Getting Started with the nRF8001
Bluefruit LE Breakout

Created by Kevin Townsend

https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-breakout

Last updated on 2024-06-03 01:28:42 PM EDT

©Adafruit Industries Page 1 of 35

Table of Contents

Introduction 5

« Requirements

Pinouts 7

Hooking Everything Up 8
« Prepare the header strip:

« Add the breakout board:

« And Solder!

« Wiring

Software: UART Service 12

NRF UART In Detail 14

« Initialization

« Setup

« Polling

« Managing Status

« Reading data

« Writing data

« uint16_t write (uint8_t singlebyte)

« uint16_t write (uint8_t * buffer, uint8_t len)
- uint16_t print("text here")

« uint16_t printin("text here")

Software: nRF UART App 19

« Android: nRFUART 2.0
« iOS: nRF UART

Software: BlueFruit UART App 22
« UART Echo Demo

Software: BlueFruit Pin I/O 25

- BLE StandardFirmata

« Wiring up for Firmata demo
« Input Mode

« Output Mode

« PWM Mode

Adding App Support 32
« The UART Service

Related Links 33

« Adafruit Resources
» General Resources

F.A.Q. 34
Downloads 34

« Datasheets & Files
« Schematic

©Adafruit Industries Page 2 of 35

« Fabrication Print

©Adafruit Industries Page 3 of 35

©Adafruit Industries Page 4 of 35

Introduction

Our nRF8001 Breakout allows you to establish an easy to use wireless link between

your Arduino and any compatible iOS or Android (4.3+) device. It works by simulating
a UART device beneath the surface, sending ASCII data back and forth between the
devices, letting you decide what data to send and what to do with it on either end of
the connection.

Unlike classic Bluetooth, BLE has no big contracts to sign and no major hoops that
you have to jump through to create iOS peripherals that you can legally design and
distribute in the App Store, which makes it a great choice compared to classic
Bluetooth which had (and still has) a lot of restrictions around it on the iOS platform.

And now that Android also officially supports Bluetooth Low Energy (as of Android
4.3), it's also -- finally! -- a universal communication channel covering the main mobile
operating systems people are using today.

We can get you started super fast with this BLE module which can act like an 'every
day' UART data link. Send and receive data up to 10 meters away, from your Arduino
to an iOS device. We've even made it easy to get started with our very own BLE

connect app that has a "serial console" for sending/receiving data and also an
'arduino pin i/o control station" (https://adafru.it/ddu) to let you set pins on your

Arduino to inputs or outputs, high or low logic or even PWM output, as well as read
button presses and analog inputs. You can start prototyping your accessory and then
use our open source Objective C code to base your new app on! (https://adafru.it/ddv)

©Adafruit Industries Page 5 of 35

https://itunes.apple.com/us/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://itunes.apple.com/us/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://itunes.apple.com/us/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://github.com/adafruit/Bluefruit_LE_Connect

The nRF8001 library is not compatible with the Arduino Due at this time

Please note: At this time, we don't have an Android version of the Adafruit Bluefruit
LE App available (our native BLE application), but you can use Nordic's Android nRF

UART application with the nRF8001 Breakout on BLE capable Android devices (Nexus
4, Nexus 5, Nexus 7, etc.)

This guide will help you setup your nRF8001 Bluetooth Low Energy breakout, and
start using some of the sample sketches we provide with it to connect to an iOS or
Android device. If you're new to Bluetooth Low Energy, be sure to check out our
Introduction to Bluetooth Low Energy (https://adafru.it/dd1) learning guide as well!

At this time, we don't have an Android version of the Adafruit Bluefruit LE App
available (our native BLE application), but you can use Nordic's Android nRF
UART application on BLE capable Android devices (Nexus 4, Nexus 5, Nexus 7,
etc.), or have a look at this Android project by Tony Dicola: https://github.com/
tdicola/BTLETest

nRF8001
Bluetooth LE

MISO REG ACT 3Uo VIN

FRRN AR

AR

Requirements

« Adafruit nRF8001 Breakout
« A BLE enabled Android or iOS device to test with for nRF UART demos

©Adafruit Industries Page 6 of 35

http://learn.adafruit.com/introduction-to-bluetooth-low-energy/introduction
https://github.com/tdicola/BTLETest
https://github.com/tdicola/BTLETest

« An iOS device running iOS 7 with Bluefruit (https://adafru.it/dd2) installed for the
BlueFruit LE Firmata demos

Pinouts

e iR |
NRF8001
Bluetooth LE

_SCK. MOSI__RDY RST 6NO-

000000000

MISO REQ@ ACT 3VUo VIN/

The nRF8001 is nice because it handles all the BLE radio and low level work, and
does it all over SPI which makes it easy to use with any kind of microcontroller. All
pins you need are broken out on the bottom of the PCB and all are 5V compliant so
you can use with 3V or 5V micros!

Starting from the left:

« SCK - this is the SPI data clock pin, connect to your SPI master clock out

« MISO - this the SPI data out pin, data is sent from the module on this pin. Data
level is 3V but that is fine for 5V microcontrollers.

« MOSI - this is the SPI data in pin, data is sent to the module on this pin.

