to create a simple TCP based server to communicate with other
TCP clients.

©Adafruit Industries Page 92 of 212

Constructor
AdafruitTCPServer has the following constructor:

AdafruitTCPServer(uint16_t port)

Parameters:

port: The port to use for the TCP server (1..65535)

Functions
The following public functions are defined as part of the class:

bool begin (void)
AdafruitTCP accept (void)
AdafruitTCP available (void)
void stop (void)

void setConnectCallback (tcpserver_callback_t fp)

bool begin (void)

Starts the TCP server and begins listening for connections.

Parameters: None

Returns: 'True' (1) if the operation was successful, otherwise 'false' (0).

AdafruitTCP accept (void)

Accepts a new connection with a Client, returning an instance of the AdafruitTCP
class to handle the client details.

Parameters: None

This class is still a work in progress and may undergo significant changes in a
future version of the WICED Feather library. It should be considered
experimental for now.

•

©Adafruit Industries Page 93 of 212

Returns: An instance of the AdafruitTCP class that can be used to deal with the client
reads and writes.

AdafruitTCP available (void)

This function is an alias for the .accept function described above.

void stop (void)

Stops the TCP server.

Parameters: None

Returns: Nothing.

void setConnectCallback (tcpserver_callback_t fp)

Sets the TCP server callback event handler function for any incoming connection
requests.

Parameters:

fp: The function that will be used to handling incoming connection requests.

Returns: Nothing.

The connect callback function handler has the following syntax:

/**/
/*!
 @brief This callback is fired when there is a connection request from
 a TCP client. Use accept() to establish the connection and
 retrieve the client 'AdafruitTCP' instance.
*/
/**/
void connect_request_callback(void)
{
 uint8_t buffer[256];
 uint16_t len;

 AdafruitTCP client = tcpserver.available();

 if (client)
 {
 // read data

•

©Adafruit Industries Page 94 of 212

 len = client.read(buffer, 256);

 // Echo data back to the TCP client
 client.write(buffer, len);

 // call stop() to free memory in the client class
 client.stop();
 }
}

Example
The following example will listen for connection requests on port 80 and echo back
any data that is received. The connection logic happens inside the connection
request callback handler.

 #include <adafruit_feather.h>

#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPass"

#define PORT 80 // The TCP port to use

AdafruitTCPServer tcpserver(PORT);

/**/
/*!
 @brief This callback is fired when there is a connection request from
 a TCP client. Use accept() to establish the connection and
 retrieve the client 'AdafruitTCP' instance.
*/
/**/
void connect_request_callback(void)
{
 uint8_t buffer[256];
 uint16_t len;

 AdafruitTCP client = tcpserver.available();

 if (client)
 {
 // read data
 len = client.read(buffer, 256);

 // Print data along with peer's info
 Serial.print("[RX] from ");
 Serial.print(client.remoteIP());
 Serial.printf(" port %d : ", client.remotePort());
 Serial.write(buffer, len);
 Serial.println();

 // Echo back
 client.write(buffer, len);

 // call stop() to free memory by Client
 client.stop();
 }
}

/**/
/*!
 @brief The setup function runs once when the board comes out of reset

©Adafruit Industries Page 95 of 212

*/
/**/
void setup()
{
 Serial.begin(115200);

 // Wait for the serial port to connect. Needed for native USB port only.
 while (!Serial) delay(1);

 Serial.println("TCP Server Example (Callbacks)\r\n");

 // Print all software versions
 Feather.printVersions();

 while (!connectAP())
 {
 delay(500); // delay between each attempt
 }

 // Connected: Print network info
 Feather.printNetwork();

 // Tell the TCP Server to auto print error codes and halt on errors
 tcpserver.err_actions(true, true);

 // Setup callbacks: must be done before begin()
 tcpserver.setConnectCallback(connect_request_callback);

 // Starting server at defined port
 tcpserver.begin();

 Serial.print("Listening on port "); Serial.println(PORT);
}

/**/
/*!
 @brief This loop function runs over and over again
*/
/**/
void loop()
{

}

/**/
/*!
 @brief Connect to the pre-defined access point
*/
/**/
bool connectAP(void)
{
 // Attempt to connect to an AP
 Serial.print("Please wait while connecting to: '" WLAN_SSID "' ... ");

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");
 }
 else
 {
 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }
 Serial.println();

 return Feather.connected();
}

©Adafruit Industries Page 96 of 212

AdafruitUDP
AdafruitUDP makes it easy to work with raw UDP sockets. It includes a convenient
callback for incoming data, and a number of helper functions to read and write data
over a UDP socket.

You're free to 'poll' for incoming data and connection status, but the 'data received'
callback fires whenever incoming data is available, which can then be read via the
.read() and related commands. Callbacks aren't mandatory, but help keep your code
easy to understand and more maintainable as your project grows in complexity.

UDP Socket API
The AdafruitUDP class includes the following functions:

// UDP API
virtual uint8_t begin (uint16_t port);
virtual void stop (void);
virtual int beginPacket (IPAddress ip, uint16_t port);
virtual int beginPacket (const char *host, uint16_t port);
virtual int endPacket (void);
virtual int parsePacket (void);
virtual IPAddress remoteIP (void);
virtual uint16_t remotePort (void);

// Stream API
virtual int read (void);
virtual int read (unsigned char* buffer, size_t len);
virtual int read (char* buffer, size_t len);
virtual int peek (void);
virtual int available (void);
virtual void flush (void);
virtual size_t write (uint8_t byte);
virtual size_t write (const uint8_t *buffer, size_t size);

// Callback
void setReceivedCallback (udpcallback_t fp);

UDP API
The following functions are primarilly based on the Arduino EthernetUDP (https://
adafru.it/lGA) class and enable you to work with UDP connections and packets.

uint8_t begin (uint16_t port)

Initialises the AdafruitUDP class for the specified local port.

©Adafruit Industries Page 97 of 212

https://www.arduino.cc/en/Reference/Ethernet

Parameters:

port: The local port number to listen on (0..65535)

Returns: 1 if successful, 0 if there are no sockets available to be used.

void stop (void)

Disconnects from the UDP server, and releases any resources used during the UDP
session.

Parameters: None

Returns: Nothing

int beginPacket (IPAddress ip, uint16_t port)

Starts a UDP connection to write data to the specified remote IP address and port.

Parameters:

ip: The remote IPAddress (https://adafru.it/lGd) where the UDP server is located
port: The remote port number to connect to (0..65535)

Returns: '1' if successful, '0' if there was a problem connecting to the specified IP
address or port.

int beginPacket (const char *host, uint16_t port)

Starts a UDP connection to write data to the specified domain name and remote port.

Parameters:

host: A string containing the domain name to connect to
port: The port number to connect to (0..65536)

Returns: '1' if the connection was successfully established, otherwise '0'.

•

•
•

•
•

©Adafruit Industries Page 98 of 212

https://www.arduino.cc/en/Reference/EthernetIPAddress

int endPacket (void)

This function must be called after writing UDP data to the remote server.

Parameters: None

Returns: '1' if the packet was sent successfully, otherwise '0'.

int parsePacket (void)

Checks whether a UDP packet is available, and returns the size of the UDP packet as
a return value.

Parameters: None

Returns: The number of bytes available in the buffered UDP packet.

IPAddress remoteIP (void)

Returns the IP address of the remote UDP server.

Parameters: None

Returns: The IPAddress (https://adafru.it/lGd) of the remote UDP server/connection.

uint16_t remotePort (void)

Returns the port for the remote UDP server.

Parameters: None

Returns: The port of the remote UDP server/connection.

You must call this function BEFORE reading any data from the buffer via
AdafruitUDP.read()!

AdafruitUDP.parsePacket() must be called BEFORE this function.

AdafruitUDP.parsePacket() must be called BEFORE this function.

©Adafruit Industries Page 99 of 212

https://www.arduino.cc/en/Reference/EthernetIPAddress

Stream API
The following functions are based on the Stream (https://adafru.it/lGe) class
that Arduino EthernetUDP (https://adafru.it/lGA) implements.

int read (void)

Reads the first available byte in the UDP buffer.

Parameters: None

Returns: The first character available in the UDP buffer, or 'EOF' if no data is available.

int read (unsigned char* buffer, size_t len)
int read (char* buffer, size_t len)

These two identical functions (other than the type used for the 'buffer') will read up to
'len' bytes from the UDP response data, copying them into the buffer provided in the
first argument of this function.

Parameters:

buffer: A pointer to the buffer where the UDP data will be copied
len: The maximum number of bytes to read

Returns:

The actual number of bytes read from the UDP data and copied into 'buffer'
'0' if no data was read or available
'-1' if an error occured

This function must be called AFTER AdafruitUDP.parsePacket()!

This function must be called AFTER AdafruitUDP.parsePacket()!

•
•

•
•
•

©Adafruit Industries Page 100 of 212

https://www.arduino.cc/en/Reference/Stream
https://www.arduino.cc/en/Reference/Ethernet

int peek (void)

Reads a single byte from the UDP response buffer without advancing to the next
position in the buffer.

Parameters: None

Returns: The first byte available in the UDP buffer, or '-1' if no data is available.

int available (void)

Returns the number of bytes available to be read in the UDP buffer.

Parameters: None

Returns: The number of bytes available to be read in the UDP buffer, otherwise '0' if
the read buffer is empty.

void flush (void)
This function will flush the buffer of any outgoing data, and return when the buffered
data has been sent and the buffer is empty.

Parameters: None

Returns: Nothing

size_t write (uint8_t byte)

Writes a single byte to the remote UDP server. This function must be placed after
AdafruitUDP.beginPacket() and before AdafruitUDP.endPacket(). The packet will not
be sent until .endPacket is called!

This function must be called AFTER AdafruitUDP.parsePacket()!

This function must be called AFTER AdafruitUDP.parsePacket()!

©Adafruit Industries Page 101 of 212

Parameters:

byte: The single byte to write to the transmit buffer

Returns: The number of bytes written.

size_t write (const uint8_t *buffer, size_t size)

Writes the specified 'buffer' to the remote UDP server. This function must be placed
after AdafruitUDP.beginPacket() and before AdafruitUDP.endPacket(). The packet
will not be sent until .endPacket is called!

Parameters:

buffer: The buffer where the data to transmit is stored
size: The number of bytes contained in 'buffer'

Returns: The number of bytes written.

Callback Handlers
AdafruitUDP supports a 'read' callback that will fire every time incoming UDP data is
recieved over the open socket connection.

The callback function has the following signature (although you are free to choose a
different name if you wish to):

void received_callback(void);

Before you can use the callback function, you need to register your callback handler
(using the function signature in the paragraph above).

You register the callback with the following function:

void setReceivedCallback (udpcallback_t fp)

Registers the function used to process 'data received' callbacks.

•

•
•

©Adafruit Industries Page 102 of 212

Parameters:

fp: The name of the function where callback events should be redirected to

Returns: Nothing

Examples
The examples below illustration some basic UDP concepts to help you understand the
class described above.

UDP Echo Server

The following example will listen on port 8888 for any incoming UDP requests, and
then echo them back to the requesting device via the 'received' callback handler:

#include <adafruit_feather.h>

#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPass"

#define LOCAL_PORT 8888

AdafruitUDP udp;

char packetBuffer[255];

bool connectAP(void)
{
 // Attempt to connect to an AP
 Serial.print("Attempting to connect to: ");
 Serial.println(WLAN_SSID);

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");
 }
 else
 {
 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }
 Serial.println();

 return Feather.connected();
}

void setup()
{

•

See the example section at the bottom of this page for details on using the data
received callback in the real world.

©Adafruit Industries Page 103 of 212

 Serial.begin(115200);

 // wait for Serial port to connect. Needed for native USB port only
 while (!Serial) delay(1);

 Serial.println("UDP Echo Callback Example");
 Serial.println();

 while(!connectAP())
 {
 delay(500);
 }

 // Tell the UDP client to auto print error codes and halt on errors
 udp.err_actions(true, true);
 udp.setReceivedCallback(received_callback);

 Serial.printf("Openning UDP at port %d ... ", LOCAL_PORT);
 udp.begin(LOCAL_PORT);
 Serial.println("OK");

 Serial.println("Please use your PC/mobile and send any text to ");
 Serial.print(IPAddress(Feather.localIP()));
 Serial.print(" UDP port ");
 Serial.println(LOCAL_PORT);
}

void loop()
{

}

/**/
/*!
 @brief Received something from the UDP port
*/
/**/
void received_callback(void)
{
 int packetSize = udp.parsePacket();

 if (packetSize)
 {
 // Print out the contents with remote information
 Serial.printf("Received %d bytes from ", packetSize);
 Serial.print(IPAddress(udp.remoteIP()));
 Serial.print(" : ");
 Serial.println(udp.remotePort());

 udp.read(packetBuffer, sizeof(packetBuffer));
 Serial.print("Contents: ");
 Serial.write(packetBuffer, packetSize);
 Serial.println();

 // Echo back contents
 udp.beginPacket(udp.remoteIP(), udp.remotePort());
 udp.write(packetBuffer, packetSize);
 udp.endPacket();
 }
}

©Adafruit Industries Page 104 of 212

AdafruitHTTP
AdafruitHTTP helps make working with HTTP requests easier, including HTTPS based
servers with TLS certificates.

It includes convenient callbacks for incoming data, as well as helper functions to deal
with HTTP response headers, response codes, and other HTTP specific details.

AdafruitHTTP API
The AdafruitHTTP class has the following public functions:

bool addHeader (const char* name, const char* value);
bool clearHeaders (void);

bool get (char const *url);
bool get (char const * host, char const *url);

bool post (char const *url, char const* encoded_data);
bool post (char const * host, char const *url, char const* encoded_data);

HTTP Headers
The follow functions are provided as helpers working with 'header' entries in your
HTTP requests.

bool addHeader (const char* name, const char* value)

Adds a new header name/value pair to the HTTP request.

Parameters:

name: A null-terminated string representing the 'name' in the header name/
value pair.
value: A null-terminated string representing the 'value' in the name/value pair.

Returns: 'True' (1) if the header was successfully added, otherwise 'false' (0).

•

•

Up to ten (10) header name/value pairs can be inserted into your HTTP request.

©Adafruit Industries Page 105 of 212

// Setup the HTTP request with any required header entries
http.addHeader("User-Agent", "curl/7.45.0"); // Simulate curl
http.addHeader("Accept", "text/html");
http.addHeader("Connection", "keep-alive");

bool clearHeaders (void)

Clears all user-defined headers in the pending HTTP request.

Parameters: None

Returns: 'True' (1) if the headers were successfully cleared, otherwise 'false' (0).

HTTP GET Requests
The following functions enable you to send HTTP GET requests to an HTTP server:

bool get (char const* url)

This is a shortcut for the function below and uses the 'host' specified in .connect
instead of re-entering it in the get request. See below for details.

bool get (char const* host, char const* url)

Sends a GET request to the specified host and url.

Parameters:

host: A null-terminated string containing the host name for the HTTP server (ex.
"www.adafruit.com"). This is normally the same as the host used in .connect ,
but you can also access other host names that resolve to the same domain or
IP such as "learn.adafruit.com" or "io.adafruit.com".
url: The path for the HTTP request (ex. "/home/about.html")

Returns: 'True' (1) if the request was successful, otherwise 'false' (0).

This shortcut function will only work if you used .connect with a domain name. It
will return an error if you used .connect with an IP address. Please use the
full .get() function below when connecting via an IP address.

•

•

©Adafruit Industries Page 106 of 212

// Connect to the HTTP server
http.connect("www.adafruit.com", 80);

// Add the required HTTP header name/value pairs
http.addHeader("User-Agent", "curl/7.45.0"); // Simulate curl
http.addHeader("Accept", "text/html");
http.addHeader("Connection", "keep-alive");

// Send the HTTP GET request
http.get("wifitest.adafruit.com", "/testwifi/index.html");

HTTP POST Requests
HTTP POST requests allow you to submit data to the HTTP server via optional
encoded arguments in the URL.

The following functions help you work with POST requests:

bool post (char const* url, char const* encoded_data)

This is a shortcut for the function below and uses the 'host' specified in .connect
instead of re-entering it in the post request. See below for details.

bool post (char const* host, char const* url, char const*
encoded_data)

Sends a POST request to the HTTP server at 'host'.

Parameters:

host: A null-terminated string containing the host name for the HTTP server (ex.
"www.adafruit.com"). This is normally the same as the host used in .connect ,
but you can also access other host names that resolve to the same domain or
IP such as "learn.adafruit.com" or "io.adafruit.com".
url: The path for the HTTP post, minus the encoded arguments ("ex. "/testwifi/
testpost.php"
encoded_data: The encoded data to send in the post request (minus the '?'
characters, ex.: "name=feather&email=feather%40adafruit.com").

This shortcut function will only work if you used .connect with a domain name. It
will return an error if you used .connect with an IP address. Please use the
full .post() function below when connecting via an IP address.

•

•

•

©Adafruit Industries Page 107 of 212

Returns: 'True' (1) if the post succeeded, otherwise 'false' (0).

// Connect to the HTTP server
http.connect("www.adafruit.com", 80);

// Add the required HTTP header name/value pairs
http.addHeader("User-Agent", "curl/7.45.0"); // Simulate curl
http.addHeader("Accept", "text/html");
http.addHeader("Connection", "keep-alive");

// Send the HTTP POST request
http.post("wifitest.adafruit.com",
 "/testwifi/testpost.php",
 "name=feather&email=feather%40adafruit.com");

HTTP GET Example
The following example shows a simple GET request using callbacks to handle the
response from the HTTP server:

/***
 This is an example for our WICED Feather WIFI modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 MIT license, check LICENSE for more information
 All text above, and the splash screen below must be included in
 any redistribution
***/

#include <adafruit_feather.h>
#include <adafruit_http.h>

#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPassword"

#define SERVER "wifitest.adafruit.com" // The TCP server to
connect to
#define PAGE "/testwifi/index.html" // The HTTP resource to request
#define PORT 80 // The TCP port to use

// Some servers such as Facebook check the user_agent header to
// return data accordingly. Setting 'curl' mimics a command line browser.
// For a list of popular user agents see: http://www.useragentstring.com/pages/
useragentstring.php
#define USER_AGENT_HEADER "curl/7.45.0"

int ledPin = PA15;

// Use the HTTP class
AdafruitHTTP http;

Note the "%40" for the '@' symbol in encoded_data above. All non alpha-
numeric characters must be encoded before being transmitted.

©Adafruit Industries Page 108 of 212

/**/
/*!
 @brief TCP/HTTP received callback
*/
/**/
void receive_callback(void)
{
 // If there are incoming bytes available
 // from the server, read then print them:
 while (http.available())
 {
 int c = http.read();
 Serial.write((isprint(c) || iscntrl(c)) ? ((char)c) : '.');
 }
}

/**/
/*!
 @brief TCP/HTTP disconnect callback
*/
/**/
void disconnect_callback(void)
{
 Serial.println();
 Serial.println("---------------------");
 Serial.println("DISCONNECTED CALLBACK");
 Serial.println("---------------------");
 Serial.println();

 http.stop();
}

/**/
/*!
 @brief The setup function runs once when the board comes out of reset
*/
/**/
void setup()
{
 Serial.begin(115200);

 // Wait for the USB serial to connect. Needed for native USB port only.
 while (!Serial) delay(1);

 Serial.println("HTTP Get Example (Callback Based)\r\n");

 // Print all software versions
 Feather.printVersions();

 // Try to connect to an AP
 while (!connectAP())
 {
 delay(500); // delay between each attempt
 }

 // Connected: Print network info
 Feather.printNetwork();

 // Tell the HTTP client to auto print error codes and halt on errors
 http.err_actions(true, true);

 // Set the callback handlers
 http.setReceivedCallback(receive_callback);
 http.setDisconnectCallback(disconnect_callback);

 // Connect to the HTTP server
 Serial.printf("Connecting to %s port %d ... ", SERVER, PORT);
 http.connect(SERVER, PORT); // Will halt if an error occurs
 Serial.println("OK");

©Adafruit Industries Page 109 of 212

 // Setup the HTTP request with any required header entries
 http.addHeader("User-Agent", USER_AGENT_HEADER);
 http.addHeader("Accept", "text/html");
 http.addHeader("Connection", "keep-alive");

 // Send the HTTP request
 Serial.printf("Requesting '%s' ... ", PAGE);
 http.get(SERVER, PAGE); // Will halt if an error occurs
 Serial.println("OK");
}

/**/
/*!
 @brief The loop function runs over and over again
*/
/**/
void loop()
{
 togglePin(ledPin);
 delay(250);
}

/**/
/*!
 @brief Connect to the defined access point (AP)
*/
/**/
bool connectAP(void)
{
 // Attempt to connect to an AP
 Serial.print("Attempting to connect to: ");
 Serial.println(WLAN_SSID);

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");
 }
 else
 {
 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }
 Serial.println();

 return Feather.connected();
}

AdafruitHTTPServer

AdafruitHTTPServer makes it easy to run an HTTP server on the WICED feather in
either SoftAP or normal operating mode, allowing you to implement custom admin
consoles, rich data visualisations, or to publish 'always available' documention for
your project right on the board itself.

The helper class allows you to serve static content stored in flash memory (compiled
as part of the Arduino sketch itself), link to files on the 16MBit SPI flash on the WICED

The AdafruitHTTPServer class requires WICED Feather Lib 0.6.0 or higher to run.

©Adafruit Industries Page 110 of 212

Feather (if enabled via the optional solder jumper on the bottom of the board), or to
dynamically generate page content on to go.

AdafruitHTTPServer API
The AdafruitHTTPServer class has the following public functions:

AdafruitHTTPServer(uint8_t max_pages, uint8_t interface = WIFI_INTERFACE_STATION);

uint8_t interface (void);

void addPages(HTTPPage const* http_pages, uint8_t count = 1);

bool begin(uint16_t port,
 uint8_t max_clients,
 uint32_t stacksize = HTTPSERVER_STACKSIZE_DEFAULT);

void stop(void);

bool started(void);

Dynamic page content can be generated with the following callback handler
signature, changing the function name to something appropriate:

void dynamic_page_generator (const char* url,
 const char* query,
 httppage_request_t* http_request);

Constructor

When declaring a new instance of the AdafruitHTTPServer class you must declare the
maximum number of pages that the server will host (based on available memory since
each page record will require a chunk of SRAM to be allocated), and whether the
server in running in normal (non access point) mode, or in AP mode.

You indicate the operating mode via the ' interface ' field, which has one of the
following values:

WIFI_INTERFACE_STATION : Default value, meaning this should run in normal
non AP mode
WIFI_INTERFACE_AP : Indicates that the HTTP server should run on the AP
(Access Point) interface

For example, to use the default (non AP) interface for the HTTP server you might use
the following constructor declaration:

•

•

©Adafruit Industries Page 111 of 212

const char hello_html[] = "<html><body> <h1>Hello World!</
h1> </body></html>";

HTTPPage pages[] =
{
 HTTPPageRedirect("/", "/hello.html"), // Redirect root to hello page
 HTTPPage("/hello.html", HTTP_MIME_TEXT_HTML, hello_html),
};

uint8_t pagecount = sizeof(pages)/sizeof(HTTPPage);

// Declare HTTPServer with max number of pages
AdafruitHTTPServer httpserver(pagecount);

Adding Pages

All pages served by the HTTP server must be declared at compile time in a
specifically formatted list made up of the following record types:

1. HTTPPageRedirect Records (Page Redirection Entries)

An HTTPPageRedirect entry redirects all requests for the specified resource to
another location, and contains a string with the page to redirect from and the page to
redirect to.

2. HTTPPage Records (Standard Pages)

An HTTPPage is composed of the page path + name, the mime type string (so that
the browser knows how to render the resource), and the reference to the resource
itself, which can be one of the following:

A Raw String : The text contained in the specified string will be served as the
page contents
An HTTPResource (Static File) : The variable name for the binary contents of a
file, converted using the pyresource (https://adafru.it/qoD) tool. This tool takes
binary or text files, and converts them to standard C headers, with the file
contents added as an HTTPResource that AdafruitHTTPServer understands.
This allows you to insert static pages, images or other file types, and the mime
type will be used to indicate how the resource should be rendered in the
browser.
A Dynamic Callback Handler : The specified callback handler function will be
called when this resource is requested, and you can generate the page contents
dynamically in the callback handler
An SPI Flash Filename : The path and filename to retrieve a file from on the on
board SPI flash if enabled (files can be added to SPI flash over USB mass

•

•

•

•

©Adafruit Industries Page 112 of 212

file:///home/introducing-the-adafruit-wiced-feather-wifi/pyresource-dot-py

storage when the SPI flash is enabled via the optional solder jumper on the
bottom of the board).

A sample list of a well formatted page list can be seen below, where raw string data
('hello_html'), and dynamic content ('info_html_generator' and
'file_not_found_generator') are both present, as well as a redirection of root ('/') to '/
hello.html':

void info_html_generator (const char* url, const char* query,
httppage_request_t* http_request);
void file_not_found_generator (const char* url, const char* query,
httppage_request_t* http_request);

const char hello_html[] = "<html><body> <h1>Hello World!</
h1> </body></html>";

HTTPPage pages[] =
{
 HTTPPageRedirect("/", "/hello.html"), // redirect root to hello page
 HTTPPage("/hello.html", HTTP_MIME_TEXT_HTML, hello_html),
 HTTPPage("/info.html" , HTTP_MIME_TEXT_HTML, info_html_generator),
 HTTPPage("/404.html" , HTTP_MIME_TEXT_HTML, file_not_found_generator),
};

Note that we need to indicate the page count in the constructor!
// Declare HTTPServer with max number of pages
uint8_t pagecount = sizeof(pages)/sizeof(HTTPPage);
AdafruitHTTPServer httpserver(pagecount);

Converting Static Content (HTTPResources)

It's easy to convert a set of static files to resources that AdafruitHTTPServer can use
and embed in the sketch itself. For details see the dedicated pyresource (https://
adafru.it/qoD) tool page.

Implementing Dynamic Page Handlers

Two of the HTTPPage entries in the example above ('/info.html' and '/404.html') show
how dynamic pages can be added to the HTTP server.

The dynamic page function prototypes are declared at the top of the code above, and
the functions can then be implemented following the example below, which is called
when a 404 error occurs:

The HTTP Server will always redirect to ´/404.html´ when a 404 error occurs
(meaning a user requested a URL that is not available in the HTTPPage list
included at compile time). As such, it is a good idea to always include this page
in your project.

©Adafruit Industries Page 113 of 212

file:///home/introducing-the-adafruit-wiced-feather-wifi/pyresource-dot-py

/**/
/*!
 * @brief HTTP 404 generator. The HTTP Server will automatically redirect
 * to "/404.html" when it can't find the requested url in the
 * list of registered pages
 *
 * The url and query string are already separated when this function
 * is called.
 *
 * @param url url of this page
 * @param query query string after '?' e.g "var=value"
 * @param http_request Details about this HTTP request
*/
/**/
void file_not_found_generator (const char* url, const char* query,
httppage_request_t* http_request)
{
 (void) url;
 (void) query;
 (void) http_request;

 httpserver.print("<html><body>");
 httpserver.print("<h1>Error 404 File Not Found!</h1>");
 httpserver.print("
");

 httpserver.print("Available pages are:");
 httpserver.print("
");

 // Show a link list of all available pages:
 httpserver.print("");
 for(int i=0; i<pagecount; i++)
 {
 httpserver.print("");
 httpserver.print(pages[i].url);
 httpserver.print("");
 }
 httpserver.print("");

 httpserver.print("</body></html>");
}

Registering the Pages

Once you have create your file list and implemented any dynamic page handlers, you
must register your page list with the class via .addPages .

// Configure HTTP Server Pages
Serial.println("Adding Pages to HTTP Server");
httpserver.addPages(pages, pagecount);

You must call the .addPages function BEFORE calling the .begin function which
starts the HTTP server!

.addPages can be called multiple times before .begin if you wish to organize your
page list into several sets, but be sure that the 'max_pages' value used in the
constructor is big enough to accommodate all the pages.

©Adafruit Industries Page 114 of 212

Serial.print("Starting HTTP Server ... ");
httpserver.begin(PORT, MAX_CLIENTS);
Serial.println(" running");

Starting/Stopping the HTTP Server

You can start the HTTP server using the .begin function (and stop it via .stop),
with the following function signatures:

bool begin(uint16_t port,
 uint8_t max_clients,
 uint32_t stacksize = HTTPSERVER_STACKSIZE_DEFAULT);

void stop(void);

port: The port number to expose the HTTP server on (generally 80 or 8080, but
this can be any port you wish and you can even have multiple instances of the
HTTP server running on different ports if you wish).
max_clients: The maximum number of client connections to accept before
refusing requests. This should generally be kept as low as possible since there
is limited SRAM available on the system. 3 is a good number if there will be
multiple file requests at once, for example.
stacksize: This should generally be left at the default value, but if you require a
larger stack for the HTTP server you can adjust the value here within the limit of
available system resources.

Complete Example

The following code shows an example using the AdafruitHTTPServer class, but
numerous examples are included as part of the library in the HTTPServer folder, and
the latter may be more up to date.

To use this example, update the WLAN_SSID and WLAD_PASS fields, flash the sketch
to the User Code section of your WICED Feather, and then open the Serial Monitor
and wait for the connection to finish. Once connected, the HTTP server will start and
you can navigate to the IP address of your board to browse the pages added below.

/* This example uses the AdafruitHTTPServer class to create a simple webserver */

#include <adafruit_feather.h>
#include <adafruit_http_server.h>

Make sure you call the .addPages function BEFORE calling the .begin function
which starts the HTTP server!

•

•

•

©Adafruit Industries Page 115 of 212

#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPassword"

#define PORT 80 // The TCP port to use
#define MAX_CLIENTS 3

int ledPin = PA15;
int visit_count = 0;

void info_html_generator (const char* url, const char* query,
httppage_request_t* http_request);
void file_not_found_generator (const char* url, const char* query,
httppage_request_t* http_request);

const char hello_html[] = "<html><body> <h1>Hello World!</
h1> </body></html>";

HTTPPage pages[] =
{
 HTTPPageRedirect("/", "/hello.html"), // redirect root to hello page
 HTTPPage("/hello.html", HTTP_MIME_TEXT_HTML, hello_html),
 HTTPPage("/info.html" , HTTP_MIME_TEXT_HTML, info_html_generator),
 HTTPPage("/404.html" , HTTP_MIME_TEXT_HTML, file_not_found_generator),
};

uint8_t pagecount = sizeof(pages)/sizeof(HTTPPage);

// Declare HTTPServer with max number of pages
AdafruitHTTPServer httpserver(pagecount);

/**/
/*!
 * @brief Example of generating dynamic HTML content on demand
 *
 * Link is separated to url and query
 *
 * @param url url of this page
 * @param query query string after '?' e.g "var=value"
 *
 * @param http_request This request's information
*/
/**/
void info_html_generator (const char* url, const char* query, httppage_request_t*
http_request)
{
 (void) url;
 (void) query;
 (void) http_request;

 httpserver.print("Bootloader : ");
 httpserver.print(Feather.bootloaderVersion());
 httpserver.print("
");

 httpserver.print("WICED SDK : ");
 httpserver.print(Feather.sdkVersion());
 httpserver.print("
");

 httpserver.print("FeatherLib : ");
 httpserver.print(Feather.firmwareVersion());
 httpserver.print("
");

 httpserver.print("Arduino API : ");
 httpserver.print(Feather.arduinoVersion());
 httpserver.print("
");
 httpserver.print("
");

 visit_count++;
 httpserver.print("visit count : ");

©Adafruit Industries Page 116 of 212

 httpserver.print(visit_count);
}

/**/
/*!
 * @brief HTTP 404 generator. The HTTP Server will automatically redirect
 * to "/404.html" when it can't find the requested url in the
 * list of registered pages
 *
 * The url and query string are already separated when this function
 * is called.
 *
 * @param url url of this page
 * @param query query string after '?' e.g "var=value"
 * @param http_request Details about this HTTP request
*/
/**/
void file_not_found_generator (const char* url, const char* query,
httppage_request_t* http_request)
{
 (void) url;
 (void) query;
 (void) http_request;

 httpserver.print("<html><body>");
 httpserver.print("<h1>Error 404 File Not Found!</h1>");
 httpserver.print("
");

 httpserver.print("Available pages are:");
 httpserver.print("
");

 httpserver.print("");
 for(int i=0; i<pagecount; i++)
 {
 httpserver.print("");
 httpserver.print(pages[i].url);
 httpserver.print("");
 }
 httpserver.print("");

 httpserver.print("</body></html>");
}

/**/
/*!
 @brief The setup function runs once when the board comes out of reset
*/
/**/
void setup()
{
 Serial.begin(115200);

 // Wait for the USB serial to connect. Needed for native USB port only.
 while (!Serial) delay(1);

 Serial.println("Simple HTTP Server Example\r\n");

 // Print all software versions
 Feather.printVersions();

 // Try to connect to an AP
 while (!connectAP())
 {
 delay(500); // delay between each attempt
 }

 // Connected: Print network info
 Feather.printNetwork();

©Adafruit Industries Page 117 of 212

 // Tell the HTTP client to auto print error codes and halt on errors
 httpserver.err_actions(true, true);

 // Configure HTTP Server Pages
 Serial.println("Adding Pages to HTTP Server");
 httpserver.addPages(pages, pagecount);

 Serial.print("Starting HTTP Server ... ");
 httpserver.begin(PORT, MAX_CLIENTS);
 Serial.println(" running");
}

/**/
/*!
 @brief The loop function runs over and over again
*/
/**/
void loop()
{
 togglePin(ledPin);
 delay(1000);
}

/**/
/*!
 @brief Connect to the defined access point (AP)
*/
/**/
bool connectAP(void)
{
 // Attempt to connect to an AP
 Serial.print("Please wait while connecting to: '" WLAN_SSID "' ... ");

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");
 }
 else
 {
 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }
 Serial.println();

 return Feather.connected();
}

/**/
/*!
 @brief TCP/HTTP disconnect callback
*/
/**/
void disconnect_callback(void)
{
 Serial.println();
 Serial.println("---------------------");
 Serial.println("DISCONNECTED CALLBACK");
 Serial.println("---------------------");
 Serial.println();

 httpserver.stop();
}

©Adafruit Industries Page 118 of 212

AdafruitMQTT
The Adafruit WICED Feather API includes an internal MQTT client that allows you
perform basic MQTT operations directly with any MQTT broker.

AdafruitMQTT inherits from AdafruitTCP and also has access to all of the functions
defined in the parent class.

Note: You are also free to use an external Client (https://adafru.it/lFj) based MQTT
library (for example Adafruit_MQTT_Library (https://adafru.it/fp6)) if you prefer or need
something fully under your control. AdafruitMQTT is provided for convenience sake,
and to avoid external dependencies, but isn't the only option at your disposal.

Constructors
Some MQTT brokers require a username and password to connect. If necessary, the
two values should be provided in the constructor when declaring an instance of
AdafruitMQTT.

If no username and password are required, simply use the default empty constructor.

AdafruitMQTT()
AdafruitMQTT(const char* username, const char* password)

Functions
bool connected (void);

bool connect (IPAddress ip,
 uint16_t port = 1883,
 bool cleanSession = true,
 uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT);
bool connect (const char* host,
 uint16_t port = 1883,
 bool cleanSession = true,
 uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT);

bool connectSSL (IPAddress ip,
 uint16_t port = 8883,
 bool cleanSession = true,
 uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT);
bool connectSSL (const char* host,
 uint16_t port = 8883,
 bool cleanSession = true,
 uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT);

bool disconnect (void);

©Adafruit Industries Page 119 of 212

https://www.arduino.cc/en/Reference/ClientConstructor
https://github.com/adafruit/Adafruit_MQTT_Library

bool publish (UTF8String topic,
 UTF8String message,
 uint8_t qos = MQTT_QOS_AT_MOST_ONCE,
 bool retained = false);

bool subscribe (const char* topicFilter,
 uint8_t qos,
 messageHandler mh);

bool unsubscribe(const char* topicFilter);

void will (const char* topic,
 UTF8String message,
 uint8_t qos = MQTT_QOS_AT_MOST_ONCE,
 uint8_t retained = 0);

void clientID (const char* client)

void setDisconnectCallback (void (*fp) (void))

Connection Management
AdafruitMQTT can connect to an MQTT broker using both 'open' (unencrypted) or
'secure' (TLS/SSL encrypted) connections.

bool connected(void)

Indicates if we are currently connected to the MQTT broker or not.

Parameters: None

Returns: 'True' (1) if we are connected to the MQTT broker, otherwise 'false' (0).

bool connect (IPAddress ip, uint16_t port = 1883, bool
cleanSession = true, uint16_t keepalive_sec =
MQTT_KEEPALIVE_DEFAULT);

Establishes an open connection with the specified MQTT broker.

Parameters:

ip: The IP address for the MQTT broker
port: The port to use (default = 1883)

•
•

©Adafruit Industries Page 120 of 212

cleanSession: Indicates whether the client and broker should remember 'state'
across restarts and reconnects (based on the 'Client ID' value set in the
constructor):

If set to false (0) both the client and server will maintain state across
restarts of the client, the server and the connection. As state is maintained:

Message delivery will be reliable meeting the specified QOS even if
the client, server or connection are restarted.
The server will treat a subscription as durable.

If set to true (1) the client and server will not maintain state across restarts
of the client, the server or the connection. This means:

Message delivery to the specified QOS cannot be maintained if the
client, server or connection are restarted
The server will treat a subscription as non-durable

keepalive_sec: This value defines the maximum interval (in seconds) between
messages being sent or received. Setting a value here ensures that at least one
message is sent between the client and the broker within every 'keep alive'
period. If no data was sent within 'keepalive_sec' seconds, the Client will send a
simple ping to the broker to keep the connection alive. Setting this value to '0'
disables the keep alive feature. The default value is 60 seconds.

Returns: 'True' (1) if the connection was successful, otherwise 'false' (0).

bool connect (const char* host, uint16_t port = 1883, bool
cleanSession = true, uint16_t keepalive_sec =
MQTT_KEEPALIVE_DEFAULT);

Establishes an open connection with the specified MQTT broker.

Parameters:

host: The domain name for the MQTT broker
port: The port to use (default = 1883)

•

◦

▪

▪

◦

▪

▪

•

•
•

©Adafruit Industries Page 121 of 212

cleanSession: Indicates whether the client and broker should remember 'state'
across restarts and reconnects (based on the 'Client ID' value set in the
constructor):

If set to false (0) both the client and server will maintain state across
restarts of the client, the server and the connection. As state is maintained:

Message delivery will be reliable meeting the specified QOS even if
the client, server or connection are restarted.
The server will treat a subscription as durable.

If set to true (1) the client and server will not maintain state across restarts
of the client, the server or the connection. This means:

Message delivery to the specified QOS cannot be maintained if the
client, server or connection are restarted
The server will treat a subscription as non-durable

keepalive_sec: This value defines the maximum interval (in seconds) between
messages being sent or received. Setting a value here ensures that at least one
message is sent between the client and the broker within every 'keep alive'
period. If no data was sent within 'keepalive_sec' seconds, the Client will send a
simple ping to the broker to keep the connection alive. Setting this value to '0'
disables the keep alive feature. The default value is 60 seconds.

Returns: 'True' (1) if the connection was successful, otherwise 'false' (0).

bool connectSSL (IPAddress ip, uint16_t port = 8883, bool
cleanSession = true, uint16_t keepalive_sec =
MQTT_KEEPALIVE_DEFAULT)

Establishes a secure connection with the specified MQTT broker.

Parameters:

ip: The IP address of the MQTT broker
port: The port to use (default = 8883)

•

◦

▪

▪

◦

▪

▪

•

•
•

©Adafruit Industries Page 122 of 212

cleanSession: Indicates whether the client and broker should remember 'state'
across restarts and reconnects (based on the 'Client ID' value set in the
constructor):

If set to false (0) both the client and server will maintain state across
restarts of the client, the server and the connection. As state is maintained:

Message delivery will be reliable meeting the specified QOS even if
the client, server or connection are restarted.
The server will treat a subscription as durable.

If set to true (1) the client and server will not maintain state across restarts
of the client, the server or the connection. This means:

Message delivery to the specified QOS cannot be maintained if the
client, server or connection are restarted
The server will treat a subscription as non-durable

keepalive_sec: This value defines the maximum interval (in seconds) between
messages being sent or received. Setting a value here ensures that at least one
message is sent between the client and the broker within every 'keep alive'
period. If no data was sent within 'keepalive_sec' seconds, the Client will send a
simple ping to the broker to keep the connection alive. Setting this value to '0'
disables the keep alive feature. The default value is 60 seconds.

Returns: 'True' (1) if the connection was successful, otherwise 'false' (0).

bool connectSSL (const char* host, uint16_t port =
8883, bool cleanSession = true, uint16_t keepalive_sec =
MQTT_KEEPALIVE_DEFAULT)

Establishes a secure connection with the specified MQTT broker.

Parameters:

host: The domain name of the MQTT broker
port: The port to use (default = 8883)

•

◦

▪

▪

◦

▪

▪

•

•
•

©Adafruit Industries Page 123 of 212

cleanSession: Indicates whether the client and broker should remember 'state'
across restarts and reconnects (based on the 'Client ID' value set in the
constructor):

If set to false (0) both the client and server will maintain state across
restarts of the client, the server and the connection. As state is maintained:

Message delivery will be reliable meeting the specified QOS even if
the client, server or connection are restarted.
The server will treat a subscription as durable.

If set to true (1) the client and server will not maintain state across restarts
of the client, the server or the connection. This means:

Message delivery to the specified QOS cannot be maintained if the
client, server or connection are restarted
The server will treat a subscription as non-durable

keepalive_sec: This value defines the maximum interval (in seconds) between
messages being sent or received. Setting a value here ensures that at least one
message is sent between the client and the broker within every 'keep alive'
period. If no data was sent within 'keepalive_sec' seconds, the Client will send a
simple ping to the broker to keep the connection alive. Setting this value to '0'
disables the keep alive feature. The default value is 60 seconds.

Returns: 'True' (1) if the connection was successful, otherwise 'false' (0).

bool disconnect (void)

Disconnects from the remote MQTT broker.

Parameters: None

Returns: 'True' (1) if the disconnect was successful, otherwise 'false' (0) if an error
occured (check .errno, .errstr, etc.).

Messaging
The following functions allow you to publish, subscribe and unsubscribe to MQTT
topics:

•

◦

▪

▪

◦

▪

▪

•

©Adafruit Industries Page 124 of 212

bool publish (UTF8String topic, UTF8String message,
uint8_t qos = MQTT_QOS_AT_MOST_ONCE, bool
retained = false);

Published the supplied 'message' to the specified 'topic'.

Parameters:

topic: The topic where the data should be published (ex: "adafruit/data" or
"home/rooms/bedroom/temp"). UTF8String is used to make it easier to work
with UTF8 data.
message: The string of data to write to the specified 'topic'. UTF8String is used
to make it easier to work with UTF8 data.
qos: The quality of service level (see the MQTT spec for details). Default = 'At
Most Once', meaning the message tries to send once but isn't persisted if the
send fails. Possible values are:

MQTT_QOS_AT_MOST_ONCE
MQTT_QOS_AT_LEAST_ONCE
MQTT_QOS_EXACTLY_ONCE

retained: Whether or not the published message should be 'retained' by the
MQTT broker. Sending a message with the retained bool set to 'false' (0) will
clear any previously retained message from the broker. The default value is
false.

Returns: 'True' (1) if the publish was successful, otherwise 'false' (0) if an error occured
(check .errno, .errstr, etc.).

bool subscribe (const char* topicFilter, uint8_t
qos, messageHandler mh);

Subscribes to a specific topic, using a callback mechanism to alert you when new
data is available on the specific topicFilter.

Parameters:

topicFilter: The topic name or topic 'filter' to subscribe to. This can be either a
single topic ("home/kitchen/fridge/temp") or make use of a standard MQTT
wildcard like "home/+", which will subscribe to changes to any topic above the
'home/' level.