« REQ - this is basically what the nRF8001 considers the 'SPI Chip Select' pin, its
an input

« RDY (ready) - this is the data-ready pin, an interrupt output from the breakout to
the microcontroller letting it know that data is ready to read

« ACT (active) - this is an output from the module, it lets the host know when the
NRF8001 is busy

« RST (reset) - this is the reset pin input.

« 3Vo - this is the output from the onboard 3.3V regulator, you can grab up to
100mA from this pin.

+« GND - common ground for data and power

©Adafruit Industries Page 7 of 35

https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=830125974&mt=8

« VIN - 3-5 VDC input to power the breakout

Hooking Everything Up

The nRF8001 breakout has full level shifting to make it safe to use with 5V logic, and
uses a custom SPI-type bus to talk to the Arduino.

The SPI bus means that this breakout and library will work on any Arduino as long as

you're using the hardware SPI pins.

We'll start by attaching headers. You can also solder wires directly but header makes
it breadboard friendly!

Prepare the header strip:
Cut the strip to length if necessary. It will
be easier to solder if you insert it into a
breadboard - long pins down.

+ yewws wsmss muwes osaws snwan t
".‘.. SRR Es Fase L LB

Add the breakout board:

Place the breakout board over the pins so
that the short pins poke through the
breakout pads

©Adafruit Industries Page 8 of 35

https://learn.adafruit.com//assets/15716
https://learn.adafruit.com//assets/15716
https://learn.adafruit.com//assets/15717
https://learn.adafruit.com//assets/15717

R R R R R R R R R R R R R R N

T EEEE R E R E R E R R R R RN R

L B B B BB "NIn one - 10 03Y - OSIM L
N N .

TEEERE "o ®ma R v v v v

1SY AQH ISOM %US

TR R " e

(I B B B B : L B I N

R R =74 "y .

EERERE > o e

- B . Buns

FRwE . 37 yiooanig

BERERE R
1008 Jyv

IR © @~ o

" . wam - .-

L]
]
1
1
1
<

Wiring

And Solder!

Be sure to solder all 10 pins for reliable
electrical contact.

(For tips on soldering, be sure to check out
our Guide to Excellent Soldering (https://
adafru.it/aTk)).

That's it! you are now ready to wire and
test

Now that we have headers attached we can easily wire it up to our Arduino

« VIN connects to the Arduino 5V pin
« GND connects to Arduino ground

©Adafruit Industries

Page 9 of 35

https://learn.adafruit.com//assets/15718
https://learn.adafruit.com//assets/15718
https://learn.adafruit.com//assets/15719
https://learn.adafruit.com//assets/15719
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com//assets/15721
https://learn.adafruit.com//assets/15721

« SCK connects to SPI clock.
On Arduino Uno/Duemilanove/328-based, thats Digital 13.
On Mega's, its Digital 52 and on
Leonardo/Micro its ICSP-3 (See SPI Connections for more details (https://
adafru.it/d5h))
« MISO connects to SPI MISO.
On Arduino Uno/Duemilanove/328-based, thats Digital 12.
On Mega's, its Digital 50 and on

Leonardo/Micro its ICSP-1 (See SPI Connections for more details (https://
adafru.it/d5h))
« MOSI connects to SPI MOSI.
On Arduino Uno/Duemilanove/328-based, thats Digital 11.
On Mega's, its Digital 51 and on

Leonardo/Micro its ICSP-4 (See SPI Connections for more details (https://
adafru.it/d5h))
« REQ connects to our SPI Chip Select pin. We'll be using Digital 10 but you can

later change this to any pin

« RST connects to Digital 9 - this is for resetting the board when we start up, you
can later change this to any pin

« RDY is the interrupt out from the nRF8001, we'll connect to Digital 2 but be
aware that if you want to change it, it must connect to an interrupt capable pin
(see this Arduino page for which pins are interrupt-capable (https://adafru.it/
dd4). Digital 2 is OK on Uno/Leonardo/Micro/Mega/etc.)

Our code does not currently use the ACT pin so you can leave it disconnected

©Adafruit Industries Page 10 of 35

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/attachInterrupt

nRF&8001
. Bluetooth LE

www.arduino.cc

Em POWER avaocin @
®&5 Gnd Vin 012345

nRF8@e1
Bluetooth LE

MADE
INITALY

The nRF8001 differs from a classic SPI bus since CS is replaced by two pins, REQ
and RDY, but you can still use HW SPI since CS is normally controlled purely in

SW anyway.

©Adafruit Industries Page 11 of 35

By connecting 5.0V on the VIN pin, all of the signals will be level shifted between 5V
for the Arduino and 3.3V for the nRF8001, meaning you don't need to worry about
damaging the IC by providing logic levels that it can't safely handle.

If you are using 3.3V logic, simply connect 3.3V from your development board to

the VIN pin on the nRF8001 breakout.

ACT is an optional pin that is not currently used in our sample sketches or low level
drivers, but is broken out for future use if required.

3Vo is the output of the on board 3.3V voltage regulator, and can be used if you need
an additional 3.3V supply rail, but generally won't be required on an Uno.

Software: UART Service

Most people understand the basic concept behind UART (one channel to transmit
data and one to receive it), so this felt like the easiest way to provide flexible, bi-
directional communication between an Arduino and any BLE-enabled mobile platform,
without painting people into the corner. BLE does have the capability to handle more
complicated structured data, but for the vast majority of people doing projects, UART
will get you very very far.