•

•

•

◦
◦
◦

•

•

©Adafruit Industries Page 125 of 212

qos: A subscribing client can set the maximum quality of service a broker uses
to send messages that match the client subscriptions. The QoS of a message
forwarded to a subscriber thus might be different to the QoS given to the
message by the original publisher. The lower of the two values is used to
forward a message. The value of qos can be one of:

MQTT_QOS_AT_MOST_ONCE
MQTT_QOS_AT_LEAST_ONCE
MQTT_QOS_EXACTLY_ONCE

mh: The MQTT subscribe callback function that will handle callback events (see
Subscribe Callback Handler below for details).

Returns: 'True' (1) if the subscribe was successful, otherwise 'false' (0) if an error
occured (check .errno, .errstr, etc.).

Subscribe Callback Handler(s)

When you subscribe to a specific topic or topic filter, you also need to pass in a
callback function that will be used to handle any subscribe matches or events.

MQTT subscribe callback functions must have the following format:

/**/
/*!
 @brief MQTT subscribe event callback handler

 @param topic The topic causing this callback to fire
 @param message The new value associated with 'topic'

 @note 'topic' and 'message' are UTF8Strings (byte array), which means
 they are not null-terminated like C-style strings. You can
 access its data and len using .data & .len, although there is
 also a Serial.print override to handle UTF8String data types.
*/
/**/
void subscribed_callback(UTF8String topic, UTF8String message)
{
 // Print out topic name and message
 Serial.print("[Subscribed] ");
 Serial.print(topic);
 Serial.print(" : ") ;
 Serial.println(message);

•

◦
◦
◦

•

You can subscribe to up to EIGHT (8) topics with the internal MQTT client.

The same callback handler can be used for multiple subscriptions, or you can
use individual callbacks for each subscribe. The choice will depend on your
specific project.

©Adafruit Industries Page 126 of 212

 // Echo back
 Serial.print("Echo back to " TOPIC_ECHO " ... ");
 mqtt.publish(TOPIC_ECHO, message); // Will halt if an error occurs
 Serial.println("OK");

 // Unsubscribe from SUBSCRIBED_TOPIC2 if we received an "stop" message
 // Won't be able to echo anymore
 if (message == "stop")
 {
 Serial.print("Unsubscribing from " TOPIC_SUBSCRIBE " ... ");
 mqtt.unsubscribe(TOPIC_SUBSCRIBE); // Will halt if fails
 Serial.println("OK");
 }
}

Callback Handler Parameters

topic: The topic that caused the subscribe callback to fire (UTF8-encoded)
message: The UTF8 encoded message associated with topic_data

bool unsubscribe(const char* topicFilter);

Unsubscribes from a specific topic or topic filter.

Parameters: The topic or topic filter to unsubscribe from

Returns: 'True' (1) is the unsubscribe was successful, otherwise 'false' (0).

Last Will
MQTT has a concept called a 'Last Will' message. The optional 'Last Will' message
can be set using a user-define topic, and this message will be sent if the server/
broker is unable to contact the client for a specific amount of time.

This functionality isn't a mandatory part of MQTT, but can be used to detect when
nodes are online and offline. When you connect, you can for example set a string like
"Online" to a specific topic, and then set a last will message of "Offline" to that same
topic. If the node goes offline (battery failure, disconnect, etc.), the broker will use the
last will to set the topic to "Offline" once the server/client timeout occurs.

•
•

Note the use of UTF8String for 'topic' and 'message' since the strings that are
returned are UTF8 encoded and NOT NULL terminated, so we need to use this
helper to convert them to something we can safely print.

©Adafruit Industries Page 127 of 212

void will (const char* topic, UTF8String message, uint8_t
qos = MQTT_QOS_AT_MOST_ONCE, uint8_t retained =
0);

Sets the last will message.

Parameters:

topic: The topic where the data should be published (ex: "adafruit/data" or
"home/rooms/bedroom/temp").
message: The string of data to write to the specified 'topic' (UTF8String is used
to make it easier to work with UTF8 data).
qos: The quality of service level (see the MQTT spec for details). Default = 'At
Most Once', meaning the message tries to send once but isn't persisted if the
send fails. Possible values are:

MQTT_QOS_AT_MOST_ONCE
MQTT_QOS_AT_LEAST_ONCE
MQTT_QOS_EXACTLY_ONCE

retained: Whether or not the published message should be 'retained' by the
MQTT broker. Sending a message with the retained bool set to 'false' (0) will
clear any previously retained message from the broker. The default value is
false.

Returns: 'True' (1) is the last will message was successfully set, otherwise 'false' (0).

Client ID
The client identifier (Client ID) is an string that identifies each MQTT client connecting
to an MQTT broker.

This value should be unique on the broker since the broker uses it for identifying the
client and the client's current 'state' of the client (subscriptions, QoS, etc.).

By default, a random 10-23 character string will be generated for the unique Client ID
that gets passed to the broker during the connection process. If you wish to maintain

Be sure to set the last will BEFORE calling the .connect function since the last will
is set during the connect phase!

•

•

•

◦
◦
◦

•

©Adafruit Industries Page 128 of 212

a consistent client ID across connections, however, you can override the random
client ID by using the .clientID function below:

void clientID(const char* client)

Sets a manual Client ID, overriding the default random value.

Parameters:

client: A null-terminated string representing the client ID to pass to the MQTT
broker.

Returns: Nothing

Disconnect Callback
An optional disconnect callback is available in AdafruitMQTT. This callback handler
will fire when you are disconnected from the remote MQTT broker.

To use the callback, add the following function to your sketch (the function name and
the contents of the function can change depending on your project requirements):

void disconnect_callback(void)
{
 Serial.println();
 Serial.println("-----------------------------");
 Serial.println("DISCONNECTED FROM MQTT BROKER");
 Serial.println("-----------------------------");
 Serial.println();
}

Then pass this function name into the .setDisconnectCallback function BEFORE
calling .connect or .connectSSL:

// Set the disconnect callback handler
mqtt.setDisconnectCallback(disconnect_callback);

AdafruitMQTT Example
The following example illustrates how to subscribe to topics, set the last will message,
publish, and implement one or more subscribe callback handlers:

•

©Adafruit Industries Page 129 of 212

/***
 This is an example for our Feather WIFI modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 MIT license, check LICENSE for more information
 All text above, and the splash screen below must be included in
 any redistribution
***/

#include <adafruit_feather.h>
#include <adafruit_mqtt.h>
#include "certificate_mosquitto.h"

/* This sketch demonstrates subscribe/unsubscribe activity with
 * callbacks.
 *
 * It will connect to a public MQTT server (with/without TLS)
 * and subscribe to TOPIC_SUBSCRIBE (defined below).
 *
 * - When a message is received, it will echo back to TOPIC_ECHO
 * - If the received message is "stop", we will
 * unsubscribe from TOPIC_SUBSCRIBE and you won't be able to
 * echo content back to the broker any longer.
 *
 * Note: TOPIC_SUBSCRIBE and TOPIC_ECHO must not be the same topic!
 * Ex. They must not be "adafruit/+" and "adafruit/echo", since this will
 * cause an infinite loop (received -> echo -> received ->)
 *
 * For details on the MQTT broker server see http://test.mosquitto.org/
 * - Port 1883 : MQTT, unencrypted
 * - Port 8883 : MQTT, encrypted (TLS)
 *
 * Note: may You need an MQTT desktop client such as the lightweight
 * Java client included in this repo: org.eclipse.paho.mqtt.utility-1.0.0.jar
 *
 * For information on configuring your system to work with MQTT see:
 * - https://learn.adafruit.com/desktop-mqtt-client-for-adafruit-io/installing-
software
 *
 * To run this demo
 * 1. Change the WLAN_SSID/WLAN_PASS to match your access point
 * 2. Decide whether you want to use TLS/SSL or not (USE_TLS)
 * 3. Change TOPIC*, WILL*, enable CLIENTID if needed
 * 4. Compile and run
 * 5. Use an MQTT desktop client to connect to the same MQTT broker and
 * publish to any topic beginning with "adafruit/feather/" (depending
 * on TOPIC_SUBSCRIBE). To be able to recieve the echo message, please
 * also subcribe to "adafruit/feather_echo" (TOPIC_ECHO).
 */

#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPass"

#define USE_TLS 0

#define BROKER_HOST "test.mosquitto.org"

This example uses the freely accessible test MQTT broker at test.mosquitto.org.
This server is publicly accessible, so be careful what data you push to it since
anyone can see the publications!

©Adafruit Industries Page 130 of 212

#define BROKER_PORT (USE_TLS ? 8883 : 1883)

// Uncomment to set your own ClientID, otherwise a random ClientID is used
//#define CLIENTID "Adafruit Feather"

#define TOPIC_SUBSCRIBE "adafruit/feather/+"
#define TOPIC_ECHO "adafruit/feather_echo"

#define WILL_TOPIC "adafruit/feather"
#define WILL_MESSAGE "Goodbye!!"

AdafruitMQTT mqtt;

/**/
/*!
 @brief Disconnect handler for MQTT broker connection
*/
/**/
void disconnect_callback(void)
{
 Serial.println();
 Serial.println("-----------------------------");
 Serial.println("DISCONNECTED FROM MQTT BROKER");
 Serial.println("-----------------------------");
 Serial.println();
}

/**/
/*!
 @brief The setup function runs once when the board comes out of reset
*/
/**/
void setup()
{
 Serial.begin(115200);

 // Wait for the USB serial port to connect. Needed for native USB port only
 while (!Serial) delay(1);

 Serial.println("MQTT Subscribe Example\r\n");

 // Print all software versions
 Feather.printVersions();

 while (!connectAP())
 {
 delay(500); // delay between each attempt
 }

 // Connected: Print network info
 Feather.printNetwork();

 // Tell the MQTT client to auto print error codes and halt on errors
 mqtt.err_actions(true, true);

 // Set ClientID if defined
 #ifdef CLIENTID
 mqtt.clientID(CLIENTID);
 #endif

 // Last will must be set before connecting since it is part of the connection data
 mqtt.will(WILL_TOPIC, WILL_MESSAGE, MQTT_QOS_AT_LEAST_ONCE);

 // Set the disconnect callback handler
 mqtt.setDisconnectCallback(disconnect_callback);

 Serial.printf("Connecting to " BROKER_HOST " port %d ... ", BROKER_PORT);
 if (USE_TLS)
 {

©Adafruit Industries Page 131 of 212

 // Disable default RootCA to save SRAM since we don't need to
 // access any other site except test.mosquitto.org
 Feather.useDefaultRootCA(false);

 // mosquitto CA is pre-generated using pycert.py
 Feather.addRootCA(rootca_certs, ROOTCA_CERTS_LEN);

 // Connect with SSL/TLS
 mqtt.connectSSL(BROKER_HOST, BROKER_PORT);
 }else
 {
 mqtt.connect(BROKER_HOST, BROKER_PORT);
 }
 Serial.println("OK");

 Serial.print("Subscribing to " TOPIC_SUBSCRIBE " ... ");
 mqtt.subscribe(TOPIC_SUBSCRIBE, MQTT_QOS_AT_MOST_ONCE, subscribed_callback); //
Will halted if an error occurs
 Serial.println("OK");
}

/**/
/*!
 @brief This loop function runs over and over again
*/
/**/
void loop()
{

}

/**/
/*!
 @brief MQTT subscribe event callback handler

 @param topic The topic causing this callback to fire
 @param message The new value associated with 'topic'

 @note 'topic' and 'message' are UTF8Strings (byte array), which means
 they are not null-terminated like C-style strings. You can
 access its data and len using .data & .len, although there is
 also a Serial.print override to handle UTF8String data types.
*/
/**/
void subscribed_callback(UTF8String topic, UTF8String message)
{
 // Print out topic name and message
 Serial.print("[Subscribed] ");
 Serial.print(topic);
 Serial.print(" : ") ;
 Serial.println(message);

 // Echo back
 Serial.print("Echo back to " TOPIC_ECHO " ... ");
 mqtt.publish(TOPIC_ECHO, message); // Will halt if an error occurs
 Serial.println("OK");

 // Unsubscribe from SUBSCRIBED_TOPIC2 if we received an "stop" message
 // Won't be able to echo anymore
 if (message == "stop")
 {
 Serial.print("Unsubscribing from " TOPIC_SUBSCRIBE " ... ");
 mqtt.unsubscribe(TOPIC_SUBSCRIBE); // Will halt if fails
 Serial.println("OK");
 }
}

/**/
/*!

©Adafruit Industries Page 132 of 212

 @brief Connect to defined Access Point
*/
/**/
bool connectAP(void)
{
 // Attempt to connect to an AP
 Serial.print("Attempting to connect to: ");
 Serial.println(WLAN_SSID);

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");
 }
 else
 {
 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }
 Serial.println();

 return Feather.connected();
}

AdafruitMQTTTopic
AdafruitMQTT includes an OPTIONAL helper class called AdafruitMQTTTopic that can
be used to publish data to a single topic on an MQTT broker.

This helper class inherits from Print (https://adafru.it/lFk), which allows you to write
data to MQTT topics similarly to how you would write data to the 'Serial Monitor',
using .print statements.

Constructor
AdafruitMQTTTopic(AdafruitMQTT& mqtt,
 const char* topic,
 uint8_t qos = MQTT_QOS_AT_MOST_ONCE,
 bool retain = false)

Parameters:

mqtt: A reference to the AdafruitMQTT instance associated with this helper
(since the connection to the MQTT broker is defined and managed there).
topic: A null-terminated string containing the topic to publish to
qos: An optional quality of server (QoS) level to use when publishing. If left
empty, this argument will default to 'At Most Once', meaning it will try to publish

See 'MQTT/MqttTopicClass' in the examples folder for an example of how to use
AdafruitMQTTTopic.

•

•
•

©Adafruit Industries Page 133 of 212

http://playground.arduino.cc/Code/Printclass

the data but if the operation fails it won't persist the attempt and retry again
later.
retain: Sets the 'retain' bit to indicate if any messages published to the MQTT
broker should be retained on the broker for the next client(s) that access that
topic.

The following example shows how to properly declare an instance of the
AdafruitMQTTTopic class (note that the default QoS and retain values are used):

#define CLIENTID "Adafruit Feather"
#define TOPIC "adafruit/feather"

AdafruitMQTT mqtt (CLIENTID);
AdafruitMQTTTopic publisher (mqtt, TOPIC);

Functions
In addition to the functions defined in the Print base class (https://adafru.it/lFk) (see
the Print.h source (https://adafru.it/lFl) as well), the following functions are defined as
part of AdafruitMQTTTopic:

void retain(bool on)

void retain (bool on)

Enables or disabled the 'retain' feature when publishing messages. This indicates
whether the published message should be maintained on the broker when a message
is written to the topic.

Parameters:

on: Whether or not the published message should be 'retained' by the
MQTT broker. Sending a message with the this set to 'false' (0) will clear any
previously retained message from the broker.

Returns: Nothing

•

The default value for 'retain' is false, unless it is modified using this function.

•

©Adafruit Industries Page 134 of 212

http://playground.arduino.cc/Code/Printclass
https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/Print.h

Subscribe Callbacks
You can also subscribe or unsubcribe to publications on the topic using the following
functions:

bool subscribe (messageHandler_t mh);
bool unsubscribe (void);
bool subscribed (void);

bool subscribe (messageHandler_t mh)

This function will subscribe to the topic and any changes will be sent to the specified
callback handler.

Parameters:

mh: The callback handler where the subscription event should be redirected to.

Returns: 'True' (1) is the subscribe was successful, otherwise 'false' (0).

Subscription callback handlers have the following format:

/**/
/*!
 @brief MQTT subscribe event callback handler

 @param topic The topic causing this callback to fire
 @param message The new value associated with 'topic'

 @note 'topic' and 'message' are UTF8Strings (byte array), which means
 they are not null-terminated like C-style strings. You can
 access its data and len using .data & .len, although there is
 also a Serial.print override to handle UTF8String data types.
*/
/**/
void subscribed_callback(UTF8String topic, UTF8String message)
{
 // Print out topic name and message
 Serial.printf("["); Serial.print(topic); Serial.printf("]");
 Serial.print(" : message = ") ;
 Serial.println(message);

 // Unsubscribe if message = "stop"
 if (message == "stop")
 {
 Serial.print("Unsubscribing ... ");
 mqttTopic.unsubscribe(); // Will halt if fails
 Serial.println("OK");
 }
}

•

©Adafruit Industries Page 135 of 212

bool unsubscribe (void)

Unsubscribes to the topic if you previously called .subscribe.

Parameters: None

Returns: 'True' (1) if the operation succeeded, otherwise 'false' (0).

bool subscribed (void)

Indicates whether you are currently susbcripted to this topic or not.

Parameters: None

Returns: 'True' (1) if you are subscribed, otherwise 'false' (0).

Publishing Data via 'Print'
One important thing to keep in mind with AdafruitMQTTTopic is that every .print*
function corresponds to an MQTT publication request.

The following code will result in three different MQTT publications:

int number_of_days = 7;
char* place = "somewhere";

pub.print(number_of_days);
pub.print(" days since something happened ");
pub.print(place);

You can work around this '1 print = 1 publication' restriction by using the printf
function, as shown in the example below:

int number_of_days = 7;
char* place = "somewhere";

pub.printf("%d days since something happened %s", number_of_days, place);

For a full list of printf modifiers (the special '%' character sequences that get replaced
with variables after the main string) see printf here (https://adafru.it/lFm).

©Adafruit Industries Page 136 of 212

http://www.cplusplus.com/reference/cstdio/printf/

The most common modifiers are described below though (all preceded by '%' so '%d'
for a signed decimal value, etc.) :

d or i: Signed decimal value ('int', 'int16_t', etc.)
u: unsigned decimal value ('uint32_t', etc.)
x: lower-case hexadecimal integer (ex. 'a12b' for 0xA12B)
X: upper-case hexadecimal integer (ex. 'A12B' for 0xA12B)
f: floating point value ('float', etc.)
s: null-terminated string of characters (ex. "sample")
c: A single characters (ex. 'a')

Example
The following sketch shows how you might use AdafruitMQTTTopic in the real world.
 The latest source can be found in the MQTT/MqttTopicClass folder in 'examples'.

/***
 This is an example for our Feather WIFI modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 MIT license, check LICENSE for more information
 All text above, and the splash screen below must be included in
 any redistribution
***/

#include <adafruit_feather.h>
#include <adafruit_mqtt.h>
#include "certificate_mosquitto.h"

/* This sketch connects to a public MQTT server (with/without TLS)
 * and publishes a message to a topic every 5 seconds.
 *
 * For server details see http://test.mosquitto.org/
 * - Port 1883 : MQTT, unencrypted
 * - Port 8883 : MQTT, encrypted (TLS)
 *
 * Note: may You need an MQTT desktop client such as
 * - The lightweight Java client included in this repo:
org.eclipse.paho.mqtt.utility-1.0.0.jar or
 * - A full desktop client like MQTT.fx https://learn.adafruit.com/desktop-mqtt-
client-for-adafruit-io/installing-software
 *
 * To run this demo
 * 1. Change WLAN_SSID/WLAN_PASS
 * 2. Decide whether you want to use TLS/SSL or not (USE_TLS)
 * 3. Change CLIENTID, TOPIC, PUBLISH_MESSAGE, WILL_MESSAGE if you want
 * 4. Compile and run
 * 5. Use your MQTT desktop client to connect to the same sever and subscribe
 * to the defined topic to monitor the published message(s).
 */

•
•
•
•
•
•
•

©Adafruit Industries Page 137 of 212

#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPass"

#define USE_TLS 0

#define BROKER_HOST "test.mosquitto.org"
#define BROKER_PORT (USE_TLS ? 8883 : 1883)

// Uncomment to set your own ClientID, otherwise a random ClientID is used
//#define CLIENTID "Adafruit Feather"

#define TOPIC "adafruit/feather"
#define WILL_MESSAGE "Goodbye!!"

AdafruitMQTT mqtt;
AdafruitMQTTTopic mqttTopic(&mqtt, TOPIC, MQTT_QOS_EXACTLY_ONCE);

char old_value = '0';
char value = '0';

/**/
/*!
 @brief The setup function runs once when the board comes out of reset
*/
/**/
void setup()
{
 Serial.begin(115200);

 // Wait for the USB serial port to connect. Needed for native USB port only
 while (!Serial) delay(1);

 Serial.println("MQTT Publish using Publisher Example\r\n");

 // Print all software versions
 Feather.printVersions();

 while (!connectAP())
 {
 delay(500); // delay between each attempt
 }

 // Connected: Print network info
 Feather.printNetwork();

 // Tell the MQTT client to auto print error codes and halt on errors
 mqtt.err_actions(true, true);

 // Set ClientID if defined
 #ifdef CLIENTID
 mqtt.clientID(CLIENTID);
 #endif

 // Last will must be set before connecting since it is part of the connection data
 mqtt.will(TOPIC, WILL_MESSAGE, MQTT_QOS_AT_LEAST_ONCE);

 // Connect to broker
 Serial.printf("Connecting to " BROKER_HOST " port %d ... ", BROKER_PORT);
 if (USE_TLS)
 {
 // Disable default RootCA to save SRAM since we don't need to
 // access any other site except test.mosquitto.org
 Feather.useDefaultRootCA(false);

 // mosquitto CA is pre-generated using pycert.py
 Feather.addRootCA(rootca_certs, ROOTCA_CERTS_LEN);

 // Connect with SSL/TLS
 mqtt.connectSSL(BROKER_HOST, BROKER_PORT);

©Adafruit Industries Page 138 of 212

 }else
 {
 mqtt.connect(BROKER_HOST, BROKER_PORT);
 }
 Serial.println("OK");

 // Subscribe with callback
 mqttTopic.subscribe(subscribed_callback);

 Serial.println("Please use desktop client to subcribe to \'" TOPIC "\' to
monitor");

 // Inital publish
 Serial.printf("Publishing \'%d\' ... ", value);
 mqttTopic.print(value); // use .write to send in binary format
 Serial.println("OK");
}

/**/
/*!
 @brief This loop function runs over and over again
*/
/**/
void loop()
{
 // value changed due to subscribed callback
 if (old_value != value)
 {
 // check if still subscribed
 if (mqttTopic.subscribed())
 {
 old_value = value;
 Serial.println();
 Serial.printf("Publishing \'%c\' ... \r\n", value);
 mqttTopic.print(value); // use .write to send in binary format
 }
 }
}

/**/
/*!
 @brief MQTT subscribe event callback handler

 @param topic The topic causing this callback to fire
 @param message The new value associated with 'topic'

 @note 'topic' and 'message' are UTF8Strings (byte array), which means
 they are not null-terminated like C-style strings. You can
 access its data and len using .data & .len, although there is
 also a Serial.print override to handle UTF8String data types.
*/
/**/
void subscribed_callback(UTF8String topic, UTF8String message)
{
 // Copy received data to 'value'
 memcpy(&value, message.data, 1);

 // Print out topic name and message
 Serial.printf("["); Serial.print(topic); Serial.printf("]");
 Serial.print(" : value = ") ;
 Serial.println(value);

 // Increase value by 1
 value++;

 // wrap around
 if (value > '9') value = '0';

 // Unsubscribe if we received an "stop" message

©Adafruit Industries Page 139 of 212

 // Won't be able to echo anymore
 if (message == "stop")
 {
 Serial.print("Unsubscribing ... ");
 mqttTopic.unsubscribe(); // Will halt if fails
 Serial.println("OK");
 }
}

/**/
/*!
 @brief Connect to defined Access Point
*/
/**/
bool connectAP(void)
{
 // Attempt to connect to an AP
 Serial.print("Attempting to connect to: ");
 Serial.println(WLAN_SSID);

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");
 }
 else
 {
 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }
 Serial.println();

 return Feather.connected();
}

AdafruitAIO
AdafruitAIO is a special class the inherits from AdafruitMQTT (described earlier in this
learning guide). It takes the core features from AdafruitMQTT and adds some helper
functions that make working with Adafruit IO (https://adafru.it/fsU) easier.

Constructor
AdafruitAIO(const char* username, const char* password)

Parameters:

username: The username associated with your Adafruit IO account (normally
visible here (https://adafru.it/dyy)).

If you're unfamiliar with Adafruit IO have a look at our introductory learning guide
here: https://learn.adafruit.com/adafruit-io

•

©Adafruit Industries Page 140 of 212

https://io.adafruit.com/
https://learn.adafruit.com/adafruit-io
https://accounts.adafruit.com/

password: The Adafruit IO key associated with your account. This is available
by logging into Adafruit IO and clicking the yellow 'key' icon labelled 'Your
secret AIO key'.

Functions

In addition to the functions defined in the AdafruitMQTT base class, The following
functions are included as part of AdafruitAIO:

bool connect (bool cleanSession = true,
 uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT)

bool connectSSL (bool cleanSession = true,
 uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT)

bool updateFeed (const char* feed,
 UTF8String message,
 uint8_t qos=MQTT_QOS_AT_MOST_ONCE,
 bool retain=true)

bool followFeed (const char* feed,
 uint8_t qos,
 messageHandler_t mh)

bool unfollowFeed (const char* feed)

Connecting
The following functions are available to connect to the Adafruit IO server:

bool connect (bool cleanSession = true, uint16_t
keepalive_sec = MQTT_KEEPALIVE_DEFAULT)

This function will attempt to connect to the Adafruit IO servers using a standard
(unencrypted) connection.

•

By default AdafruitAIO will generate a random 10..23 character string for the
ClientID. If required you can override the default value via the .clientID function if
it is called BEFORE the .connect or .connectSSL functions.

©Adafruit Industries Page 141 of 212

Parameters:

cleanSession: Indicates whether the client and broker should remember 'state'
across restarts and reconnects. 'State' maintenance is based on the Client ID so
be sure to set a reusable value via .clientID if you set cleanSession to false!:

If set to false (0) both the client and server will maintain state across
restarts of the client, the server and the connection. As state is maintained:

Message delivery will be reliable meeting the specified QOS even if
the client, server or connection are restarted.
The server will treat a subscription as durable.

If set to true (1) the client and server will not maintain state across restarts
of the client, the server or the connection. This means:

Message delivery to the specified QOS cannot be maintained if the
client, server or connection are restarted
The server will treat a subscription as non-durable

keepalive_sec: This value defines the maximum interval (in seconds) between
messages being sent or received. Setting a value here ensures that at least one
message is sent between the client and the broker within every 'keep alive'
period. If no data was sent within 'keepalive_sec' seconds, the Client will send a
simple ping to the broker to keep the connection alive. Setting this value to '0'
disables the keep alive feature. The default value is 60 seconds.

Returns: 'True' (1) if the connection was successful, otherwise 'false' (0).

bool connectSSL (bool cleanSession = true, uint16_t
keepalive_sec = MQTT_KEEPALIVE_DEFAULT)

This function will attempt to connect to the Adafruit IO servers using a secure (TLS/
SSL) connection.

•

◦

▪

▪

◦

▪

▪

•

©Adafruit Industries Page 142 of 212

Parameters:

cleanSession: Indicates whether the client and broker should remember 'state'
across restarts and reconnects. 'State' maintenance is based on the Client ID so
be sure to set a reusable value via .clientID if you set cleanSession to false!:

If set to false (0) both the client and server will maintain state across
restarts of the client, the server and the connection. As state is maintained:

Message delivery will be reliable meeting the specified QOS even if
the client, server or connection are restarted.
The server will treat a subscription as durable.

If set to true (1) the client and server will not maintain state across restarts
of the client, the server or the connection. This means:

Message delivery to the specified QOS cannot be maintained if the
client, server or connection are restarted
The server will treat a subscription as non-durable

keepalive_sec: This value defines the maximum interval (in seconds) between
messages being sent or received. Setting a value here ensures that at least one
message is sent between the client and the broker within every 'keep alive'
period. If no data was sent within 'keepalive_sec' seconds, the Client will send a
simple ping to the broker to keep the connection alive. Setting this value to '0'
disables the keep alive feature. The default value is 60 seconds.

Returns: 'True' (1) if the connection was successful, otherwise 'false' (0).

Feed Management
The following functions are available to work with AIO feeds:

bool updateFeed (const char* feed, UTF8String message,
uint8_t qos=MQTT_QOS_AT_MOST_ONCE, bool
retain=true)

Updates the value associated with the specified 'feed' ('topic' in MQTT terminology).

•

◦

▪

▪

◦

▪

▪

•

©Adafruit Industries Page 143 of 212

Parameters:

feed: The feed to update, not including the 'username/feeds/' prefix. So to work
with 'username/feeds/onoff' you should simply supply 'onoff' as the feedname.
qos: The quality of service level (see the MQTT spec for details). Default = 'At
Most Once', meaning the message tries to send once but isn't persisted if the
send fails. Possible values are:

MQTT_QOS_AT_MOST_ONCE
MQTT_QOS_AT_LEAST_ONCE
MQTT_QOS_EXACTLY_ONCE

retained: Whether or not the published message should be 'retained' by the
MQTT broker. Sending a message with the retained bool set to 'false' (0) will
clear any previously retained message from the broker. The default value is
false.

Returns: 'True' (1) if the feed was succesfully updated, otherwise 'false' (0).

bool followFeed (const char* feed, uint8_t qos,
messageHandler_t mh)

Follows (or 'subscribes' in MQTT terminology) to the specified AIO feed, which will
cause the specific callback handler function to fire every time the feed is changed on
the AIO server.

Parameters:

feed: The feed to follow, not including the 'username/feeds/' prefix. So to work
with 'username/feeds/onoff' you should simply supply 'onoff' as the feedname.
qos: The quality of service level (see the MQTT spec for details). Default = 'At
Most Once', meaning the message tries to send once but isn't persisted if the
send fails. Possible values are:

MQTT_QOS_AT_MOST_ONCE
MQTT_QOS_AT_LEAST_ONCE
MQTT_QOS_EXACTLY_ONCE

mh: The callback handler function to fire whenever the feed is changed. The
callback handler should have the following signature:

•

•

◦
◦
◦

•

•

•

◦
◦
◦

•

©Adafruit Industries Page 144 of 212

/**/
/*!
 @brief 'follow' event callback handler

 @param message The new value associated with this feed

 @note 'message' is a UTF8String (byte array), which means
 it is not null-terminated like C-style strings. You can
 access its data and len using .data & .len, although there is
 also a Serial.print override to handle UTF8String data types.
*/
/**/
void feed_callback(UTF8String message)
{
 // Print message
 Serial.println(message);
}

Returns: 'True' (1) if the follow operation was successful, otherwise 'false' (0).

bool unfollowFeed (const char* feed)

Unfollows (or 'unsubscribes' in MQTT terminology) to the specified feed.

Parameters:

feed: The feed to update, not including the 'username/feeds/' prefix. So to work
with 'username/feeds/onoff' you should simply supply 'onoff' as the feedname.

Returns: 'True' (1) if the operation was successful, otherwise 'false' (0).

Example
The following example show how you can use the AdafruitAIO class to communicate
with the Adafruit IO servers:

/***
 This is an example for our Feather WIFI modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 MIT license, check LICENSE for more information
 All text above, and the splash screen below must be included in
 any redistribution
***/

#include <adafruit_feather.h>
#include <adafruit_mqtt.h>
#include "certificate_mosquitto.h"

•

©Adafruit Industries Page 145 of 212

/* This sketch demonstrates subscribe/unsubscribe activity with
 * callbacks.
 *
 * It will connect to a public MQTT server (with/without TLS)
 * and subscribe to TOPIC_SUBSCRIBE (defined below).
 *
 * - When a message is received, it will echo back to TOPIC_ECHO
 * - If the received message is "stop", we will
 * unsubscribe from TOPIC_SUBSCRIBE and you won't be able to
 * echo content back to the broker any longer.
 *
 * Note: TOPIC_SUBSCRIBE and TOPIC_ECHO must not be the same topic!
 * Ex. They must not be "adafruit/+" and "adafruit/echo", since this will
 * cause an infinite loop (received -> echo -> received ->)
 *
 * For details on the MQTT broker server see http://test.mosquitto.org/
 * - Port 1883 : MQTT, unencrypted
 * - Port 8883 : MQTT, encrypted (TLS)
 *
 * Note: may You need an MQTT desktop client such as the lightweight
 * Java client included in this repo: org.eclipse.paho.mqtt.utility-1.0.0.jar
 *
 * For information on configuring your system to work with MQTT see:
 * - https://learn.adafruit.com/desktop-mqtt-client-for-adafruit-io/installing-
software
 *
 * To run this demo
 * 1. Change the WLAN_SSID/WLAN_PASS to match your access point
 * 2. Decide whether you want to use TLS/SSL or not (USE_TLS)
 * 3. Change TOPIC*, WILL*, enable CLIENTID if needed
 * 4. Compile and run
 * 5. Use an MQTT desktop client to connect to the same MQTT broker and
 * publish to any topic beginning with "adafruit/feather/" (depending
 * on TOPIC_SUBSCRIBE). To be able to recieve the echo message, please
 * also subcribe to "adafruit/feather_echo" (TOPIC_ECHO).
 */

#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPass"

#define USE_TLS 0

#define BROKER_HOST "test.mosquitto.org"
#define BROKER_PORT (USE_TLS ? 8883 : 1883)

// Uncomment to set your own ClientID, otherwise a random ClientID is used
//#define CLIENTID "Adafruit Feather"

#define TOPIC_SUBSCRIBE "adafruit/feather/+"
#define TOPIC_ECHO "adafruit/feather_echo"

#define WILL_TOPIC "adafruit/feather"
#define WILL_MESSAGE "Goodbye!!"

AdafruitMQTT mqtt;

/**/
/*!
 @brief Disconnect handler for MQTT broker connection
*/
/**/
void disconnect_callback(void)
{
 Serial.println();
 Serial.println("-----------------------------");
 Serial.println("DISCONNECTED FROM MQTT BROKER");
 Serial.println("-----------------------------");
 Serial.println();

©Adafruit Industries Page 146 of 212

}

/**/
/*!
 @brief The setup function runs once when the board comes out of reset
*/
/**/
void setup()
{
 Serial.begin(115200);

 // Wait for the USB serial port to connect. Needed for native USB port only
 while (!Serial) delay(1);

 Serial.println("MQTT Subscribe Example\r\n");

 // Print all software versions
 Feather.printVersions();

 while (!connectAP())
 {
 delay(500); // delay between each attempt
 }

 // Connected: Print network info
 Feather.printNetwork();

 // Tell the MQTT client to auto print error codes and halt on errors
 mqtt.err_actions(true, true);

 // Set ClientID if defined
 #ifdef CLIENTID
 mqtt.clientID(CLIENTID);
 #endif

 // Last will must be set before connecting since it is part of the connection data
 mqtt.will(WILL_TOPIC, WILL_MESSAGE, MQTT_QOS_AT_LEAST_ONCE);

 // Set the disconnect callback handler
 mqtt.setDisconnectCallback(disconnect_callback);

 Serial.printf("Connecting to " BROKER_HOST " port %d ... ", BROKER_PORT);
 if (USE_TLS)
 {
 // Disable default RootCA to save SRAM since we don't need to
 // access any other site except test.mosquitto.org
 Feather.useDefaultRootCA(false);

 // mosquitto CA is pre-generated using pycert.py
 Feather.addRootCA(rootca_certs, ROOTCA_CERTS_LEN);

 // Connect with SSL/TLS
 mqtt.connectSSL(BROKER_HOST, BROKER_PORT);
 }else
 {
 mqtt.connect(BROKER_HOST, BROKER_PORT);
 }
 Serial.println("OK");

 Serial.print("Subscribing to " TOPIC_SUBSCRIBE " ... ");
 mqtt.subscribe(TOPIC_SUBSCRIBE, MQTT_QOS_AT_MOST_ONCE, subscribed_callback); //
Will halted if an error occurs
 Serial.println("OK");
}

/**/
/*!
 @brief This loop function runs over and over again
*/

©Adafruit Industries Page 147 of 212

/**/
void loop()
{

}

/**/
/*!
 @brief MQTT subscribe event callback handler

 @param topic The topic causing this callback to fire
 @param message The new value associated with 'topic'

 @note 'topic' and 'message' are UTF8Strings (byte array), which means
 they are not null-terminated like C-style strings. You can
 access its data and len using .data & .len, although there is
 also a Serial.print override to handle UTF8String data types.
*/
/**/
void subscribed_callback(UTF8String topic, UTF8String message)
{
 // Print out topic name and message
 Serial.print("[Subscribed] ");
 Serial.print(topic);
 Serial.print(" : ") ;
 Serial.println(message);

 // Echo back
 Serial.print("Echo back to " TOPIC_ECHO " ... ");
 mqtt.publish(TOPIC_ECHO, message); // Will halt if an error occurs
 Serial.println("OK");

 // Unsubscribe from SUBSCRIBED_TOPIC2 if we received an "stop" message
 // Won't be able to echo anymore
 if (message == "stop")
 {
 Serial.print("Unsubscribing from " TOPIC_SUBSCRIBE " ... ");
 mqtt.unsubscribe(TOPIC_SUBSCRIBE); // Will halt if fails
 Serial.println("OK");
 }
}

/**/
/*!
 @brief Connect to defined Access Point
*/
/**/
bool connectAP(void)
{
 // Attempt to connect to an AP
 Serial.print("Attempting to connect to: ");
 Serial.println(WLAN_SSID);

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");
 }
 else
 {
 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }
 Serial.println();

 return Feather.connected();
}

©Adafruit Industries Page 148 of 212

AdafruitAIOFeed
AdafruitAIOFeed is an optional helper class based on AdafruitMQTTTopic. It aims to
make working with feeds in Adafruit IO a bit easier, with the goal of implementing
specialised classes that correspond to AIO feed types in the future.

Constructor
AdafruitAIOFeed uses the following constructor:

AdafruitAIOFeed(AdafruitAIO* aio,
 const char* feed,
 uint8_t qos = MQTT_QOS_AT_MOST_ONCE,
 bool retain = true)

Parameters:

aio: A reference to the AdafruitAIO class instance, which will be used when
sending and receiving data to the AIO server.
feed: A string containing the name of the AIO feed to work with, minus the
'username/feeds/' text which will be automatically added by this class. For
example, to work with 'testuser/feeds/status' you would provide 'status' to the
feed parameter.
qos: An optional quality of server (QoS) level to use when publishing. If left
empty, this argument will default to 'At Most Once', meaning it will try to publish
the data but if the operation fails it won't persist the attempt and retry again
later.
retain: Sets the 'retain' bit to indicate if any messages published to the MQTT
broker should be retained on the broker for the next client(s) that access that
topic. By default this will be set to 'true' for AIO feeds.

Functions
The following functions are defined as part of AdafruitAIOFeed, but you also have
access to the public functions that are defined in AdafruitMQTTTopic since
AdafruitAIOFeed class inherits from it.

Be sure to look at the documentation for AdafruitMQTTTopic as well, since this
class is a specialized version of that aimed at Adafruit IO.

•

•

•

•

©Adafruit Industries Page 149 of 212

bool follow (feedHandler_t fp)
bool unfollow (void)
bool followed (void)

virtual size_t write (const uint8_t *buf, size_t len)
virtual size_t write (uint8_t ch)

bool follow (feedHandler_t fp)

Enables you to 'follow' this feed, meaning that you subscribe to any changes that are
published to this feed on the AIO server. To follow the feed, you simple set the
callback handler, which is the function that will be called when this feed changes in
AIO.

Parameters:

fp: The callback handler function that will be fired when the feed changes on the
AIO server. This function should have the following signature:

void feed_callback(UTF8String message)
{
 Serial.println(message);
}

Returns: 'True' (1) if the operation was successful, otherwise 'false' (0).

bool unfollow (void)

Calling this function will stop the follow callback and unsubscribe from the feed,
meaning any changes will no longer be received by this class.

Parameters: None

Returns: 'True' (1) if the operation was successful, otherwise 'false' (0).

•

The name of the callback handler function can be set to anything you like,
although the parameters and return type must be identical.

©Adafruit Industries Page 150 of 212

bool followed (void)

Checks whether 'follow' is currently enabled or not (indicate whether or not we are
subscribed to the AIO feed).

Parameters: None

Returns: 'True' (1) if the operation was successful, otherwise 'false' (0).

Example
For more examples of working with AdafruitIO and AdafruitIOFeed see the /AIO folder
in /examples in the WICED Feather board support package.

/***
 This is an example for our Feather WIFI modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 MIT license, check LICENSE for more information
 All text above, and the splash screen below must be included in
 any redistribution
***/

#include <adafruit_feather.h>
#include <adafruit_mqtt.h>
#include <adafruit_aio.h>

/* This sketch connects to the Adafruit IO server at io.adafruit.com
 * and updates a 'PHOTOCELL_FEED' every 5 seconds.
 *
 * It also follow 'ONOFF_FEED' to receive updates from the AIO server via
 * the built-in follow/subscribe callback handler.
 *
 * To run this demo
 * 1. Change WLAN_SSID/WLAN_PASS
 * 2. Decide whether you want to use TLS/SSL or not (USE_TLS)
 * 3. Change AIO_USERNAME, AIO_KEY to match your own account details
 * 4. If you want, change PHOTOCELL_FEED and ONOFF_FEED to use different feeds
 * 5. Compile and run
 * 6. Optionally log into the AIO webserver to see any changes in data, etc.
 */

#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPass"

#define AIO_USERNAME "...your AIO username (see https://
accounts.adafruit.com)..."
#define AIO_KEY "...your AIO key..."

// AdafruitAIO will auto append the "username/feeds/" prefix to your feed(s)
#define PHOTOCELL_FEED "photocell"
#define ONOFF_FEED "onoff"

©Adafruit Industries Page 151 of 212

// Connect using TLS/SSL or not
#define USE_TLS 0

// Uncomment to set your own ClientID, otherwise a random ClientID is used
//#define CLIENTID "Adafruit Feather"

AdafruitAIO aio(AIO_USERNAME, AIO_KEY);
AdafruitAIOFeed photocell (&aio, PHOTOCELL_FEED);
AdafruitAIOFeed onoff (&aio, ONOFF_FEED);

int value = 0;

/**/
/*!
 @brief The setup function runs once when the board comes out of reset
*/
/**/
void setup()
{
 Serial.begin(115200);

 // Wait for the USB serial port to connect. Needed for native USB port only
 while (!Serial) delay(1);

 Serial.println("AIO Test Example\r\n");

 // Print all software versions
 Feather.printVersions();

 while (!connectAP())
 {
 delay(500); // delay between each attempt
 }

 // Connected: Print network info
 Feather.printNetwork();

 // Tell the MQTT client to auto print error codes and halt on errors
 aio.err_actions(true, true);

 // Set ClientID if defined
 #ifdef CLIENTID
 aio.clientID(CLIENTID);
 #endif

 Serial.print("Connecting to io.adafruit.com ... ");
 if (USE_TLS)
 {
 aio.connectSSL(); // Will halted if an error occurs
 }else
 {
 aio.connect(); // Will halted if an error occurs
 }
 Serial.println("OK");

 // 'Follow' the onoff feed to capture any state changes
 onoff.follow(feed_callback);
}

/**/
/*!
 @brief This loop function runs over and over again
*/
/**/
void loop()
{
 value = (value+1) % 100;

©Adafruit Industries Page 152 of 212

 Serial.print("Updating feed " PHOTOCELL_FEED " : ");
 Serial.print(value);
 photocell.print(value);
 Serial.println(" ... OK");

 delay(5000);
}

/**/
/*!
 @brief 'follow' event callback handler

 @param message The new value associated with this feed

 @note 'message' is a UTF8String (byte array), which means
 it is not null-terminated like C-style strings. You can
 access its data and len using .data & .len, although there is
 also a Serial.print override to handle UTF8String data types.
*/
/**/
void feed_callback(UTF8String message)
{
 // Print message
 Serial.print("[ONOFF Feed] : ");
 Serial.println(message);
}

/**/
/*!
 @brief Connect to defined Access Point
*/
/**/
bool connectAP(void)
{
 // Attempt to connect to an AP
 Serial.print("Please wait while connecting to: '" WLAN_SSID "' ... ");

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");
 }
 else
 {
 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }
 Serial.println();

 return Feather.connected();
}

AdafruitTwitter

The AdafruitTwitter class makes sending tweets easy via a custom Application that
you can setup using this learning guide.