To save everyone the headache of defining and working with custom services, we've
wrapped up all of the low level BLE code into a single, easy to use class called
Adafruit_BLE_UART, available in the nRF8001/ Adafruit_BLE_UART repository on
Github (https://adafru.it/dd8)

To install this library, first, open up the Arduino library manager:

File Edit |Sketch Tools Help
Verify/Compile Ctrl+R

A
i

Upload Ctrl+U Manage Libraries...
Upload Using Programmer Ctrl+Shift+U

Export compiled Binary Ctrl+Alt+S sl rn ol
Show Sketch Folder Ctrl+K Arduino libraries
Include Library) ArduinoHttpClient
Add File ArduinoSound
// we light one pixel at a time, this is our| SILEET
il e mbdarmalem - N Rridne

Search for the Adafruit NRF8001 library and install it

©Adafruit Industries Page 12 of 35

https://github.com/adafruit/Adafruit_nRF8001
https://github.com/adafruit/Adafruit_nRF8001

Type All - Topic All - adafruit nrf8001|

Adafruit BLEFirmata 1, Adafrult

Modified Firmata code to work with Adafruit's nRF8001 Breakout and BlueFruit modules Modified Firmata code to work with Adafruit's nRFE001
Breakout and BlueFruit modules

More info

Adafruit nRF8001 by Adafruit
Drivers for A 's nRF8001 Low Energy Drivers for Adafruit's nRF8001 Bluetooth Low Energy Breakout
More info

Version 1.... - Install

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://
adafru.it/aYM)

: oo | Arduno 1 Adatrut_MAXZ21100 > Fa
_ Adafruit_ MAX31855 >
Edit Sketch Tools Help Adafruit MCP23008
New Ctrl+N Adafruit MCP23017 »
Open... Ctrl+0 Adafruit_MCP4725 »
Sketchbook 4 Adafruit_MiniMLX9014 »

Examples Y Adafruit MLX9014 8 i
Close Ctrl+W Adafruit_MotorShield »
Save Ctrl+S Adafruit_ MPL115A2 >
Save As... Ctrl+Shift+S Adafruit_MPU9150 >
Upload Ctrl+U Adafruit_NECremote >
Upload Using Programmer Ctrl+Shift+U Adafruit_NeoMatrix »
Adafruit_NeoPixel >
= SRR Adafruit_NFCShield_12C »

. Brint Curi<P Adafruit_nRF8001 » callbackEcho
Preferences Ctrl+Comma Adafruit_OV7670 > echoDemo

Adafruit_PCD8544 4
Quit Ctrl+Q Adafruit_PN532 >
Adafruit_PS2_Touchpad »
Adafruit_PWMServoDriver
Adafruit_RAB875 4
l Adafruit_RGBLCDShield »
Adafruit_SharpMem 4
Adafruit SoftServe »

Open the 'uart' example via the 'File > Examples > Adafruit_BLE_UART> echoDemo'
menu item. (The library was renamed from Adafruit_nRF8001 to avoid confusion with
the underlying library so the screenshot above is mismatched)

If you upload the demo to your wired-up Arduino and open the serial monitor you
should see that it starts advertising BLE signal

©Adafruit Industries Page 13 of 35

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

r ~— —— N
|%| COM68 = e

Adafruit Bluefruit Low Energy nRFE001 Print echo demo =
* Advertising started

m
——

[¥] Autoscroll Nolineending | (9600baud ||

Next up we will use our iOS or Android device to make the other side of the
connection!

NRF UART In Detail

To better understand the BLE UART interface, lets take a look at the basic echo demo.
This version is designed to make the BLE breakout be as effortless to use as Serial.

Behind the scenes, the library does much of the heavy lifting of managing the
connection, sending and receiving data as well as buffering incoming data so you can
grab it when the Arduino has time.

The following sketch should allow you to start bi-directional communication on BLE-
enabled Android devices (4.3 or higher) or recent iOS devices. It waits for incoming
data, and then echoes it back to the transmitting device.

// This version uses the internal data queing so you can treat it like Serial
(kinda)!

#include &1t;SPI.h>
#include "Adafruit BLE UART.h"

// Connect CLK/MISO/MOSI to hardware SPI

// e.g. On UNO & compatible: CLK = 13, MISO = 12, MOSI = 11

#define ADAFRUITBLE REQ 10

#define ADAFRUITBLE RDY 2 // This should be an interrupt pin, on Uno thats #2
or #3

#define ADAFRUITBLE RST 9

Adafruit BLE UART BTLEserial = Adafruit BLE UART(ADAFRUITBLE REQ, ADAFRUITBLE RDY,
ADAFRUITBLE RST);

RSSO HKSK R R KKK R R KK KK SR R KK KR SR KK KR R KKK R R KK SR SRR KK KRR KKK SRR KRRk K/

©Adafruit Industries Page 14 of 35

/*!

Configure the Arduino and start advertising with the radio
*/
/**/
void setup(void)

Serial.begin(9600);
Serial.println(F("Adafruit Bluefruit Low Energy nRF8001 Print echo demo"));

BTLEserial.begin();
}

/**/
/*!

Constantly checks for new events on the nRF8001
*/
/KRR sk sk kR sk ok ook sk ook sk ok sk ok skokok s okok ook sk ok sk okok ok skkok oksk ok sk ok sk ok skoskok ook ok skkok sk ok ok ok ok ok /
aci evt opcode t laststatus = ACI _EVT DISCONNECTED;

void loop()

{
// Tell the nRF8001 to do whatever it should be working on.
BTLEserial.pollACI();

// Ask what is our current status
aci evt opcode t status = BTLEserial.getState();
// If the status changed....
if (status != laststatus) {
// print it out!
if (status == ACI_EVT DEVICE STARTED) {
Serial.println(F("* Advertising started"));
}

if (status == ACI_EVT_CONNECTED) {
Serial.println(F("* Connected!"));
}

if (status == ACI_EVT DISCONNECTED) {
Serial.println(F("* Disconnected or advertising timed out"));
}

// OK set the last status change to this one
laststatus = status;

}

if (status == ACI EVT CONNECTED) {
// Lets see if there's any data for us!
if (BTLEserial.available()) {
Serial.print("* "); Serial.print(BTLEserial.available()); Serial.println(F("
bytes available from BTLE"));
¥
// OK while we still have something to read, get a character and print it out
while (BTLEserial.available()) {
char ¢ = BTLEserial.read();
Serial.print(c);

}

// Next up, see if we have any data to get from the Serial console

if (Serial.available()) {
// Read a line from Serial
Serial.setTimeout(100); // 100 millisecond timeout
String s = Serial.readString();

// We need to convert the line to bytes, no more than 20 at this time
uint8 t sendbuffer[20];

s.getBytes(sendbuffer, 20);

char sendbuffersize = min(20, s.length());

Serial.print(F("\n* Sending -> \"")); Serial.print((char *)sendbuffer);
Serial.printlin("\"");

©Adafruit Industries Page 15 of 35

// write the data
BTLEserial.write(sendbuffer, sendbuffersize);

}
}
}

Initialization

Lets look at it section by section. Starting with initialization. You'll need to include the
header files and define the pins used. Since we're using hardware SPI, the CLK/MOSI
and MISO pins are fixed (see the hookup guide)

the RDY pin is the only pin that must be an interrupt pin. We'll use 2, most Arduino's
can use 2 or 3.

Then create the Adafruit_BLE_UART object at the top.

#include &1t;SPI.h>
#include "Adafruit BLE UART.h"

// Connect CLK/MISO/MOSI to hardware SPI

// e.g. On UNO & compatible: CLK = 13, MISO = 12, MOSI = 11

#define ADAFRUITBLE REQ 10

#define ADAFRUITBLE RDY 2 // This should be an interrupt pin, on Uno thats #2
or #3

#define ADAFRUITBLE RST 9

Adafruit BLE UART BTLEserial = Adafruit BLE UART(ADAFRUITBLE REQ, ADAFRUITBLE RDY,
ADAFRUITBLE RST);

Setup

Setup is easy, just remember to call begin(); in the setup procedure to begin talking to
the nrf8001

Polling

During your working loop, you have to give some time to the nRF8001 and tell it to
process data. So be sure to call

/] Tell the nRF8001 to do whatever it should be working on.
BTLEserial.pollACI();

as often as possible - and if you're having issues where data rates seem slow, try
speeding up your loop

©Adafruit Industries Page 16 of 35

It's important to constantly call pollACI if you want to efficiently handle data over

BLE. Be sure to include this function at the top of your 'loop' function in your
sketch.

Managing Status

BLE is very asynchronous, it can connect, disconnect, time out. Part of the niceness of
BTLE compared to classic BT is that this is all much more stable. Reconnecting takes
less than half a second instead of up to 20 seconds! Be sure to check in with the
nRF8001 often to see if the see the state has changed. We suggest keeping a global
variable for the last known status so you can see if its changed

aci_evt_opcode_t laststatus = ACI_EVT_DISCONNECTED;

and then calling getState() to query the latest state. If something's changed, you can
notify the user:

// Ask what is our current status
aci evt opcode t status = BTLEserial.getState();
// If the status changed....
if (status !'= laststatus) {
// print it out!
if (status == ACI_EVT DEVICE STARTED) {
Serial.println(F("* Advertising started"));
}

if (status == ACI_EVT_CONNECTED) {
Serial.println(F("* Connected!"));
}

if (status == ACI_EVT DISCONNECTED) {
Serial.println(F("* Disconnected or advertising timed out"));

// OK set the last status change to this one
laststatus = status;

}

Valid events are:

« ACI_EVT_DEVICE_STARTED: The device has started advertising, and can be
detected by other devices in listening range

+ ACI_EVT_CONNECTED: A connection has been established with another
devices (meaning that advertising will now stop)

+ ACI_EVT_DISCONNECTED: The connection with the external device was closed
or timed out

By detecting the event type, we can perform an action like enabling an LED when we
are connected, or no longer reading sensor data when we are disconnected, etc.

©Adafruit Industries Page 17 of 35

Reading data

If data is available, you can query it with available() which will return the number of
bytes waiting. You can then read one byte at a time with read() just like you would
with Serial

Writing data

The nRF8001 sends out packets of data, 20 bytes at time. Keep this in mind if you
want to send a lot of data it will be packetized into chunks of 20. You can of course
send less than 20 bytes.