The AdafruitTwitter class requires WICED Feather Lib 0.5.5 or higher to run.

©Adafruit Industries Page 153 of 212

1. Creating a WICED Twitter Application
In order to enable WICED to interact with Twitter, you first need to log in to twitter's
app admin console at http://apps.twitter.com (https://adafru.it/qof) and create a new
app:

Enter the Application Details

Next you need to enter your application details, based on the following data:

The NAME field must be globally unique, so you should make it something
personal like adding your twitter username.

©Adafruit Industries Page 154 of 212

https://twitter.com/settings/account

Then accept the license terms and click the Create your Twitter application button at
the bottom of the page.

This will redirect you to the main app config page, as shown below:

Set the Application Permissions

Click on the Permissions tab and set the appropriate permissions:

©Adafruit Industries Page 155 of 212

Click the Update Settings button to save the permissions changes.

Manage the Access Keys

Go back to the Details tab and scroll down to the Application Settings section:

Click the manage keys and access tokens link.

Copy the Appropriate Key Data

Make a note of the consumer key values blurred out below since you will need them
in your sketch:

©Adafruit Industries Page 156 of 212

Create your Access Token

On the same page shown above, click the Create my access token button to give
your account access to your new application:

Make a note of the access token data shown blurred out below, which you will also
need in your sketch:

©Adafruit Industries Page 157 of 212

2. Using the AdafruitTwitter Class
Next, open the Applications/SendTweet example for WICED or create a new sketch
with the following code, updating it with your access point details, as well as the
Consumer and Access Tokens generated above:

/***
 This is an example for our Feather WIFI modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 MIT license, check LICENSE for more information
 All text above, and the splash screen below must be included in
 any redistribution
***/

#include "adafruit_feather.h"
#include "adafruit_http.h"
#include "adafruit_twitter.h"

/* This example demonstrates how to use AdafrtuiTwitter class
 * to send out a tweet
 *
 * To run this demo:
 * 1. Goto https://apps.twitter.com/ and login
 * 2. Create an application to use with this WICED Feather
 * 3. (Optional) You could change the access level to give the applicaion
 * permission to send DM. It is advised to do so, do that you could use WICED
 * to send DM in other example
 * 4. In the app management click "manage keys and access tokens"
 * and then click "Create my access token"
 * 5. Change CONSUMER_KEY, CONSUMER_SECRET, TOKEN_ACCESS, TOKEN_SECRET accordingly
 * 6. Change your TWEET status
 * 7. Compile and run, if you run this sketch too often, Twitter server may reject
 * your connection request, just wait a few minutes and try again.
 */

// Network
#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPassword"

// Twitter Account
#define CONSUMER_KEY "YOUR_CONSUMER_KEY"
#define CONSUMER_SECRET "YOUR_CONSUMER_SECRET"

#define TOKEN_ACCESS "YOUR_TOKEN_ACCESS"
#define TOKEN_SECRET "YOUR_TOKEN_SECRET"

#define TWEET "Hello from Adafruit WICED Feather"

AdafruitTwitter Twitter;

/**/
/*!
 @brief The setup function runs once when reset the board
*/
/**/
void setup()
{

©Adafruit Industries Page 158 of 212

 Serial.begin(115200);

 // wait for serial port to connect. Needed for native USB port only
 while (!Serial) delay(1);

 Serial.println("Twitter Send Tweet Example\r\n");

 // Print all software versions
 Feather.printVersions();

 while (!connectAP())
 {
 delay(500); // delay between each attempt
 }

 // Connected: Print network info
 Feather.printNetwork();

 Twitter.begin(CONSUMER_KEY, CONSUMER_SECRET, TOKEN_ACCESS, TOKEN_SECRET);
 Twitter.err_actions(true, true);

 Serial.print("Sending tweet: " TWEET " ... ");
 Twitter.tweet(TWEET);
 Serial.println("OK");

 Twitter.stop();
}

/**/
/*!
 @brief The loop function runs over and over again forever
*/
/**/
void loop()
{
 togglePin(PA15);
 delay(1000);
}

/**/
/*!
 @brief Connect to defined Access Point
*/
/**/
bool connectAP(void)
{
 // Attempt to connect to an AP
 Serial.print("Please wait while connecting to: '" WLAN_SSID "' ... ");

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");
 }
 else
 {
 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }
 Serial.println();

 return Feather.connected();
}

©Adafruit Industries Page 159 of 212

AdafruitSDEP
All communication between the Arduino user code (your sketch) and the lower level
WiFi stack from Broadcom happens over SDEP commands.

This is similar to the way you would talk to an external I2C or SPI sensor via a set of
pre-defined registers defined in the sensor datasheet. You send specifically
formatted data to known registers (or addresses), and sometimes you get data back in
a known format (depending on the command).

SDEP is the simple data exchange protocol that we use for the command and
response messages between the user code and the lower level Feather Lib that
contains the WICED WiFi stack.

Normally you won't need to deal with SDEP commands yourself since these are
hidden in the AdafruitFeather, AdafruitHTTP, etc., helper classes, but a specialized
helper classed name AdafruitSDEP is available to send SDEP commands yourself and
get the response data back if the need should ever arise to talk directly to the WICED
stack yourself.

AdafruitSDEP API
// Send a simple SDEP command (1 parameter value or less)
bool sdep (uint16_t cmd_id ,
 uint16_t param_len , void const* p_param,
 uint16_t* p_result_len , void* p_result);

// Send a complex SDEP command (multiple parameter values)
bool sdep_n (uint16_t cmd_id ,
 uint8_t para_count , sdep_cmd_para_t const* para_arr,
 uint16_t* p_result_len , void* p_result);

// SDEP error handling functions
err_t errno (void);
char const* errstr (void);
char const* cmdstr (uint16_t cmd_id);
void err_actions (bool print, bool halt);

SDEP stands for 'Simple Data Exchange Protocol', an in house protocol we use in
a number of our products.

©Adafruit Industries Page 160 of 212

Constructor
AdafruitFeather inherits from AdafruitSDEP, meaning that you don't need to instantiate
AdafruitSDEP directly yourself. Simply call the functions described below from your
AdafruitFeather class instance, which is normally available as 'Feather', so
'Feather.sdep(...)', 'Feather.sdep_n(...)', 'Feather.errno()', etc.

Functions
The following functions and parameters are present in AdafruitSDEP:

sdep

This function sends an SDEP command with up to one parameter (or no parameters if
NULL is provided in the 'p_param' field or 'param_len' is set to 0).

Function Prototype:

bool sdep(uint16_t cmd_id ,
 uint16_t param_len , void const* p_param,
 uint16_t* p_result_len , void* p_result)

Parameters:

cmd_id: The 16-bit SDEP command ID
param_len: The length of the p_param field containing the parameter data. Set
this to '0' if no parameter is provided.
p_param: A pointer to the parameter value to pass into the SDEP command
handler. Set this to NULL if no parameter is provided.
p_result_len: A pointer to the 16-bit value where the response length will be
written by the SDEP command handler
p_result: A pointer to where the response data should be written by the SDEP
command handler

Return Value:

'true' if the function executed properly, otherwise 'false' if an error occured (check
.errno or .errstr for details).

•
•

•

•

•

©Adafruit Industries Page 161 of 212

Examples

The simplest possible example of using this function can be seen below.

No parameter data is sent to the SDEP command, we don't check any response data
(there is none from SDEP_CMD_FACTORYRESET anyway), and we don't even check
if 'sdep' returned false to indicate that there was an error executing the command:

void AdafruitFeather::factoryReset(void)
{
 sdep(SDEP_CMD_FACTORYRESET, 0, NULL, NULL, NULL);
}

A more complex example of sending a simple SDEP command with this function can
be seen below, where we flush the contents of the TCP buffer.

'_tcp_handle' is an internal 32-bit value (so 4 bytes), and we pass a pointer to the
value to the SDEP command handler (notice the '&' symbol before the name saying
that we should pass the address in memory for '_tcp_handle').

No response data is read back, so the last two parameters are set to NULL.

void AdafruitTCP::flush()
{
 if (_tcp_handle == 0) return;

 // flush write
 sdep(SDEP_CMD_TCP_FLUSH, 4, &_tcp_handle, NULL, NULL);
}

This last example checks if any TCP data is available in the buffer, and the command
will set the 'result' variable to a non-zero value if any data is available.

Since we know the size of the results variable, we don't need to read back the length
of the response data, and we can insert NULL for 'p_result_len':

int AdafruitTCP::available()
{
 if (_tcp_handle == 0) return 0;

 uint32_t result = 0;
 sdep(SDEP_CMD_TCP_AVAILABLE, 4, &_tcp_handle, NULL, &result);

 return result;
}

©Adafruit Industries Page 162 of 212

sdep_n

This function sends an SDEP command with an array of parameter values, using a
dedicated parameter array typedef called sdep_cmd_para_t.

Function Prototype:

bool sdep_n(uint16_t cmd_id ,
 uint8_t para_count , sdep_cmd_para_t const* para_arr,
 uint16_t* p_result_len , void* p_result)

Parameters:

cmd_id: The 16-bit SDEP command ID
para_count: The number of parameters in para_arr
para_arr: An array of sdep_cmd_para_t values, consisting of a 16-bit length
value and a pointer to the actual parameter data
p_results_len: A pointer to the 16-bit value where the response length will be
written by the SDEP command handler
p_result: A pointer to where the response data should be written by the SDEP
command handler

Each entry in para_arr has the following structure:

typedef struct {
 uint16_t len;
 void const* p_value;
} sdep_cmd_para_t;

Return Value:

'true' if the function executed properly, otherwise 'false' if an error occured (check
.errno or .errstr for details).

Examples

The example below uses the SDEP_CMD_WIFI_PROFILE_ADD command to store the
connection details to non-volatile memory.

This is a blocking command that only returns when the procedure succeeeds or fails.
As such, we will ignore any return data from the command other than a possible SDEP
error code. As such, p_results_len and p_result are both set to NULL here:

•
•
•

•

•

©Adafruit Industries Page 163 of 212

bool AdafruitFeather::addProfile(char* ssid)
{
 sdep_cmd_para_t para_arr[] =
 {
 { .len = strlen(ssid), .p_value = ssid },
 };
 uint8_t para_count = sizeof(para_arr)/sizeof(sdep_cmd_para_t);

 return sdep_n(SDEP_CMD_WIFI_PROFILE_ADD, para_count, para_arr,
 NULL, NULL);
}

A more complex example is shown below where we read the SDEP response, and a
pointer to certain parameter values is also used (noticed the '&' character below some
parameter values). The use of pointers is necessary when passing large or complex
parameters to the SDEP command handler.

In this particular example we use SDEP_CMD_TCP_READ but we also want to read
the response data.

int AdafruitTCP::read(uint8_t* buf, size_t size)
{
 if (_tcp_handle == 0) return 0;

 uint16_t size16 = (uint16_t) size;
 sdep_cmd_para_t para_arr[] =
 {
 { .len = 4, .p_value = &_tcp_handle },
 { .len = 2, .p_value = &size16 },
 { .len = 4, .p_value = &_timeout },
 };
 uint8_t para_count = sizeof(para_arr)/sizeof(sdep_cmd_para_t);

 uint16_t readlen = size16;
 VERIFY_RETURN(sdep_n(SDEP_CMD_TCP_READ, para_count, para_arr, &readlen,
buf), 0);

 _bytesRead += readlen;
 return readlen;
}

We pass in three parameters to SDEP_CMD_TCP_READ:

The TCP handle (_tcp_handle)
The number of bytes we want to read (size16)
The timeout before returning an error (_timeout)

The command will then return the data that was read back, populating
the buf and size16 fields. The 'size16' field will contain the numbers of bytes written to
'buf' so that we can compare the numbers of bytes requested with the number of
bytes actually read out.

•
•
•

©Adafruit Industries Page 164 of 212

Error Handling Functions
The following functions are defined to work with any SDEP errors generated by the
system:

err_t errno (void)

If sdep or sdep_n returned false as a return value, if means the SDEP command
failed. To determine the error message, you can read the results from .errno()
immediately after the .sdep or .sdep_n command, which will give you a 16-bit
(uint16_t) error code.

char const* errstr(void)

To provide further details on the value returned in errno you can also call .errstr()
which will return a char array containing the internam enum name for the last error
code.

Unfortunately, for copyright reasons we're not able to release the Broadcom WICED
WiFi stack source, but seeing the string associated with your errno provides an
excellent indicator of what went wrong executing the SDEP command.

char const* cmdstr (uint16_t cmd_id)

Returns the name of the command associated with the specified SDEP command ID.

Parameters:

cmd_id: The 16-bit SDEP command ID to lookup (based on .errno, for example)

Returns: A string representing the name of the SDEP command associated with
'cmd_id'.

The VERIFY macro in the example above is simply a helper to check the
response from sdep_n, and it will return '0' if an error was encountered.

•

©Adafruit Industries Page 165 of 212

void err_actions (bool print, bool halt)

This function allows you to enable various optional 'actions' that should be
automatically taken when an SDEP error occurs. By default all actions are disabled.

Parameters:

print: If set to true, any SDEP error will be displayed in the Serial Monitor via
Serial.print, including both the .errstr and .errno values. This can help keep your
code clean and make it easier to switch between debug and release mode.
halt: If set to true, the code will stop executing and wait in a 'while(1)' loop as
soon as an SDEP error is encountered.

Returns: Nothing

Error Handling Example
The following example shows an example of how you can use the .errno and .errstr
functions to handle the last SDEP error generated by the system:

// Attempt to connect to the AP
if (Feather.connect("SSID", "PASSWORD", ENC_TYPE_AUTO))
{
 int8_t rssi = Feather.RSSI();
 uint32_t ipAddress = Feather.localIP();
 // Do something now that you are connected to the AP!
}
else
{
 // Display the error message
 err_t err = Feather.errno();
 Serial.println("Connection Error:");
 switch (err)
 {
 case ERROR_WWD_ACCESS_POINT_NOT_FOUND:
 // SSID wasn't found when scanning for APs
 Serial.println("Invalid SSID");
 break;
 case ERROR_WWD_INVALID_KEY:
 // Invalid SSID passkey
 Serial.println("Invalid Password");
 break;
 default:
 // The most likely cause of errors at this point is that
 // you are just out of the device/AP operating range
 Serial.print(Feather.errno());
 Serial.print(":");
 Serial.println(Feather.errstr());
 break;
 }
}

•

•

©Adafruit Industries Page 166 of 212

Client
The WICED Feather supports the standard Arduino Client (https://adafru.it/
lFj) interface that is used by many networking boards in the Arduino ecosystem.

Adapting Client Examples
Most existing Client based examples can easily be adapted to work with the WICED
Feather board family if the following changes are made to the sketches:

1. Update Header Includes

You will need to change the default WiFi (etc.) headers to the Adafruit versions, as
shown below.

Remove Existing Headers

Existing headers like 'WiFi.h', 'WiFiUDP.h', etc., should be removed from the top of
your sketch.

For example ...

#include <WiFi.h>
#include <WiFiUdp.h>
#include <WiFiTcp.h>

Add Adafruit WICED Feather Header

... should be replaced with the single 'adafruit_feather.h' header file:

#include <adafruit_feather.h>

2. Change 'WiFi.*' References to 'Feather.*'

References to functions like WiFi.begin(ssid, pass) or WiFi.available() should be
replaced with Feather.begin(ssid, pass) or Feather.available():

Only one header is required with the WICED Feather board family, since the key
related headers are also referenced in that one file.

©Adafruit Industries Page 167 of 212

https://www.arduino.cc/en/Reference/ClientConstructor

Previous Client Code

// Attempt to connect to Wifi network:
while (status != WL_CONNECTED) {
 Serial.print("Attempting to connect to SSID: ");
 Serial.println(ssid);
 // Connect to WPA/WPA2 network. Change this line if using open or WEP network:
 status = WiFi.begin(ssid, pass);

 // wait 10 seconds for connection:
 delay(10000);
}

WICED Feather Client Code

Note that at present .begin in the WICED Feather library returns a bool, not a status
byte (as in the WiFi example above), so the example has been modified slightly to
detect connection status via the .connected (https://adafru.it/lFn) function that is also
part of the Client (https://adafru.it/lFj) interface.

// Attempt to connect to Wifi network
while (!Feather.connected()) {
 Serial.print("Attempting to connect to SSID: ");
 Serial.println(ssid);
 // Connect to any network.
 // The Feather stack will try to determine the network
 // security type automatically
 bool results = Feather.begin(ssid, pass);

 // Optional: wait a bit before checking for a connection
 delay(3000);
}

3. Change WiFiUDP and WiFiTCP Class Types

If your example uses classes like WiFiUDP and WiFiTCP, simple replace the class
names with AdafruitUDP or AdafruitTCP.

Existing WiFiUDP Class

// A UDP instance to let us send and receive packets over UDP
WiFiUDP Udp;

Updated AdafruitUDP Class

The Adafruit WICED Feather API is still a work in progress and we're trying to
make the transition to the WICED as easy as possible, but there may be some
implementation differences between platforms. Hopefully these will be
addressed over time.

©Adafruit Industries Page 168 of 212

https://www.arduino.cc/en/Reference/ClientConnected
https://www.arduino.cc/en/Reference/ClientConstructor

// A UDP instance to let us send and receive packets over UDP
AdafruitUDP Udp;

The UDP and TCP classes should generally be compatible with each other, so simply
changing the class type and using the same field name should solve 90% of your
problems.

Constants
The WICED Feather library uses a handful of public constants, enums, typdefs and
defines. In some situations, you will have to use these constants, enums, typedefs or
defines in your own sketches, and the most common values are documented below:

wl_enc_type_t
This typedef (which resolves to an int32_t value) is used to indicate the security
encoding mechanism used by your AP when establishing a connection. You can
indicate the following values in the encoding type parameter of Feather.connect:

ENC_TYPE_AUTO
Attempts to automatically detect the security encoding type. This is the default
option if no encoding type is specified in Feather.connect, but is also the
slowest since it has to scan for all APs in range and determine the security type
if the requested AP is found.
ENC_TYPE_OPEN
Open AP (no security or password required)
ENC_TYPE_WEP
WEP security with open authentication
ENC_TYPE_WEP_SHARED
WEP security with shared authentication
ENC_TYPE_WPA_TKIP
WPA security with TKIP
ENC_TYPE_WPA_AES
WPA security with AES
ENC_TYPE_WPA_MIXED
WPA security with AES and TKIP
ENC_TYPE_WPA2_TKIP
WPA2 security with TKIP
ENC_TYPE_WPA2_AES
WPA2 security with AES

•

•

•

•

•
•
•

•

•

•

©Adafruit Industries Page 169 of 212

ENC_TYPE_WPA2_MIXED
WPA2 security with TKIP and AES
ENC_TYPE_WPA_TKIP_ENT
WPA enterprise security with TKIP
ENC_TYPE_WPA_AES_ENT
WPA enterprise security with AES
ENC_TYPE_WPA_MIXED_ENT
WPA enteprise security with TKIP and AES
ENC_TYPE_WPA2_TKIP_ENT
WPA2 enterprise security with TKIP
ENC_TYPE_WPA2_AES_ENT
WPA2 enterprise security with AES
ENC_TYPE_WPA2_MIXED_ENT
WPA2 enterprise security with TKIP and AES
ENC_TYPE_WPS_OPEN
WPS with open security
ENC_TYPE_WPS_SECURE
WPS with AES security
ENC_TYPE_IBSS_OPEN
BSS with open security

err_t
The most frequently encountered error codes are defined below:

ERROR_NONE (0)
This means that no error occurred and that execution completed as expected
ERROR_OUT_OF_HEAP_SPACE (3)
This error indicates that you have run out of heap memory in Feather Lib
ERROR_NOT_CONNECTED (20)
You will get this error if you try to perform an operation that requires a
connection to an AP or the Internet when you aren't connected.
ERROR_WWD_INVALID_KEY (1004)
You will get this error if the password you provided for your AP is invalid
ERROR_WWD_AUTHENTICATION_FAILED (1006)
You will get this error if authentication failed trying to connect to the AP
ERROR_WWD_NETWORK_NOT_FOUND (1024)
You will get this error if the requested AP could not be found in an AP scan. A
likely cause of this error message is that you are out of range of the AP.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 170 of 212

ERROR_WWD_UNABLE_TO_JOIN (1025)
You will get this error if you are unable to join the requested AP. A likely cause
of this error message is that you are out of range of the AP.
ERROR_WWD_ACCESS_POINT_NOT_FOUND (1066)
This error message indicates that the requested AP could not be found
ERROR_TLS_UNTRUSTED_CERTIFICATE (5035)
Indicates that the certificate from the remote secure server could not be
validated against any of the root certificates available to WICED. You may need
to add another root certificate via Feather.addRootCA(...).
ERROR_SDEP_INVALIDPARAMETER (30002)
This error indicates that an invalid parameter was provided to the underlying
SDEP command, or a parameter was rejected by the command handler.

There are hundreds of other possible error codes, and they can't all be documented
here, but using the .errno() and .errstr() functions in AdafruitFeather you can get
either the 16-bit error code or a string that provides a basic description for that error
code.