Much like Serial you can use the .write and .print functions allow us to send data out
to the connected device:

(https://adafru.it/ddw) (https://adafru.it/ddx)uint16_t write (
uint8_t singlebyte)

Writes a single byte to the connected device, and returns the number of bytes
successfully written.

(https://adafru.it/ddw) (https://adafru.it/ddx)uint16_t write (
uint8_t * buffer, uint8_t len)

Writes len bytes from buffer to the connection device, and returns the number of
bytes successfully written.

(https://adafru.it/ddw) (https://adafru.it/ddx)uint16_t
print("text here")

Prints the supplied string to the connected device, and returns the number of bytes
successfully written. This is simple a helper function that points to .write, but may be
easier to work with since it follows the same naming conventions as the familiar Serial
class on Arduino.

(https://adafru.it/ddw) (https://adafru.it/ddx)uint16_t
printin("text here")

Similar to the print function above, but appends the string with new line characters at
the end of the string, similar to the difference between Serial.print and Serial.printin
on Arduino.

Try to keep the buffers and strings under 20 bytes. The library will split up large

©Adafruit Industries Page 18 of 35

http://learn.adafruit.com/getting-started-with-the-nrf8001/understanding-the-nrf-uart#uint16-t-write-uint8-t-buffer
http://learn.adafruit.com/getting-started-with-the-nrf8001/software-uart-service#uint16-t-write-uint8-t-buffer
http://learn.adafruit.com/getting-started-with-the-nrf8001/understanding-the-nrf-uart#uint16-t-write-uint8-t-star-buffer-uint8-t-len
http://learn.adafruit.com/getting-started-with-the-nrf8001/software-uart-service#uint16-t-write-uint8-t-star-buffer-uint8-t-len
http://learn.adafruit.com/getting-started-with-the-nrf8001/understanding-the-nrf-uart#uint16-t-print-const-char-star-thestr
http://learn.adafruit.com/getting-started-with-the-nrf8001/software-uart-service#uint16-t-print-const-char-star-thestr
http://learn.adafruit.com/getting-started-with-the-nrf8001/understanding-the-nrf-uart#uint16-t-println-const-char-star-thestr
http://learn.adafruit.com/getting-started-with-the-nrf8001/software-uart-service#uint16-t-println-const-char-star-thestr

messages but often times the app on the other side wants to read the whole packet
at once, and it can make your job a lot easier!

Software: nRF UART App

In order to test the sketch described on the previous page, you can use a free UART
application from Nordic Semiconductors (https://adafru.it/dd5) that's available in

Apple's app store for recent iOS devices or Android's Play Store for Android 4.3 or
higher devices.

Android: nRFUART 2.0

« Go to the Play Store and search for nRFUART 2.0 (https://adafru.it/dd6), then
install the application. If you can't find this application, your Android device
probably doesn't support BLE or isn't running Android 4.3+!

« Load the 'callbackEcho' sketch onto your Arduino (File > Examples >
Adafruit_nRF8001 > callbackEcho)

« Run the sketch and open the Serial Monitor (Baud Rate = 9600)

Be sure to use the 2.0 version of the app on Android. The earlier (non 2.0)

version is based on a proprietary BLE stack for certain Samsung devices, which
was created before Google added official support for BLE in Android 4.3.

Once the device starts advertising, you can open the nRFUART 2.0 application, and
you should be able to connect to the 'UART' device, similar to the screenshot below:

nRF UART

Select a device

UART
E8:49:39:EF:B5:25

Once you're connected, you can click on the 'send' textbox at the bottom, and any
data you send out should show up in the Serial Monitor, and also get echoed back to
the Android application, as seen below:

©Adafruit Industries Page 19 of 35

http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF-UART-App
http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF-UART-App
https://play.google.com/store/apps/details?id=com.nordicsemi.nrfUARTv2

(@ 0 F/H355
nRF UART

Disconnect

[3:55:36 PM] Connected to: UART
(3:55:44 PM] TX: type in something
(3:55:44 PM] RX: type in something
[3:55:46 PM] TX: {REF

[3:55:46 PM] RX: {R¥F

Device: UART - ready

H BN EEN BEN BEN BV A

a s d f g h j k

£ zZz x ¢c vV b nm «

You will need an Android device running Android 4.3 or higher with BLE support
to use this application. Nexus 4, Nexus 5 and Nexus 10 devices running the latest
version of Android can all use this application, but other devices will need to be
verified for BLE support.

If you wish to create your own Android BLE UART project, you can have a look at
some Android source code from Tony Dicola that works with our UART service
here: https://github.com/tdicola/BTLETest

©Adafruit Industries Page 20 of 35

https://github.com/tdicola/BTLETest

IOS: nRF UART

If you are using a BLE-enabled iOS device (recent iPhones, iPod Touch models, iPads,
etc.), you can also test this on iOS.

« Download nRF UART (https://adafru.it/dd7) application from Apple's App Store.
« Load the 'callbackEcho' sketch onto your Arduino (File > Examples >
Adafruit_nRF8001 > callbackEcho)

« Once the sketch is running, open up the Serial Monitor at 9600 baud.

You should be able to connect to the board using the 'Connect' button in the iOS
application now, and send and receive text via the textbox at the bottom of the app:

r T T N
|%| COM68 EENEERT
Adafruit Bluefruit Low Energy nRFE001 Print echo demo =

Advertising started

*
* Connected!

* Advertising started
*

*

Connected!

4 bytes available from BTLE
test

m

-

Autoscroll :No line ending « :9600 baud «

=

©Adafruit Industries Page 21 of 35

https://itunes.apple.com/us/app/nrf-uart/id614594903?mt=8

iPod & 20:07 3

Disconnect

CONSOLE

[20:06:32.082] Log: Did start application
[20:07:19.961] Log: Did connect to UART
[20:07:20.909] Log: Hardware revision: 0x15,
0x00, 0x02, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00
[20:07:33.731] TX: test

[20:07:33.796] RX: test

test Send

Software: BlueFruit UART App

If you're using an iOS based device, we've made your life easy with our BlueFruit
application (https://adafru.it/dd2), which is available in Apple's App Store.

This free iOS application allows you to send or received UART messages between
your iOS device and the nRF8001 (select UART on the home page), or toggle pins
from the iOS Ul setting them to input, output or as PWM (select Pin I/O discussed in
the next page)

©Adafruit Industries Page 22 of 35

https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=830125974&mt=8
https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=830125974&mt=8

Réseau indisp. & 20:36

Bluefruit Connect

UART Echo Demo

This UART is basically the same as nRF's but its a little more like a terminal window
instead of a timestamped log.

The echoDemo example sketch allows you to send and receive simple messages
using Serial-esque style commands, and the data will be displayed on both BlueFruit
on the iOS device and the Serial Monitor on the Uno.

After programming the Uno with the sketch, you can open up the Serial Monitor (make
sure it's set to 9600 baud!), and then open up the BlueFruit application on your iOS

device and select UART on the home screen. It should connect!

Now, any data that you enter on the iOS device or the Uno will be transmitted to the
other device as long as the connection is open:

©Adafruit Industries Page 23 of 35

e 00 /dev/tty.usbmodem1411

Test Message “Send
AdAdafruit Bluefruit Low Energy nRF8001 Print echo demo

* Advertising started

* Connected!

* Sending -> "Test Message"
Writing out to BTLE: Ox54 Ox65 0x73 0x74 0x20 0x4D Ox65 Ox73 Ox73 Ox61 Ox67 Ox65
* 9 bytes available from BTLE
reply msg) §

v

™ Autoscroll "No line ending ?] 9600 baud ﬂ

The corresponding BlueFruit output can be seen below, where the red message is
incoming data and the blue message is outgoing data.

-92 AT&T = 9:27 PM @ 7 3 82% mm»

UART

Test message
test reply

Click the HEX button in the top right to switch over to hex display mode instead of
plain 'ascii' mode

©Adafruit Industries Page 24 of 35

-92 AT&T = 9:27 PM @ 7 3 82% mH»

UART

Ox54 0x65 0x73 0x74 0x20 0x6d
Ox65 0x73 0x73 0x61 Ox67 0OX65
0x74 0x65 0x73 0x74 0x20 0x72
0x65 0x70 0Ox6C 0x79

Software: BlueFruit Pin I/O

In addition to the UART functionality in BlueFruit (https://adafru.it/dd2), you can also
use Firmata to control the pins on your Uno.

Firmata (https://adafru.it/dda) is a light weight protocol that was designed to make it
possible to control an Uno from a variety of external devices, such as you laptop
using another programming language. We've ported Firmata over to BLE using our
Adafruit_BLE_UART as the transport layer, and created an easy to use IDE to help you

get started with it.

At this time, our Firmata sketch/App support is limited to iOS devices. BLE is

relatively new to the Android ecosystem and there are only a handful of devices
that support it today, and the stack itself is still in active development and has

©Adafruit Industries Page 25 of 35

https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=830125974&mt=8
http://firmata.org/wiki/Main_Page

some issues that will no doubt be resolved in future updates. For the moment,
though, we have made the decision to concentrate our limited resources on iOS

since this is the still statistically the most natural target plaform in the BLE world.

BLE StandardFirmata

The first thing you'll need to do is download the Adafruit_BLE_PinlO (https://adafru.it/
fTO) repository from the Arduino library managetr.

Open up the Arduino library manager:

// we light one pixel at a time,

Verify/Compile
Upload

Ctrl+R
Ctrl+U

Upload Using Programmer Ctrl+Shift+U

Export compiled Binary

Show Sketch Folder
Include Library
Add File...

Ctrl+Alt+S

Ctrl+K

~Alem — A

this is our

N

0

Manage Libraries...
Add .ZIP Library...

Arduino libraries
ArduinoHttpClient
ArduinoSound
AudioZero

Rridne

Search for the Adafruit BLEFirmata library and install it

Type All

rn ol

~ | Topic |All v | [adafruit blefirmatal

Adafruit BLEFirmata by Adafruit

Modified Firmata code to work with Adafruit's nRF8001 Breakout and BlueFruit modules Modified Firmata code to work with Adafruit's

NRF8001 Breakout and BlueFruit modules

More info

Version1.1.2 | »

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://

adafru.it/ayM)

Install

The Adafruit_PinlO sketches also requires Adafruit_nRF8001 to be present in your
libraries folder but you already installed that so you should be good to go if you went
through the UART echo tests.