The following code shows how you might use a combination of .errno() and .errstr() to
handle common error codes:

// Attempt to connect to the AP
if (Feather.connect("SSID", "PASSWORD", ENC_TYPE_AUTO))
{
 int8_t rssi = Feather.RSSI();
 uint32_t ipAddress = Feather.localIP();
 // Do something now that you are connected to the AP!
}
else
{
 // Display the error message
 err_t err = Feather.errno();
 Serial.println("Connection Error:");
 switch (err)
 {
 case ERROR_WWD_ACCESS_POINT_NOT_FOUND:
 // SSID wasn't found when scanning for APs
 Serial.println("Invalid SSID");
 break;
 case ERROR_WWD_INVALID_KEY:
 // Invalid SSID passkey
 Serial.println("Invalid Password");
 break;
 default:
 // The most likely cause of errors at this point is that
 // you are just out of the device/AP operating range
 Serial.print(Feather.errno());
 Serial.print(":");
 Serial.println(Feather.errstr());
 break;
 }
}

•

•

•

•

©Adafruit Industries Page 171 of 212

wl_ap_info_t
Access points are described with the following typedef/struct, which you may need to
access on certain specific occasions:

typedef struct ATTR_PACKED
{
 char ssid[WIFI_MAX_SSID_LEN+1];
 uint8_t bssid[6];
 int16_t rssi;
 uint32_t max_data_rate;
 uint8_t network_type;
 int32_t security;
 uint8_t channel;
 uint8_t band_2_4ghz;
} wl_ap_info_t;

Python Tools
A set of python based tools are included as part of the WICED Feather SDK. You
generally only need to use these tools in very specific circumstances, but they are
listed below and then discussed in further detail elsewhere in this learning guide.

On Windows, the BSP package that contains the tools folder is normally found in the

%LOCALAPPDATA%\Arduino15\packages\adafruit\hardware\wiced\version

folder. On OS X it can usually be found in the

~/Library/Arduino15/packages/adafruit/hardware/wiced/version

folder.

pyresource.py (Convert static files to C
headers)
pyresource.py can be used to recursively convert text and binary files into C headers
that can be used by modules like AdafruitHTTPServer. These files can then be

WIFI_MAX_SSID_LEN is equal to 32 and is set in adafruit_feather.h

Each AP described using this typedef will require 52 bytes of memory

©Adafruit Industries Page 172 of 212

embedded as part of your user sketch, and served as resources like images, HTML or
JavaScript content, etc.

For more information see the dedicated pyresource.py page (https://adafru.it/qoD) in
this guide.

pycert.py (Python TLS Certificate Converter)
pycert.py is a python tool that will retrieve the root certificate chain for a specific
domain, converting it into a byte array and placing it in a standard C header file.

This header file can then be referenced in your code, and added to the default WICED
root certificate list (via Feather.addRootCA) that validates security data sent from
secure domains and websites.

For more information see the dedicated pycert.py page (https://adafru.it/peF) in this
guide.

feather_dfu.py (Python USB DFU Utility)
This python tool is used by the Arduino IDE to perform common operations like
resetting into DFU mode, updating the flash contents of the MCU, performing a
factory reset, or getting some basic information about the modules.

While the tool is intended to be used by the Arduino IDE, you are also free to use
it from the command line.

For more information see the dedicated feather_dfu.py page (https://adafru.it/qtA) in
this guide.

pyresource.py
This tool will recursively scan the contents of a folder, and convert any files found into
' HTTPResource ' entries that can be used with modules like the
AdafruitHTTPServer (https://adafru.it/qoE).

Location: /tools/pyresource/pyresource.py

On Windows, the BSP package that contains the tools folder is normally found in
the '%APPDATA%\Arduino15\packages\adafruit\hardware\wiced\0.6.0' folder. On

©Adafruit Industries Page 173 of 212

file:///home/introducing-the-adafruit-wiced-feather-wifi/pyresource-dot-py
file:///home/introducing-the-adafruit-wiced-feather-wifi/pycert-dot-py
file:///home/introducing-the-adafruit-wiced-feather-wifi/feather-dfu-dot-py
file:///home/introducing-the-adafruit-wiced-feather-wifi/adafruithttpserver

Usage
This tool accepts a single argument: the path to the folder where the files you wish to
convert (recursively) are stored, relative to the current directory.

All HTTPResource header files will be written to the folder that the script is executed
from.

Usage: pyresource.py [OPTIONS] DIR

 Adafruit Python HTTP Resource Tool

 This tool recursively converts the folder contents into HTTP server
 resources in a C header format. These headers can then be imported into
 WICED Feather HTTP server sketches.

 Example of recursively converting the contents of the 'resources' folder:

 $ python pyresource.py resources

Options:
 --help Show this message and exit.

As an example, if you place all of your static files in the 'resources' folder of your
Arduino sketch, and you wish to generate a set of HTTPResource records in the main
sketch folder (one level higher than resources) you would run the tool as follows:

Run from 'libraries/AdafruitWicedExamples/HTTPServer/D3Graphic'
python ../../../../tools/pyresource/pyresource.py resources

Assuming the same D3Graphic example mentionned above, this would generate the
following output:

Looking for files in 'resources'
Converted 'resources/d3.min.js' to '_d3_min_js.h'
Converted 'resources/favicon.ico' to 'favicon_ico.h'
Converted 'resources/index.html' to 'index_html.h'
Wrote resource index to 'resources.h'

OS X it can usually be found in the '~/Library/Arduino15/packages/adafruit/
hardware/wiced/0.6.0' folder.

This tool was added in version 0.6.0 of FeatherLib

Note that when using this tool folder separators ('/' or '\') will be converted to
'_dir_' and spaces and periods will be converted to '_'.

©Adafruit Industries Page 174 of 212

HTTPResource Records
Looking at the example above, we can see that three static files were converted to
headers and HTTPResource records ('d3.min.js', 'favicon.ico', and 'index.html').

Each output header file contains a single HTTPResource , which has the binary
equivalent of the file encoded inside it.

For example, for favicon_ico.h we get a 10990 byte long HTTPResource named
favicon_ico , shown below:

/* Auto-generated by pyresource. Do not edit this file. */
const uint8_t favicon_ico_data[10990] = {
 0x00, 0x00, 0x01, 0x00, 0x03, 0x00, 0x10, 0x10, 0x00, 0x00, 0x01, 0x00, 0x08,
 0x00, 0x68, 0x05, 0x00, 0x00, 0x36, 0x00, 0x00, 0x00, 0x20, 0x20, 0x00, 0x00,
 // ... data removed for brevity ...
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00
};

const HTTPResource favicon_ico(favicon_ico_data, 10990);

HTTPResource Collection: resources.h
The tool will also generate a single header file named resources.h, which is the only
file that you need to reference in your sketch.

The resources.h file lists all of the HTTPResource records available, and you can
then insert these resources into a page collection for your sketch, adding them to the
AdafruitHTTPServer (https://adafru.it/qoE) individually or as a list.

The tool will attempt to automatically determine the MIME type for the file based on
the file extension, selecting from the list of MIME types supported by FeatherLib.

Using the example from above, we would get the following content in resources.h
from D3Graphic:

#ifndef _RESOURCE_H_
#define _RESOURCE_H_

/* Auto-generated by pyresource. Do not edit this file. */

#include "http_common.h"
#include "_d3_min_js.h"
#include "favicon_ico.h"
#include "index_html.h"

©Adafruit Industries Page 175 of 212

file:///home/introducing-the-adafruit-wiced-feather-wifi/adafruithttpserver#adding-pages
file:///home/introducing-the-adafruit-wiced-feather-wifi/adafruithttpserver#adding-pages

/* HTTPPage collection from generated headers

HTTPPage("/d3.min.js", HTTP_MIME_JAVASCRIPT, &_d3_min_js),
HTTPPage("/favicon.ico", HTTP_MIME_IMAGE_MICROSOFT, &favicon_ico),
HTTPPage("/index.html", HTTP_MIME_TEXT_HTML, &index_html),

*/

#endif /* ifndef _RESOURCE_H_ */

For details on using the static content references in resources.h, see the appropriate
section in the AdafruitHTTPServer (https://adafru.it/qoE) classes documentation.

pycert.py
pycert.py is a python tool that will retrieve the root certificate chain for a specific
domain, converting it into a byte array and placing it in a standard C header file.

This header file can then be referenced in your code, and added to the default WICED
root certificate list (via Feather.addRootCA) that validates security data sent from
secure domains and websites.

Location: /tools/pycert/pycert.py

Downloading the Root Certificate for a
Domain
The most common command used with pycert.py is download , which accepts one or
more domain names as a parameter, downloads the certificate chain for that domain,
and then converts the root certificate(s) into a single header file.

On Windows, the BSP package that contains the tools folder is normally found in
the '%APPDATA%\Arduino15\packages\adafruit\hardware\wiced\0.6.0' folder. On
OS X it can usually be found in the '~/Library/Arduino15/packages/adafruit/
hardware/wiced/0.6.0' folder..

If you are using this tool on Windows you will need to install pyopenssl via 'pip
install pyopenssl' from the command line.

©Adafruit Industries Page 176 of 212

file:///home/introducing-the-adafruit-wiced-feather-wifi/adafruithttpserver#adding-pages

Parameters

The ' download ' command has the following parameters:

Usage: pycert.py download [OPTIONS] [DOMAIN]...

 -p, --port INTEGER port to use for reading certificate (default
 443, SSL)
 -c, --cert-var TEXT name of the variable in the header which will
 contain certificate data (default: rootca_certs)
 -l, --cert-length-var TEXT name of the define in the header which will
 contain the length of the certificate data
 (default: ROOTCA_CERTS_LEN)
 -o, --output FILENAME name of the output file (default:
 certificates.h)
 -f, --full-chain use the full certificate chain and not just the
 root/last cert (default: false, root cert only)
 -d, --keep-dupes write all certs including any duplicates across
 domains (default: remove duplicates)
 --help Show this message and exit.

Usage

To download and convert the root certificate for adafruit.com, for example, you would
issue the following command:

python pycert.py download adafruit.com

If you want to change the output filename (in case you have multiple header files to
deal with), and convert two domains at the same time into a single header file, you
would issue the following command:

pycert download --output data.h google.com adafruit.com

Converting PEM Files
You can also use the convert command to convert a text PEM/.pem file to a C
header, which is provided as a convenience since many browsers will allow you to
navigate to a specific domain and export the certificate chain in .pem format.

Parameters

The ' convert ' command has the following parameters:

©Adafruit Industries Page 177 of 212

Usage: pycert.py convert [OPTIONS] [CERT]...

 -c, --cert-var TEXT name of the variable in the header which will
 contain certificate data (default: rootca_certs)
 -l, --cert-length-var TEXT name of the define in the header which will
 contain the length of the certificate data
 (default: ROOTCA_CERTS_LEN)
 -o, --output FILENAME name of the output file (default:
 certificates.h)
 -f, --full-chain use the full certificate chain and not just the
 root/last cert (default: false, root cert only)
 -d, --keep-dupes write all certs including any duplicates
 (default: remove duplicates)
 --help Show this message and exit.

Usage

To convert a single .pem file to a C header you could use the following command:

python pycert.py convert foo.pem

You can also convert multiple .pem files into one C header as follows:

python pycert.py convert foo.pem bar.pem

feather_dfu.py

This python tool is used by the Arduino IDE to perform common operations like
resetting into DFU mode, updating the flash contents of the MCU, performing a
factory reset, or getting some basic information about the modules.

While the tool is intended to be used by the Arduino IDE, you are also free to use this
tool from the command line.

Location: /tools/feather_dfu/feather_dfu.py

WINDOWS USERS: Recent versions of the BSP include a pre-compiled version of
feather_dfu for Windows. If you are using Windows as a platform, look in the
'tools/win32-x86/feather_dfu' folder for the executable file to use.

On Windows, the BSP package that contains the tools folder is normally found in
the '%APPDATA%\Local\Arduino15\packages\adafruit\hardware\wiced\0.6.0'
folder. On OS X it can usually be found in the '~/Library/Arduino15/packages/
adafruit/hardware/wiced/0.6.0' folder..

©Adafruit Industries Page 178 of 212

Commands
feather_dfu.py exposes the following commands:

arduino_upgrade

This command will flash your user code (the code compiled in the Arduino IDE) to the
appropriate section in flash memory.

You must provide a .bin file as an argument with this command, for example:

python feather_dfu.py arduino_upgrade mycode.bin

featherlib_upgrade

This command will flash the FeatherLib section of flash memory.

You must provide an appropriate .bin file as an argument with this command, for
example:

python feather_dfu.py featherlib_upgrade ../../stm32/featherlib/featherlib.bin

enter_dfu

Causes the WICED Feather to enter DFU mode. You will know if you are in the special
DFU/Bootloader mode because the LED will blinky at a faster than normal rate.

python feather_dfu.py enter_dfu

info

Running this command will provide some basic information about your WICED
Feather, and can be used when trying to debug issues in the support forums, etc.

'feather_dfu.py' depends on 'sdep.py' in the same directory, which handles
sending SDEP commands over USB. If you wish to talk to the WICED Feather
over USB using SDEP commands, this may be a useful reference to look at.

©Adafruit Industries Page 179 of 212

When you run the ' info ' command you will see results resembling the following:

$ python feather_dfu.py info
Feather
ST32F205RGY
353231313533470E00430036
44:39:C4:EB:B9:64
0.1.0
3.5.2
0.5.0
0.5.0
Feb 26 2016

In order of appearance these values signify:

The firmware family (normally 'Feather')
The MCU version (normally 'STM32F205RG*')
The unique serial number for this MCU
The 48-bit HW MAC address for this chip
The bootloader version
The WICED SDK version
The FeatherLib version
The ArduinoCode verison (may be user defined, or may mirror FeatherLib)
The date the flashed FeatherLib was compiled

factory_reset

This command will perform a factory reset on the WICED Feather, erasing the Arduino
user code as well as resetting the non-volatile config memory to factory defaults.

python feather_dfu.py factory_reset

nvm_reset

Resets to non-volatile config memory to factory default settings (but leaves the
Arduino user code intact).

python feather_dfu.py nvm_reset

reboot

Causes the WICED Feather to perform a HW reset.

•
•
•
•
•
•
•
•
•

©Adafruit Industries Page 180 of 212

python feather_dfu.py reboot

SDEP Commands
SDEP commands allow the user code to communicate with the feather lib and vice
versa. Normally you never need to use these commands directly (they are used by
the higher level WICED Feather API), but they are documented below for advanced
users and for debugging purposes.

// Generic Commands
SDEP_CMD_RESET = 0x0001, ///< HW reset
SDEP_CMD_FACTORYRESET = 0x0002, ///< Factory reset
SDEP_CMD_DFU = 0x0003, ///< Enter DFU mode
SDEP_CMD_INFO = 0x0004, ///< System information
SDEP_CMD_NVM_RESET = 0x0005, ///< Reset DCT
SDEP_CMD_ERROR_STRING = 0x0006, ///< Get descriptive error string
SDEP_CMD_COMMAND_STRING = 0x0007, ///< Get descriptive SDEP command
string

// Hardware Commands
SDEP_CMD_GPIO = 0x0100, ///< Set GPIO
SDEP_CMD_RANDOMNUMBER = 0x0101, ///< Random number

// SPI Flash Commands
SDEP_CMD_SFLASHFORMAT = 0x0200, ///< Format SPI flash memory
SDEP_CMD_SFLASHLIST = 0x0201, ///< List SPI flash contents

// DEBUG Commands
SDEP_CMD_STACKDUMP = 0x0300, ///< Dump the stack
SDEP_CMD_STACKSIZE = 0x0301, ///< Get stack size
SDEP_CMD_HEAPDUMP = 0x0302, ///< Dump the heap
SDEP_CMD_HEAPSIZE = 0x0303, ///< Get heap size
SDEP_CMD_THREADLIST = 0x0304, ///< Get thread information

// WiFi Commands
SDEP_CMD_SCAN = 0x0400, ///< AP scan
SDEP_CMD_CONNECT = 0x0401, ///< Connect to AP
SDEP_CMD_DISCONNECT = 0x0402, ///< Disconnect from AP
SDEP_CMD_APSTART = 0x0403, ///< Start AP
SDEP_CMD_APSTOP = 0x0404, ///< Stop AP
SDEP_CMD_WIFI_GET_RSSI = 0x0405, ///< Get RSSI of current connected
signal
SDEP_CMD_WIFI_PROFILE_ADD = 0x0406, ///< Add a network profile
SDEP_CMD_WIFI_PROFILE_DEL = 0x0407, ///< Remove a network profile
SDEP_CMD_WIFI_PROFILE_CLEAR = 0x0408, ///< Clear all network profiles
SDEP_CMD_WIFI_PROFILE_CHECK = 0x0409, ///< Check if a network profile exists
SDEP_CMD_WIFI_PROFILE_SAVE = 0x040A, ///< Save current connected profile to
NVM
SDEP_CMD_WIFI_PROFILE_GET = 0x040B, ///< Get AP's profile info
SDEP_CMD_TLS_DEFAULT_ROOT_CA = 0x040C, ///< Enable the default Root CA list
SDEP_CMD_TLS_ADD_ROOT_CA = 0x040D, ///< Add an custom ROOT CA to current
Chain
SDEP_CMD_TLS_CLEAR_ROOT_CA = 0x040E, ///< Clear the whole ROOT CA chain

// Gateway Commands
SDEP_CMD_GET_IPV4_ADDRESS = 0x0500, ///< Get IPv4 address from an interface
SDEP_CMD_GET_IPV6_ADDRESS = 0x0501, ///< Get IPv6 address from an interface
SDEP_CMD_GET_GATEWAY_ADDRESS = 0x0502, ///< Get IPv6 gateway address
SDEP_CMD_GET_NETMASK = 0x0503, ///< Get IPv4 DNS netmask
SDEP_CMD_GET_MAC_ADDRESS = 0x0504, ///< Get MAC Address

// Network Commands

©Adafruit Industries Page 181 of 212

SDEP_CMD_PING = 0x0600, ///< Ping
SDEP_CMD_DNSLOOKUP = 0x0601, ///< DNS lookup
SDEP_CMD_GET_ISO8601_TIME = 0x0602, ///< Get time
SDEP_CMD_GET_UTC_TIME = 0x0603, ///< Get UTC time in seconds

// TCP Commands
SDEP_CMD_TCP_CONNECT = 0x0700, ///< Create TCP stream socket and
connect
SDEP_CMD_TCP_WRITE = 0x0701, ///< Write to the TCP stream socket
SDEP_CMD_TCP_FLUSH = 0x0702, ///< Flush TCP stream socket
SDEP_CMD_TCP_READ = 0x0703, ///< Read from the TCP stream socket
SDEP_CMD_TCP_DISCONNECT = 0x0704, ///< Disconnect TCP stream socket
SDEP_CMD_TCP_AVAILABLE = 0x0705, ///< Check if there is data in TCP
stream socket
SDEP_CMD_TCP_PEEK = 0x0706, ///< Peek at byte data from TCP stream
socket
SDEP_CMD_TCP_STATUS = 0x0707, ///< Get status of TCP stream socket
SDEP_CMD_TCP_SET_CALLBACK = 0x0708, ///< Set callback function for TCP
connection
SDEP_CMD_TCP_LISTEN = 0x0709,
SDEP_CMD_TCP_ACCEPT = 0x070A,
SDEP_CMD_TCP_PEER_INFO = 0x070B,

// UDP Commands
SDEP_CMD_UDP_CREATE = 0x0800, ///< Create UDP socket
SDEP_CMD_UDP_WRITE = 0x0801, ///< Write to the UDP socket
SDEP_CMD_UDP_FLUSH = 0x0802, ///< Flush UDP stream socket
SDEP_CMD_UDP_READ = 0x0803, ///< Read from the UDP stream socket
SDEP_CMD_UDP_CLOSE = 0x0804, ///< Close UDP stream socket
SDEP_CMD_UDP_AVAILABLE = 0x0805, ///< Check if there is data in UDP
stream socket
SDEP_CMD_UDP_PEEK = 0x0806, ///< Peek at byte data from UDP stream
socket
SDEP_CMD_UDP_PACKET_INFO = 0x0807, ///< Get packet info of UDP stream
socket

// MQTT Commands
SDEP_CMD_MQTTCONNECT = 0x0900, ///< Connect to a broker
SDEP_CMD_MQTTDISCONNECT = 0x0901, ///< Disconnect from a broker
SDEP_CMD_MQTTPUBLISH = 0x0902, ///< Publish a message to a topic
SDEP_CMD_MQTTSUBSCRIBE = 0x0903, ///< Subscribe to a topic
SDEP_CMD_MQTTUNSUBSCRIBE = 0x0904, ///< Unsubscribe from a topic

Generic

Reset (0x0001)
Causes a full system reset. An SDEP response message is sent before the system
reset is performed.

Command Enum: SDEP_CMD_RESET
Command ID: 0x0001
Added: Codebase 0.5.0

Parameters: None.

•
•
•

©Adafruit Industries Page 182 of 212

Return Code(s):

ERROR_NONE if the command executed properly.

Factory Reset (0x0002)
Performs a factory reset of the device, resetting all config data in non-volatile memory
to factory defaults, as well as erasing the Arduino user code area (leaving the
bootloader and feather library intact). A system reset will take place once the config
data has been set to the default values.

Command Enum: SDEP_CMD_FACTORYRESET
Command ID: 0x0002
Added: Codebase 0.5.0

Parameters: None.

Return Code(s):

ERROR_NONE if the command executed properly.

Enter DFU Mode (0x0003)
Causes the board to reset into USB DFU mode.

Command Enum: SDEP_CMD_DFU
Command ID: 0x0003
Added: Codebase 0.5.0

Parameters: None.

Return Code(s):

ERROR_NONE if the command executed properly.

•

•
•
•

•

•
•
•

•

©Adafruit Industries Page 183 of 212

System Information (0x0004)
Returns a string or set of comma-separated strings containing basic
system information, such as the firmware version, the HW MAC address,
compilation date, etc.

Command Enum: SDEP_CMD_INFO
Command ID: 0x0004
Added: Codebase 0.5.0

Parameters:

Parameter ID

This optional parameter allows you to indicate the specific system information value
to be returned.

Mandatory: No
Size: 1 byte
Type: uint8_t

The parameter ID can be one of the following values:

1: Board Name: The board family the firmware was built against
2: MCU Name: The target MCU the firmware was built against
3: Serial: The serial string that uniquely identifies this MCU
4: MAC Address: The HW MAC address for the radio interface
5: Bootloader Version: The bootloader version used
6: SDK Version: The SDK version for the Broadcom WICED WiFi stack
7: Codebase Version: The version for the Adafruit Featherlib
8: Firmware Version: Currently the same as codebase version
9: Build Date: The date when the Featherlib was compiled

Response Message

If no Parameter ID value is provided, the complete list of values will be returned as a
comma-separated list of strings in incrementing order, starting with 1, 'Board Name'.