Once this library is installed, open up the StandardFirmata sketch (File > Examples >
Adafruit_BLEFirmata > StandardFirmata), compile the sketch, and program the Uno

with your firmware.

©Adafruit Industries

Page 26 of 35

https://github.com/adafruit/Adafruit_BLE_PinIO
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

2 comss L D, |
M =R

RAdafruit BTLE Firmata test -~
* Advertising started]

-

[¥] Autoscroll Noline ending v | [9600baud |

Next, open Adafruit Bluefruit LE Connect on your iOS device and select the Pin I/O
option on the home page:

©Adafruit Industries Page 27 of 35

Réseau indisp. & 20:36

Bluefruit Connect

This will establish a connection between the nRF8001 and your iOS device, and you
should see an I/O screen that allows you to select any available pin.

©Adafruit Industries Page 28 of 35

' COM68 -

Adafruit BTLE Firmata test

* Advertising started

* Cinnected!

Init firmata

Begin firmata
Writing one byte 0xF9
Writing one byte 0x2
Writing one byte 0x3

RESEI

Set pin #3 to input

Set pin #4 to input

Set pin #5 to input

Set pin #6 to input

Set pin #7 to input

Set pin #8 to input

Will report analog pin #0

Set pin #14 to analog

Will report analog pin #1

Set pin #15 to analog

Will report analeog pin #2

Set pin #16é to analog

Will report analog pin #3

Set pin #17 to analog

Will report analog pin #4

Set pin #1& to analog

Will report analog pin #5

Set pin #19 to analog
Received 0xDO0 0x8

Will report 0x8 digital mask on port 0

Sending update for port 0 = 0XFOQ

[C] Autoscrol

:Nolineending v: :9600baud v:

Wiring up for Firmata demo

The Firmata BLE app demo allows you to some basic functionality with your Arduino,

great for testing out ideas or sensors

« Digital Input (e.g. switches)

« Digital Output (e.g. relays)

« Analog Input (e.g. sensors)

« PWM Output (e.g. LED dimming)

We'll demo all of these with the following wiring, grab some components from your

parts bin and follow along!

« Connect a standard LED (any color) with a inline resistor (220-1K is fine) to

Digital 7

©Adafruit Industries

Page 29 of 35

« Connect an RGB LED (either common cathode or anode) so that the red, green
and blue LED pins tie to Digital 3 5 and 6 with inline resistors. If using common
anode, connect the fourth pin to 5V. If using common cathode, connect it to
GND.

« Connect a switch of some sort to Digital 4 so that when pressed, it connects to
ground. No pullup resistor is required

. Connect a potentiometer (any value 500 ohm to 1IMohm) so that the two outer
legs connect to 5V and GND and the middle pin connects to Analog 5

N\), ¥

DIGITAL _

= ™ Arduino iU

. RX

www.arduino.cc

w - "
2 B » POWER ANALOG IN .
OEASVGd Vin 012345

Simply click on the pin that you wish to manipulate (pin 3 is selected in the screenshot
below), set one of the three pin modes (Input, Output, PWM or Analog mode), and
adjust the settings accordingly:

©Adafruit Industries Page 30 of 35

Réseau indisp.

Pin 3

Input

Pin 4
Input
Pin 5
Input
Pin 6
Input
Pin 7
Input
Pin 8
Input

Pin AO
Input

Pin A1
Input
Pin A2
Input
Pin A3

Input

Pin A4
Input

Pin A5
Analog

Some of the various options can be seen below, such as the ability to change the
PWM rate when you select PWM mode, or whether to set output pins high or low, etc.:

Input Mode

This mode will setup the pin as an input, and the latest pin state will be displayed as
High or Low:

Pin 3 High

Input
m Output PWM ‘

©Adafruit Industries Page 31 of 35

Output Mode

In Output Mode you can set the pin state yourself to High or Low, allowing you to
manually toggle an LED, enable or disable a FET driving a heavy load, etc.:

Pin 3 Low

Output

Low High

~—

PWM Mode

PWM Mode allows you to set adjust the PWM output on a pin between O and 255
using a convenient slider, as shown below:

Pin 3 115
PWM

Input Qutput PWM

—

Adding App Support

While we don't have a tutorial yet on creating your own custom applications on iOS,
Android or any other BLE-enabled operating system, the following information will be
useful to any application developers, and you're free to look at our open source code
for our own iOS application (https://adafru.it/ddv).

Tony Dicola has also published some source code for Android around our BLE UART
service, which you can consult on github (https://adafru.it/drl).

The UART Service

For reasons that are clearly beyond the comprehension of mere mortals like us, the
Bluetooth SIG has decided not to include a UART-type service in the list of officially
accepted BLE service definitions (https://adafru.it/ddl).

Without an equivalent to SPP in Bluetooth Classic, we only have one choice ...

©Adafruit Industries Page 32 of 35

https://github.com/adafruit/Bluefruit_LE_Connect
https://github.com/adafruit/Bluefruit_LE_Connect
https://github.com/tdicola/BTLETest
https://developer.bluetooth.org/gatt/profiles/Pages/ProfilesHome.aspx
https://developer.bluetooth.org/gatt/profiles/Pages/ProfilesHome.aspx

defining and implementing a custom UART-esque service ourselves!

The custom UART service uses the following UUIDs, which are the values you need to
know to make your application talk to the appropriate characteristic. There is one
characteristic for TX and another for RX, similar to the way that UART uses two lines
to send and receive data:

« UART Service UUID: 6E400001-B5A3-F393-EO0A9-ES0E24DCCA9E
« TX Characteristic UUID: 6E400002-B5A3-F393-EOA9-E50E24DCCASE
« RX Characteristic UUID: 6E400003-B5A3-F393-EOA9-E50E24DCCASE

These are the same UUID values used by Nordic Semiconductors in their test

applications to stay compatible with their iOS and Android utilities

Using some sample code for your target OS (the Application Accelerator (https://
adafru.it/ddJ) code from Bluetooth is a good start for iOS, Android or Windows), you
can connect to the nRF8001 Breakout, find the UART service via the service UUID
above, and then transfer data back and forth over the two available characteristics.

If you're new to Bluetooth Low Energy and don't know what characteristics and
services are, have a look at our helpful Introduction to Bluetooth Low Energy (https://
adafru.it/dd1) learning guide as well, which lists some useful development resources
at the end!

Related Links

The following links may be useful to you working with the nRF8001 Breakout:

Adafruit Resources

« Adafruit_nRF8001 (https://adafru.it/dd8) drivers and samples sketches
« Adafruit BlueFruit LE Connect (https://adafru.it/dd2) iOS Application
« Adafruit's Introduction to Bluetooth Low Energy (https://adafru.it/dd1) learning

guide

General Resources

« Bluetooth Core Specification (https://adafru.it/ddd) (BLE was introduced as part
of the 4.0 core spec)
« Bluetooth Development Portal (https://adafru.it/dde)

©Adafruit Industries Page 33 of 35

https://developer.bluetooth.org/Pages/bluetooth-smart-developers.aspx
http://learn.adafruit.com/introduction-to-bluetooth-low-energy/introduction
https://github.com/adafruit/Adafruit_nRF8001
https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=830125974&mt=8
http://learn.adafruit.com/introduction-to-bluetooth-low-energy/introduction
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://developer.bluetooth.org/Pages/default.aspx

« Nordic Semiconductor's nRF8001 (https://adafru.it/ddf) product page

If you have any specific problems with the Adafruit nRF8001 breakout, fee free to visit
our actively moderated support forums (https://adafru.it/forums), though be sure to
check for the latest code on github (https://adafru.it/dd8) first since that's the first
place new features and bug fixes will be introduced!

F.A.Q.

I'm having connection dropouts in Android, whats up with
that?

Android devices have some incompatibilities with 5GHz wifi on at the same time as
BTLE, try disabling 5GHz wifi!

See for more details: https://code.google.com/p/android/issues/detail?id=63056
(https://adafru.it/eUJ)

Downloads

Datasheets & Files

« Nordic Semiconductor's nRF8001 (https://adafru.it/ddf) product page
« Fritzing object in Adafruit Fritzing library (https://adafru.it/aP3)
« EagleCAD PCB files in GitHub (https://adafru.it/rqE)

©Adafruit Industries Page 34 of 35

http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF8001
http://forums.adafruit.com/
https://github.com/adafruit/Adafruit_nRF8001
https://code.google.com/p/android/issues/detail?id=63056
http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF8001
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-Bluefruit-LE-nRF8001-PCB

Schematic

I %dafru_i; CEE

nd | A

Fabrication Print

MISO REQ

©Adafruit Industries

NRF8001
Bluetooth LE
vi.l o+

ACT

Page 35 of 35

	Getting Started with the nRF8001 Bluefruit LE Breakout
	Table of Contents
	Introduction
	Pinouts
	Hooking Everything Up
	Software: UART Service
	nRF UART In Detail
	Software: nRF UART App
	Software: BlueFruit UART App
	Software: BlueFruit Pin I/O
	Adding App Support
	Related Links
	F.A.Q.
	Downloads

	Introduction
	Requirements
	Pinouts
	Hooking Everything Up
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Wiring
	Software: UART Service
	nRF UART In Detail
	Initialization
	Setup
	Polling
	Managing Status
	Reading data
	Writing data
	(https://adafru.it/ddw) (https://adafru.it/ddx)uint16_t write (uint8_t singlebyte)
	(https://adafru.it/ddw) (https://adafru.it/ddx)uint16_t write (uint8_t * buffer, uint8_t len)
	(https://adafru.it/ddw) (https://adafru.it/ddx)uint16_t print("text here")
	(https://adafru.it/ddw) (https://adafru.it/ddx)uint16_t println("text here")

	Software: nRF UART App
	Android: nRFUART 2.0
	iOS: nRF UART
	Software: BlueFruit UART App
	UART Echo Demo
	Software: BlueFruit Pin I/O
	BLE StandardFirmata
	Wiring up for Firmata demo
	Input Mode
	Output Mode
	PWM Mode

	Adding App Support
	The UART Service
	Related Links
	Adafruit Resources
	General Resources
	F.A.Q.
	I'm having connection dropouts in Android, whats up with that?

	Downloads
	Datasheets & Files
	Schematic
	Fabrication Print