If a valid Parameter ID is provided, only the corresponding value will be returned.

•
•
•

•
•
•

•
•
•
•
•
•
•
•
•

©Adafruit Industries Page 184 of 212

Return Code(s)

ERROR_NONE if the command executed properly.
ERROR_SDEP_INVALIDPARAMETER if an invalid Parameter ID was provided, or
an invalid number of parameters is provided.

NVM Reset (0x0005)
Resets all config data stored in non-volatile memory to it's default state.

Command Enum: SDEP_CMD_NVM_RESET
Command ID: 0x0005
Added: Codebase 0.5.0

Parameters: None.

Return Code(s):

ERROR_NONE if the command executed properly.

Error String (0x0006)
Returns a string containing the internal name associated with the supplied 32-bit error
code.

Command Enum: SDEP_CMD_ERROR_STRING
Command ID: 0x0006
Added: Codebase 0.5.0

Parameters: None.

Error ID

Indicates the specific error code to be converted to it's internal string representation.

Mandatory: Yes
Size: 4 bytes

•
•

•
•
•

•

•
•
•

•
•

©Adafruit Industries Page 185 of 212

Type: uint32_t

Response Message:

If a valid error code is provided, a string representing the enum associated with that
value will be returned.

Return Code(s):

ERROR_NONE if the command executed properly.
ERROR_SDEP_INVALIDPARAMETER if an invalid number of parameters is
provided.

Generate Random Number (0x0101)
Generates a random 32-bit value using the hardware random number generator on
the STM32F2 MCU.

Command Enum: SDEP_CMD_RANDOMNUMBER
Command ID: 0x0101
Added: Codebase 0.5.0

Parameters: None.

Return Code(s):

A 32-bit number generated via the hardware random number generator.

Return Code(s)

ERROR_NONE if the command executed properly.
ERROR_SDEP_INVALIDPARAMETER if an invalid number of parameters is
provided.

Examples
The WICED Feather board support package includes a number of examples to help
you get your project up and running with a minimum of effort.

•

•
•

•
•
•

•
•

©Adafruit Industries Page 186 of 212

Accessing the Examples (Arduino 1.6.5)
At present, the BSP installation is a manual process, as described in Get the WICED
BSP earlier in this guide. To access to examples contained in this BSP, you will need
to use a different menu path than you normally would:

Accessing the Examples (Arduino >= 1.6.8)
Recent versions of the Arduino IDE (after the 1.6.5 release used during development
of this BSP) have changed the way examples sketches appear. On a newer version of
the Arduino IDE (like 1.6.9), the WICED examples will no longer appear in the 'File >
Sketchbook' menu item.

To make the examples visible you must copy the contents of the `hardware/
Adafruit_WICED_Arduino/examples` folder to your local sketchbook folder under a
WICED subdirectory, so something like: `sketchbook/WICED/examples'

Example Folders
The examples are broken up into sub-folders to try to keep things organized,
although the exact folder structure is likely to evolve with time so it may not resemble
exactly the image shown above.

As of the initial release, the following major folders are present:

Adafruit: This folder contains test code that makes use of some specific Adafruit
hardware
AIO: Sketches making use of the Adafruit IO (https://adafru.it/fsU) servers
Hardware: Examples showing how to use the peripherals on the STM32F205
MCU
HTTP: Examples showing how to work with HTTP servers and data

•

•
•

•

©Adafruit Industries Page 187 of 212

https://io.adafruit.com/

MQTT: Examples showing how to work with MQTT brokers
TCP: Examples showing how to work with TCP sockets and connections
TLS: Examples showing how to work with secure TLS/SSL/HTTPS TCP
connections
UDP: Examples related to UDP sockets and connections
WiFi: General purpose wireless examples for the WICED Feather
stm32: This folder contains libraries that are part of the WICED Feather BSP

Making Modifications to the Examples
One side effect of the examples being located outside of the normal examples
structure is that any changes you make to your sketch will be saved to the original
example file.

If you need to revert back to the original example, you may need to copy the code
back from the original github repo. The examples code can always be seen here:

Go to 'Examples' on Github

https://adafru.it/B0u

ScanNetworks
This example (found in the Adafruit_WICED_Arduino/examples/WiFi folder) will scan
for access points in range of the WICED Feather.

Setup
No particular setup is required for this sketch since it scans for available access
points within range of the WICED Feather.

Compile and Flash
You can compile and flash your sketch to the WICED Feather using the 'Download'
arrow icon at the top of the IDE:

•
•
•

•
•
•

©Adafruit Industries Page 188 of 212

https://github.com/adafruit/Adafruit_WICED_Arduino/tree/master/libraries/AdafruitWicedExamples

You should see the USB DFU progress as the update advances, and there will be a
'Done Uploading' message in the top left of the status bar when you are done:

Testing the Sketch
Wait a few seconds for the USB CDC serial interface to enumerate, and then open
the Serial Monitor using either the Serial Monitor icon in the upper-right of the IDE or
via Tools > Serial Monitor:

This will cause the WICED Feather to start scanning for access points in range:

Ping
This example (found in the Adafruit_WICED_Arduino/examples/WiFi folder) will ping
the specified servers and display the ping response time(s).

©Adafruit Industries Page 189 of 212

Setup
Set your AP details using the WLAN_SSID and WLAN_PASS flags, setting them to the
values used by you own access point:

#define WLAN_SSID "YOURSSID"
#define WLAN_PASS "YOURPASSWORD"

By default the sketch will ping adafruit.com and two Google domain name servers
(8.8.8.8 and 8.8.4.4). If you wish to change the server(s) used, simply replace the
values assigned in the variables below:

// Ping target by hostname
const char target_hostname[] = "adafruit.com";

// Ping target by IP String
const char target_ip_str[] = "8.8.8.8";

// Ping target by IPAddress object
IPAddress target_ip(8, 8, 4, 4);

Compile and Flash
You can then compile and flash your sketch to the WICED Feather using the
'Download' arrow icon at the top of the IDE:

You should see the USB DFU progress as the update advances, and there will be a
'Done Uploading' message in the top left of the status bar when you are done:

©Adafruit Industries Page 190 of 212

Testing the Sketch
Wait a few seconds for the USB CDC serial interface to enumerate, and then open
the Serial Monitor using either the Serial Monitor icon in the upper-right of the IDE or
via Tools > Serial Monitor:

This will cause the WICED Feather to attempt to connect to the access point, and
then it will attempt to ping the specified server(s):

GetHostByName
This example (located in Adafruit_WICED_Arduino/examples/WiFi) will perform a
DNS lookup based on the specified domain name or IP address.

Setup
Set your AP details using the WLAN_SSID and WLAN_PASS flags, setting them to the
values used by you own access point:

 #define WLAN_SSID "YOUR SSID HERE"
#define WLAN_PASS "YOUR SSID KEY HERE"

Set the domain name or the IP address that you wish the resolve using the following
variables:

©Adafruit Industries Page 191 of 212

// target by hostname
const char target_hostname[] = "adafruit.com";

// target by IP String
const char target_ip_str[] = "8.8.8.8";

Compile and Flash
You can then compile and flash your sketch to the WICED Feather using the
'Download' arrow icon at the top of the IDE:

You should see the USB DFU progress as the update advances, and there will be a
'Done Uploading' message in the top left of the status bar when you are done:

Testing the Sketch
Wait a few seconds for the USB CDC serial interface to enumerate, and then open
the Serial Monitor using either the Serial Monitor icon in the upper-right of the IDE or
via Tools > Serial Monitor:

This will cause the WICED Feather to attempt to connect to the access point, and
then it will attempt to look up the specified domain or IP address:

©Adafruit Industries Page 192 of 212

HttpGetPolling
This example (located in Adafruit_WICED_Arduino/examples/HTTP) will connect to
an HTTP server and read the specified page using 'polling' (as opposed to using
callbacks).

Setup
Set your AP details using the WLAN_SSID and WLAN_PASS flags, setting them to the
values used by you own access point:

#define WLAN_SSID "YOUR SSID HERE"
#define WLAN_PASS "YOUR SSID KEY HERE"

Set the domain name or the IP address, the page and the port that you wish the
resolve using the following variables:

#define SERVER "www.adafruit.com" // The HTTP server to connect to
#define PAGE "/testwifi/index.html" // The HTTP resource to request
#define PORT 80 // The TCP port to use

Compile and Flash
You can then compile and flash your sketch to the WICED Feather using the
'Download' arrow icon at the top of the IDE:

©Adafruit Industries Page 193 of 212

You should see the USB DFU progress as the update advances, and there will be a
'Done Uploading' message in the top left of the status bar when you are done:

Testing the Sketch
Wait a few seconds for the USB CDC serial interface to enumerate, and then open
the Serial Monitor using either the Serial Monitor icon in the upper-right of the IDE or
via Tools > Serial Monitor:

This will cause the WICED Feather to attempt to connect to the access point, and
then it will attempt to retrieve the specified web page:

©Adafruit Industries Page 194 of 212

HttpGetCallback
This example (located in Adafruit_WICED_Arduino/examples/HTTP) will connect to
an HTTP server and read the specified page using 'callbacks' (as opposed to using
polling).

Setup
Set your AP details using the WLAN_SSID and WLAN_PASS flags, setting them to the
values used by you own access point:

#define WLAN_SSID "YOUR SSID HERE"
#define WLAN_PASS "YOUR SSID KEY HERE"

Set the domain name or the IP address, the page and the port that you wish the
resolve using the following variables:

©Adafruit Industries Page 195 of 212

#define SERVER "www.adafruit.com" // The HTTP server to connect to
#define PAGE "/testwifi/index.html" // The HTTP resource to request
#define PORT 80 // The TCP port to use

Compile and Flash
You can then compile and flash your sketch to the WICED Feather using the
'Download' arrow icon at the top of the IDE:

You should see the USB DFU progress as the update advances, and there will be a
'Done Uploading' message in the top left of the status bar when you are done:

Testing the Sketch
Wait a few seconds for the USB CDC serial interface to enumerate, and then open
the Serial Monitor using either the Serial Monitor icon in the upper-right of the IDE or
via Tools > Serial Monitor:

This will cause the WICED Feather to attempt to connect to the access point, and
then it will attempt to retrieve the specified web page:

©Adafruit Industries Page 196 of 212

HTTPSLargeData
The example (located in the Adafruit_WICED_Arduino/examples/TLS folder) uses the
AdafruitHTTP helper class and TLS to connect to a secure server and request a large
file, which is then read using callbacks.

It tries to calculate the throughput for the specified file, which can be 10KB, 100KB or
1MB (indicate the file you wish to use before compiling the sketch).

Setup
Set your AP details using the WLAN_SSID and WLAN_PASS flags, setting them to the
values used by you own access point:

#define WLAN_SSID "YOUR SSID HERE"
#define WLAN_PASS "YOUR SSID KEY HERE"

©Adafruit Industries Page 197 of 212

Next change the FILE_ID flag to indicate which file you want to load. Valid options
are '0', '1', or '2':

#define FILE_ID 1

// S3 server to test large files,
const char * file_arr[] =
{
 [0] = "/text_10KB.txt" ,
 [1] = "/text_100KB.txt" ,
 [2] = "/text_1MB.txt" ,
};

Compile and Flash
You can then compile and flash your sketch to the WICED Feather using the
'Download' arrow icon at the top of the IDE:

You should see the USB DFU progress as the update advances, and there will be a
'Done Uploading' message in the top left of the status bar when you are done:

Testing the Sketch
Wait a few seconds for the USB CDC serial interface to enumerate, and then open
the Serial Monitor using either the Serial Monitor icon in the upper-right of the IDE or
via Tools > Serial Monitor:

This will cause the WICED Feather to attempt to connect to the access point, and then
make a secure (TLS based) connection and request to the Amazon S3 server for the
specified file:

©Adafruit Industries Page 198 of 212

Throughput
The throughput example (located in the Adafruit_WICED_Arduino/examples/
WiFi folder) uses AdafruitTCP to test the TCP throughput between the WICED Feather
and another device running 'netcat', which simply listens for incoming TCP data on the
specified port.

Setup
Set your AP details using the WLAN_SSID and WLAN_PASS flags, setting them to the
values used by you own access point:

#define WLAN_SSID "YOUR SSID HERE"
#define WLAN_PASS "YOUR SSID KEY HERE"

You also need to set the IP address and port of the server you will be connecting to
(the machine where you will be running netcat):

// your local PC's IP to test the throughput
// Run this command to create a server on your PC
// > nc -l 8888

IPAddress server_ip(10, 0, 1, 27);
const uint16_t port = 8888;

©Adafruit Industries Page 199 of 212

Running Netcat
Before using this sketch you will need to start netcat and tell it to start listening on the
pre-determined port, which can be done with the following command:

nc -l 8888

Depending on the version of netcat you are using, you may or may not seeing any
feedback right away, but once netcat starts any incoming characters received will be
echoed back to the command line, as shown in the example below:

00
11
22
33
44
55
66
77
88
99

To stop netcat (once the test is complete) simply hit CTRL+C.

Compile and Flash
You can then compile and flash your sketch to the WICED Feather using the
'Download' arrow icon at the top of the IDE:

You should see the USB DFU progress as the update advances, and there will be a
'Done Uploading' message in the top left of the status bar when you are done:

©Adafruit Industries Page 200 of 212

Testing the Sketch
Wait a few seconds for the USB CDC serial interface to enumerate, and then open
the Serial Monitor using either the Serial Monitor icon in the upper-right of the IDE or
via Tools > Serial Monitor:

This will cause the WICED Feather to attempt to connect to the access point, and
then it will attempt to connect to the netcat TCP Server:

At this point go to the top of the serial monitor and enter any character into the text
box at the top and click the SEND button to start sending 1MB of data to netcat:

This will start the throughput test, which will display the calculated KB per second
from the transfer:

©Adafruit Industries Page 201 of 212

FeatherOLED
The FeatherOLED example (located in the Adafruit_WICED_Arduino/examples/
Adafruit folder) uses the Adafruit_FeatherOLED (https://adafru.it/m3b) library to
display basic information about the WICED Feather on the 128x32 I2C OLED Feather
Wing (http://adafru.it/2900).

This advanced example demonstrates several useful concepts and libraries for the
WICED Feather:

How to monitor the LIPO battery level
How to work with an external OLED display for easy user feedback
How to work with the Adafruit Unified Sensor Library (https://adafru.it/dGB) to
retrieve sensor data
How to work with MQTT (https://adafru.it/m3c) to push data to Adafruit
IO (https://adafru.it/m3d)

This example optionally uses a TSL2561 light sensor (http://adafru.it/439) to generate
real sensor data, but it should be relatively straight forward to use a different unified
sensor driver, or you can disable the sensor entirely if you wish to simply use the
OLED or send simulated sensor data.

•
•
•

•

©Adafruit Industries Page 202 of 212

https://github.com/adafruit/Adafruit_FeatherOLED
https://www.adafruit.com/products/2900
https://www.adafruit.com/products/2900
file:///home/using-the-adafruit-unified-sensor-driver/introduction
file:///home/mqtt-adafruit-io-and-you/overview
file:///home/adafruit-io/mqtt-api
file:///home/adafruit-io/mqtt-api
https://www.adafruit.com/products/439

Setup
Before you can use the FeatherOLED sketch you will have to install the
Adafruit_FeatherOLED (https://adafru.it/m3b) library into your libraries folder. If you're
new to Arduino our Arduino Libraries Learning Guide (https://adafru.it/m3e) explains
everything you need to know to get Adafruit_FeatherOLED installed on your local
system.

Setting the Access Point

Once you have Adafruit_FeatherOLED installed on your system, you need to set your
AP details using the WLAN_SSID and WLAN_PASS flags in the example sketch,
setting them to the values used by you own access point:

#define WLAN_SSID "YOUR SSID HERE"
#define WLAN_PASS "YOUR SSID KEY HERE"

Enabling LIPO Battery Monitoring (Optional)

If you wish to monitor the LIPO cell voltage level, you will also need to enable the
VBAT_ENABLED flag by setting its value to '1':

#define VBAT_ENABLED 1
#define VBAT_PIN PA1

Important: Make sure that the BATADC solder jumper on the bottom of your WICED
Feather is soldered shut as well, since this will run the LIPO cell through a voltage
divider and into the ADC pin on PA1. See the Board Layout page for details, but the
solder jumper can be seen below.

You have to solder these two metal leads together to form a 'bridge':

©Adafruit Industries Page 203 of 212

https://github.com/adafruit/Adafruit_FeatherOLED
file:///home/adafruit-all-about-arduino-libraries-install-use/how-to-install-a-library

Enabling the TSL2561 Luminosity Sensor (Optional)

You can also enable the TSL2561 light sensor (http://adafru.it/439) to demonstrate
how to work with the Adafruit_Sensor library to read sensor data on the WICED
Feather.

To enable the TSL2561 in your sketch, simply set the SENSOR_TSL2561_ENABLED
flag to '1':

#define SENSOR_TSL2561_ENABLED 1

This will cause the WICED Feather to read a new data sample from the TSL2561 every
ten (10) seconds.

The TSL2561 should be connected to the WICED Feather as follows:

TSL2561 SCL to WICED SCL
TSL2561 SDA to WICED SDA
TSL2561 VIN to WICED 3V
TSL2561 GND to WICED GND

Enabling MQTT to Adafruit IO (Optional)

You can optionally push the sensor data to Adafruit IO using the AdafruitAIO helper
class.

To enable MQTT (https://adafru.it/m3c) to Adafruit IO support simply set the
AIO_ENABLED flag to '1':

#define AIO_ENABLED 1

You also need to enter your AIO Username and your AIO key, as well as the target
feeds that data should be published to:

#define AIO_USERNAME "...your AIO username (see https://
accounts.adafruit.com)..."
#define AIO_KEY "...your AIO key..."

#define FEED_VBAT "vbat"
#define FEED_TSL2561_LUX "lux"

For more information on communication with Adafruit IO via MQTT see the Adafruit IO
MQTT API (https://adafru.it/m3d).

•
•
•
•

©Adafruit Industries Page 204 of 212

https://www.adafruit.com/products/439
file:///home/mqtt-adafruit-io-and-you/overview
file:///home/adafruit-io/mqtt-api
file:///home/adafruit-io/mqtt-api

Compile and Flash
You can compile and flash your sketch to the WICED Feather using the 'Download'
arrow icon at the top of the IDE:

You should see the USB DFU progress as the update advances, and there will be a
'Done Uploading' message in the top left of the status bar when you are done:

Testing the Sketch
Unlike many of the example sketches, this example will not wait for the USB CDC
Serial Port to open before executing the code.

If you have an OLED display properly connected, data should appear on it as soon as
the USB DFU flash update process is completed:

The data rendered on the display will depend on the way that you configure the
example sketch, but the top and bottom lines are reserved for WiFi and LIPO
information, and the two middle lines (referred to as the 'Message Area' in
Adafruit_FeatherOLED) can be used to render any text or messages.

©Adafruit Industries Page 205 of 212

FAQs
I bricked my board. Can I force the device into DFU
mode?

Yes. There are several ways to force the device into DFU mode if you somehow
lock the board up with a faulty firmware image:

Quickly double-click the RESET button on the board
Set the DFU Pin to GND and reset the device (keeping DFU to GND during
startup)
Connect to the USB CDC interface at 1200 baud and disconnect. This magic
baud rate signals to the module that we want to reset into DFU mode.
Use the python script in 'tools/feather_dfu' to enter DFU mode:
python feather_dfu.py enter_dfu

Forcing the device into DFU mode should allow you to reflash the FeatherLib or
user code and recover control of your hardware.

What TLS Version does the WICED Feather support?
The WICED Feather supports the latest and greatest TLS 1.2 standard, which gives
you access to the fastest and most secure encryption. It also supports TLS 1.1, TLS
1.0, and SSL 3.0. SSL 2.0 is not supported.

The WICED Feather supports the following cipher suites with TLS 1.2:

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
TLS_DHE_RSA_WITH_AES_256_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA

•
•

•

•

Note: You will know when you are in DFU mode since the on board status LED
will start blinking at a rate of 5Hz.

•
•
•
•
•
•
•
•
•
•
•
•

©Adafruit Industries Page 206 of 212

You can verify the TLS level yourself by pointing your WICED Feather to https://
www.howsmyssl.com (https://adafru.it/mgd) or https://www.ssllabs.com/ssltest/
viewMyClient.html (https://adafru.it/mge) and examining the HTML output.
 Note: You'll need to generate custom root certificates to access these domains,
and you can read the output with the TLS/HttpCustomRootCA example.

When I try to build I'm getting: Cannot run program
"{runtime.tools.arm-none-eabi-gcc.path}\bin\arm-none-
eabi-g++" (in directory "."): CreateProcess error=2, The
system cannot find the file specified

This is probably because you don't have the ARM Cortex M3 toolchain installed.
Install the necessary GCC toolchain for ARM from the Arduino Board Manager via:
Tools->Board->Board Manager then download Arduino SAM Boards (32-bits ARM
Cortex-M3)

When I try to flash using USB DFU I get the following error
from featherdfu.py: Traceback (most recent call last): File
"...\hardware\AdafruitWICEDArduino/tools/featherdfu.py",
line 1, in import usb.backend.libusb1

This is probably caused by an old version of pyusb. Update your pyusb version to
1.0b or higher via the following command:

pip install --upgrade pyusb

You also need to make sure that you have the libusb runtime dll installed on your
system, which you can do via this libusb installer (https://adafru.it/mba). See the
Windows Setup (https://adafru.it/mDg) page for details on using this installer
though.

My board isn't enumerating as a USB device, or is stuck in
DFU mode. How can I re-flash the FeatherLib firmware
directly using dfu-util and restore my device?

You can reflash FeatherLib from the command line by forcing your device into DFU
mode. See the first FAQ on this page for various ways to do this. Once in DFU
mode (you'll know you're in DFU mode due to the constant blinky on the status
LED), you can use dfu-util to flash a binary image to the WICED Feather using the
following command syntax:

©Adafruit Industries Page 207 of 212

https://www.howsmyssl.com/
https://www.howsmyssl.com/
https://www.ssllabs.com/ssltest/viewMyClient.html
https://www.ssllabs.com/ssltest/viewMyClient.html
https://sourceforge.net/projects/libusb-win32/files/libusb-win32-releases/1.2.6.0/libusb-win32-devel-filter-1.2.6.0.exe/download
file:///home/introducing-the-adafruit-wiced-feather-wifi/windows-setup#install-libusb-0-dot-1-runtime

dfu-util -a 0 -s 0x08010000:leave -D featherlib.bin

0x08010000 is that start of the feather lib memory section (see the memory map
in System Architecture in this learning guide for details). To flash a user code
binary you would change this value to 0x080E0000.

The 'featherlib.bin' image is available in the 'stm32/featherlib (https://adafru.it/19La)'
folder. If you were running this from inside the /tools/feather_dfu folder you
would execute this command as follows:

dfu-util -a 0 -s 0x08010000:leave -D ../../stm32/featherlib/featherlib.bin

If you have more than one DFU capable device on your system you can specify the
exact USB VID and PID by adding the following flag:

-d 239a:0008

0x239A is the Vendor ID, and 0x0008 is the Product ID in DFU mode. You can
verify the VID and PID values via `dfu-util --list`.

This should result in output resembling the following;

dfu-util 0.8

Copyright 2005-2009 Weston Schmidt, Harald Welte and OpenMoko Inc.

Copyright 2010-2014 Tormod Volden and Stefan Schmidt

This program is Free Software and has ABSOLUTELY NO WARRANTY

Please report bugs to dfu-util@lists.gnumonks.org

dfu-util: Invalid DFU suffix signature

dfu-util: A valid DFU suffix will be required in a future dfu-util release!!!

Opening DFU capable USB device...

ID 239a:0008

Run-time device DFU version 011a

Claiming USB DFU Interface...

Setting Alternate Setting #0 ...

Determining device status: state = dfuIDLE, status = 0

dfuIDLE, continuing

DFU mode device DFU version 011a

Device returned transfer size 1024

DfuSe interface name: "Internal Flash "

Downloading to address = 0x08010000, size = 464516

©Adafruit Industries Page 208 of 212

https://github.com/adafruit/Adafruit_WICED_Arduino/tree/master/featherlib

Download [=========================] 100% 464516 bytes

Download done.

File downloaded successfully

Error during download get_status

At this point you have reflashed the FeatherLib section of code, and you should be
able to flash your own code from the Arduino IDE in the 'User Code' section of
flash memory.

How can I reflash the bootloader with a JLink or STLink/
V2 from the Arduino IDE?

To reflash the bootloader on your WICED Feather using the Arduino IDE perform
the following steps:

First install AdaLink (https://adafru.it/fPq) on your system, which is an abstraction
layer that we provide to hide the details of different ARM hardware debuggers. If
you have a choice, a Segger JLink is generally more reliable as a HW debugger
and works across a larger variety of systems. The STLink with OpenOCD has
issues with OS X El Capitan due to the new USB stack, for example.

To connect an STLink/V2 (http://adafru.it/2548) to the WICED Feather:

Connect SWCLK on the STLink to SWCLK on the WICED Feather (which is a
single 0.1" hole off the main header rail)
Connect SWDIO on the STLink to SWDIO on the WICED Feather
Connect GND on the STLink to GND on the WICED Feather
Connect RST on the STLink to RST on the WICED Feather
Power both the WICED Feather and STLink using USB

NOTE: The WICED Feather also requires a valid user sketch (some Arduino code)
to run, so after flashing the FeatherLib you will also need to compile and flash a
sketch from the Arduino IDE for your board to start running. Powering up a board
with only FeatherLib but no user sketch will end up in a 'dead-end' situation since
it can't find any user code to execute.

Note++: Unlike many other Arduino compatible boards, you don't need a serial
port to flash sketches from the Arduino IDE! The WICED Feather uses USB DFU,
NOT the serial port for firmware updates! Don't worry if you don't see a serial
port when you are trying to flash a sketch the first time.

•

•
•
•
•

©Adafruit Industries Page 209 of 212

https://github.com/adafruit/Adafruit_Adalink
https://www.adafruit.com/products/2548

To connect a Segger J-Link (http://adafru.it/1369) to the WICED Feather:

Consult the Segger JLink SWD and SWO Pinout (https://adafru.it/mEw) for
your JLink
Connect SWCLK on the JLink to SWCLK on the WICED Feather (which is a
single 0.1" hole off the main header rail)
Connect SWDIO on the JLink to SWDIO on the WICED Feather
Connect GND on the JLink to GND on the WICED Feather
Connect VTRef on the JLink to 3V on the WICED Feather (important!)
Connect RST on the JLink to RST on the WICED Feather
Power both the WICED Feather and JLink using USB

From the Arduino IDE:

Make sure 'Tools > Boards' is set to 'Adafruit WICED Feather'
In 'Tools > Programmer' select either 'STLinkV2 with AdaLink' or 'JLink with
AdaLink'.
Click the 'Tools > Burn Bootloader' menu entry, which shoud use AdaLink and
either the STLink/V2 or JLink to flash the bootloader on your board.

How can I flash the bootloader using AdaLink directly?
You can also flash the bootloader from the command-line using AdaLink (https://
adafru.it/fPq) directly.

Make sure AdaLink is properly setup on your system (see the readme file in
the Github repo).
Find the bootloader.hex file in the bootloader (https://adafru.it/SGD) folder.
Connect either a STLink/V2 or Segger JLink to your WICED Feather (see the
FAQ entry above for connection details)
With the debugger connected and both the debugger and WICED Feather
powered, enter the following command (adjusting the path to bootloader.hex
if required):

For an STLink/V2:

adalink stm32f2 -p stlink -h bootloader.hex

For a Segger JLink:

adalink stm32f2 -p jlink -h bootloader.hex

•

•

•
•
•
•
•

•
•

•

•

•
•

•

•

•

©Adafruit Industries Page 210 of 212

https://www.adafruit.com/products/1369
https://www.segger.com/interface-description.html
https://github.com/adafruit/Adafruit_Adalink
https://github.com/adafruit/Adafruit_WICED_Arduino/tree/master/bootloader

You can check if AdaLink is properly connected to the WICED Feather with the
following commands:

For an STLink/V2:

adalink stm32f2 -p stlink -i

For a Segger JLink:

adalink stm32f2 -p jlink -i

I get 'OSError: [Errno 2] No such file or directory OSError:
[Errno 2] No such file or directory' when trying to use
feather_dfu.py in the Arduino IDE. What should I do?

If you get the following error in the Arduino IDE when trying to flash a sketch, you
probably don't have dfu-util installed on your system:

OSError: [Errno 2] No such file or directory
OSError: [Errno 2] No such file or directory

Install dfu-util as detailed in this guide for your target OS.

Downloads

Related Documents
STM32F205RG Product Page (https://adafru.it/m9A)
STM32F205 Datasheet (https://adafru.it/m9B)
EagleCAD PCB files on GitHub (https://adafru.it/oer)
Fritzing object available in the Adafruit Fritzing Library (https://adafru.it/aP3)

WICED Feather WiFi Pinout
Diagram

https://adafru.it/z4f

•

•

•
•
•
•

©Adafruit Industries Page 211 of 212

http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1575/LN1433/PF245094
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/CD00237391.pdf
https://github.com/adafruit/Adafruit-WICED-WiFi-Feather-PCB
https://github.com/adafruit/Fritzing-Library
https://cdn-learn.adafruit.com/assets/assets/000/046/214/original/Wiced_WiFi_Pinout_v1.2.pdf?1504807346

Schematic
The schematic for the latest WICED Feather board is shown below. Click the image for
a higher resolution version.

Fabrication Print
Dimensions in Inches

©Adafruit Industries Page 212 of 212

	Introducing the Adafruit WICED Feather WiFi
	Table of Contents
	Overview
	Board Layout
	Assembly
	Get the WICED BSP
	Windows Setup
	OS X Setup
	Linux Setup
	Arduino IDE Setup
	System Architecture
	WICED Feather API
	AdafruitFeather
	AdafruitFeather: Profiles
	AdafruitTCP
	AdafruitTCPServer
	AdafruitUDP
	AdafruitHTTP
	AdafruitHTTPServer
	AdafruitMQTT
	AdafruitMQTTTopic
	AdafruitAIO
	AdafruitAIOFeed
	AdafruitTwitter
	AdafruitSDEP
	Client
	Constants
	Python Tools
	pyresource.py
	pycert.py
	feather_dfu.py
	SDEP Commands
	Generic
	Examples
	ScanNetworks
	Ping
	GetHostByName
	HttpGetPolling
	HttpGetCallback
	HTTPSLargeData
	Throughput
	FeatherOLED
	FAQs
	Downloads

	Overview
	Board Layout
	Pin Multiplexing
	Accessing Pins in Software

	Power Config
	LIPO Cell Power Monitoring (A1)

	16 Mbit (2MByte) SPI Flash
	PWM Outputs
	Assembly
	Header Options!
	Soldering in Plain Headers
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Soldering on Female Header
	Tape In Place
	Flip & Tack Solder
	And Solder!

	Get the WICED BSP
	Adding Adafruit Board Support
	Add the Adafruit BSP List
	Add the Adafruit WICED BSP

	Upgrading From Earlier WICED BSP Releases (<0.6.0)
	Windows Setup
	Install Adafruit Windows Drivers
	Install libusb 0.1 Runtime
	Install Python 2.7
	Testing the Python Installation

	Install Python Tools
	Testing the Installation

	Optional: Install AdaLink
	Setup Problems
	I can get my device in DFU mode (fast blinky on the red LED), but the two USB CDC (COM) ports never enumerate. I have the USB drivers installed, though. What's wrong?

	OS X Setup
	Install dfu-util
	Testing the Installation

	Install Python Tools
	Testing the Installation

	Optional: Install AdaLink
	Linux Setup
	UDEV Setup
	Install dfu-util
	Building dfu-util From Source (Ubuntu 14.04 etc.)
	Testing the Installation

	Install Python Tools (BSP <= 0.6.2)
	Testing the Installation

	Optional: Install AdaLink
	External Resources
	Arduino IDE Setup
	Board Selection
	Setting the 'Section'
	Selecting the Serial Port
	Optional: Updating the Bootloader
	Compiling your Sketch
	System Architecture
	WICED WiFi + RTOS + SDEP = FeatherLib
	Arduino User Code
	Inter Process Communication (SDEP)
	Flash Memory Layout
	User Code (256KB + 20KB SRAM)
	Feather Lib (704 KB + 108KB SRAM)
	Config Data (32KB)
	USB DFU Bootloader (32KB)

	USB Setup
	DFU Mode (Fast Blinky)
	Normal Operating Mode (User Code)

	Flash Updates
	WICED Feather API
	AdafruitFeather
	AdafruitTCP
	AdafruitUDP
	AdafruitHTTP
	AdafruitMQTT
	AdafruitAIO
	AdafruitSDEP
	Client API
	AdafruitFeather
	AdafruitFeather API
	Firmware Version Management
	char const* bootloaderVersion (void)
	char const* sdkVersion (void)
	char const* firmwareVersion (void)
	char const* arduinoVersion (void)

	Scanning
	int scanNetworks (wl_ap_info_t ap_list[], uint8_t max_ap)

	Connecting
	bool connect (void)
	bool connect (const char *ssid)
	bool connect (const char *ssid, const char *key, int enc_type = ENC_TYPE_AUTO)
	bool begin (void)
	bool begin (const char *ssid)
	bool begin (const char *ssid, const char *key, int enc_type = ENC_TYPE_AUTO)
	void disconnect (void)

	Network and Connection Details
	bool connected (void);
	uint8_t* macAddress (uint8_t *mac);
	uint32_t localIP (void);
	uint32_t subnetMask (void);
	uint32_t gatewayIP (void);
	char* SSID (void);
	int32_t RSSI (void);
	int32_t encryptionType (void);
	uint8_t* BSSID (uint8_t* bssid);
	DNS Lookup
	IPAddress hostByName (const char* hostname)
	bool hostByName (const char* hostname, IPAddress& result)
	bool hostByName (const String &hostname, IPAddress& result)

	Ping
	uint32_t ping (char const* host)
	uint32_t ping (IPAddress ip)

	Factory Reset
	void factoryReset (void)
	void nvmReset (void)

	Hardware Random Number Generator
	bool randomNumber (uint32_t* random32bit)

	Real Time Clock
	bool getISO8601Time (iso8601_time_t* iso8601_time)
	uint32_t getUtcTime (void)

	TLS Root Certificate Management
	Default Root Certificates
	bool useDefaultRootCA (bool enabled)
	bool initRootCA (void)
	bool addRootCA (uint8_t const* root_ca, uint16_t len)
	bool clearRootCA (void)

	Print Helpers
	void printVersions (Print& p = Serial)
	void printNetwork (Print& p = Serial)
	void printEncryption (int32_t enc, Print& p = Serial)

	AdafruitFeather: Profiles
	Connecting via Profiles
	Profiles API
	bool saveConnectedProfile (void)
	bool addProfile (char* ssid)
	bool addProfile (char* ssid, char* key, wl_enc_type_t enc_type)
	bool removeProfile (char* ssid)
	void clearProfiles (void)
	char* profileSSID (uint8_t pos);
	int32_t profileEncryptionType (uint8_t pos);

	AdafruitTCP
	TCP Socket API
	Packet Buffering
	void usePacketBuffering (bool enable)

	TLS/SSL Certificate Verification
	Verifying Certificates with the WICED Feather (Safer)
	Ignoring Certificate Verification (Easier)
	Default Root Certificates

	void tlsRequireVerification (bool required)

	Socket Handler Functions
	void getHandle (void)

	Client API
	int connect (IPAddress ip, uint16_t port)
	int connect (const char * host, uint16_t port)
	int connectSSL (IPAddress ip, uint16_t port)
	int connectSSL (const char* host, uint16_t port)
	uint8_t connected (void)
	void stop (void)

	Stream API
	int read (void)
	int read (uint8_t * buf, size_t size)
	size_t write (uint8_t data)
	size_t write (const uint8_t *content, size_t len)
	int available (void)
	int peek (void)
	void flush (void)

	Callback API
	void setReceivedCallback (tcpcallback_t fp)
	void setDisconnectCallback (tcpcallback_t fp)
	Callback Function Signatures
	Example: Callback Based HTTP Request

	AdafruitTCPServer
	Constructor
	Functions
	bool begin (void)
	AdafruitTCP accept (void)
	AdafruitTCP available (void)
	void stop (void)
	void setConnectCallback (tcpserver_callback_t fp)

	Example
	AdafruitUDP
	UDP Socket API
	UDP API
	uint8_t begin (uint16_t port)
	void stop (void)
	int beginPacket (IPAddress ip, uint16_t port)
	int beginPacket (const char *host, uint16_t port)
	int endPacket (void)
	int parsePacket (void)
	IPAddress remoteIP (void)
	uint16_t remotePort (void)

	Stream API
	int read (void)
	int read (unsigned char* buffer, size_t len)int read (char* buffer, size_t len)
	int peek (void)
	int available (void)

	void flush (void)
	size_t write (uint8_t byte)
	size_t write (const uint8_t *buffer, size_t size)

	Callback Handlers
	void setReceivedCallback (udpcallback_t fp)

	Examples
	UDP Echo Server

	AdafruitHTTP
	AdafruitHTTP API
	HTTP Headers
	bool addHeader (const char* name, const char* value)
	bool clearHeaders (void)

	HTTP GET Requests
	bool get (char const* url)
	bool get (char const* host, char const* url)

	HTTP POST Requests
	bool post (char const* url, char const* encoded_data)
	bool post (char const* host, char const* url, char const* encoded_data)

	HTTP GET Example
	AdafruitHTTPServer
	AdafruitHTTPServer API
	Constructor
	Adding Pages
	1. HTTPPageRedirect Records (Page Redirection Entries)
	2. HTTPPage Records (Standard Pages)
	Converting Static Content (HTTPResources)
	Implementing Dynamic Page Handlers
	Registering the Pages

	Starting/Stopping the HTTP Server
	Complete Example

	AdafruitMQTT
	Constructors
	Functions
	Connection Management
	bool connected(void)
	bool connect (IPAddress ip, uint16_t port = 1883, bool cleanSession = true, uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT);
	bool connect (const char* host, uint16_t port = 1883, bool cleanSession = true, uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT);
	bool connectSSL (IPAddress ip, uint16_t port = 8883, bool cleanSession = true, uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT)
	bool connectSSL (const char* host, uint16_t port = 8883, bool cleanSession = true, uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT)
	bool disconnect (void)

	Messaging
	bool publish (UTF8String topic, UTF8String message, uint8_t qos = MQTT_QOS_AT_MOST_ONCE, bool retained = false);
	bool subscribe (const char* topicFilter, uint8_t qos, messageHandler mh);
	Subscribe Callback Handler(s)
	Callback Handler Parameters

	bool unsubscribe(const char* topicFilter);

	Last Will
	void will (const char* topic, UTF8String message, uint8_t qos = MQTT_QOS_AT_MOST_ONCE, uint8_t retained = 0);

	Client ID
	void clientID(const char* client)

	Disconnect Callback
	AdafruitMQTT Example
	AdafruitMQTTTopic
	Constructor
	Functions
	void retain (bool on)

	Subscribe Callbacks
	bool subscribe (messageHandler_t mh)
	bool unsubscribe (void)
	bool subscribed (void)

	Publishing Data via 'Print'
	Example
	AdafruitAIO
	Constructor
	Functions

	Connecting
	bool connect (bool cleanSession = true, uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT)
	bool connectSSL (bool cleanSession = true, uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT)

	Feed Management
	bool updateFeed (const char* feed, UTF8String message, uint8_t qos=MQTT_QOS_AT_MOST_ONCE, bool retain=true)
	bool followFeed (const char* feed, uint8_t qos, messageHandler_t mh)
	bool unfollowFeed (const char* feed)

	Example
	AdafruitAIOFeed
	Constructor
	Functions
	bool follow (feedHandler_t fp)
	bool unfollow (void)
	bool followed (void)

	Example
	AdafruitTwitter
	1. Creating a WICED Twitter Application
	Enter the Application Details
	Set the Application Permissions
	Manage the Access Keys
	Copy the Appropriate Key Data
	Create your Access Token

	2. Using the AdafruitTwitter Class
	AdafruitSDEP
	AdafruitSDEP API
	Constructor
	Functions
	sdep
	Examples

	sdep_n
	Examples

	Error Handling Functions
	err_t errno (void)
	char const* errstr(void)
	char const* cmdstr (uint16_t cmd_id)
	void err_actions (bool print, bool halt)

	Error Handling Example
	Client
	Adapting Client Examples
	1. Update Header Includes
	2. Change 'WiFi.*' References to 'Feather.*'
	3. Change WiFiUDP and WiFiTCP Class Types

	Constants
	wl_enc_type_t
	err_t
	wl_ap_info_t
	Python Tools
	pyresource.py (Convert static files to C headers)
	pycert.py (Python TLS Certificate Converter)
	feather_dfu.py (Python USB DFU Utility)
	pyresource.py
	Usage
	HTTPResource Records
	HTTPResource Collection: resources.h
	pycert.py
	Downloading the Root Certificate for a Domain
	Parameters
	Usage

	Converting PEM Files
	Parameters
	Usage

	feather_dfu.py
	Commands
	arduino_upgrade
	featherlib_upgrade
	enter_dfu
	info
	factory_reset
	nvm_reset
	reboot

	SDEP Commands
	Generic
	Reset (0x0001)
	Factory Reset (0x0002)
	Enter DFU Mode (0x0003)
	System Information (0x0004)
	Parameter ID

	NVM Reset (0x0005)
	Error String (0x0006)
	Error ID

	Generate Random Number (0x0101)
	Examples
	Accessing the Examples (Arduino 1.6.5)
	Accessing the Examples (Arduino >= 1.6.8)
	Example Folders
	Making Modifications to the Examples
	ScanNetworks
	Setup
	Compile and Flash
	Testing the Sketch
	Ping
	Setup
	Compile and Flash
	Testing the Sketch
	GetHostByName
	Setup
	Compile and Flash
	Testing the Sketch
	HttpGetPolling
	Setup
	Compile and Flash
	Testing the Sketch
	HttpGetCallback
	Setup
	Compile and Flash
	Testing the Sketch
	HTTPSLargeData
	Setup
	Compile and Flash
	Testing the Sketch
	Throughput
	Setup
	Running Netcat
	Compile and Flash
	Testing the Sketch
	FeatherOLED
	Setup
	Setting the Access Point
	Enabling LIPO Battery Monitoring (Optional)
	Enabling the TSL2561 Luminosity Sensor (Optional)
	Enabling MQTT to Adafruit IO (Optional)

	Compile and Flash
	Testing the Sketch
	FAQs
	I bricked my board. Can I force the device into DFU mode?
	What TLS Version does the WICED Feather support?
	When I try to build I'm getting: Cannot run program "{runtime.tools.arm-none-eabi-gcc.path}\bin\arm-none-eabi-g++" (in directory "."): CreateProcess error=2, The system cannot find the file specified
	When I try to flash using USB DFU I get the following error from featherdfu.py: Traceback (most recent call last): File "...\hardware\AdafruitWICEDArduino/tools/featherdfu.py", line 1, in import usb.backend.libusb1
	My board isn't enumerating as a USB device, or is stuck in DFU mode. How can I re-flash the FeatherLib firmware directly using dfu-util and restore my device?
	How can I reflash the bootloader with a JLink or STLink/V2 from the Arduino IDE?
	How can I flash the bootloader using AdaLink directly?
	I get 'OSError: [Errno 2] No such file or directory OSError: [Errno 2] No such file or directory' when trying to use feather_dfu.py in the Arduino IDE. What should I do?

	Downloads
	Related Documents
	Schematic
	Fabrication Print

