
Adafruit CH552 QT Py
Created by Liz Clark

https://learn.adafruit.com/adafruit-ch552-qt-py

Last updated on 2025-01-23 04:07:54 PM EST

©Adafruit Industries Page 1 of 32

3

6

10

14

16

19

23

25

28

31

Table of Contents

Overview

Pinouts
• Power
• CH552 Chip
• Logic Pins
• STEMMA QT Connector
• NeoPixel LED
• Buttons

Arduino IDE Setup
• Install Arduino IDE
• Install the ch55xduino Board Support Package
• Install with the Board Manager
• Code Upload Options

Blink
• Wiring
• Blink Example

Analog In
• Wiring
• Analog In Example

I2C
• Wiring
• AHT20 I2C Example

Capacitive Touch
• Capacitive Touch Example

NeoPixel
• NeoPixel Example

Manual Bootloader
• Blink to the Rescue
• Linux Troubleshooting Steps
• Windows Troubleshooting Steps

Downloads
• Files
• Schematic and Fab Print

©Adafruit Industries Page 2 of 32

Overview

What a cutie pie! Or is it... a QT Py? This diminutive dev board comes with a
throwback processor - an 8-bit 8051! This tiny core is a big change from something
like the ESP32-S3 QT Py with two 240MHz 32-bit cores (http://adafru.it/5700), but
there are lots of folks interested in the CH552 (https://adafru.it/19Zf) and, given the
smol size, it is a nice matchup for a smol board.

The CH552 is an 'enhanced' E8051 core microcontroller (https://adafru.it/19Zf),
compatible with the MCS51 instruction set but with 8~15 times faster instruction
execution speed. You can run this core at 16MHz and 3.3V logic, and it's got built-in

©Adafruit Industries Page 3 of 32

https://www.adafruit.com/product/5700
https://www.wch-ic.com/products/CH552.html
https://www.wch-ic.com/products/CH552.html

16K program FLASH memory and, 256-byte internal RAM plus 1K-byte internal xRAM
(xRAM supports DMA.

It's also got some cute tricks up its sleeve, like 4 built-in ADC channels, capacitive
touch support, 3 timers / PWM channels, hardware UART, SPI, and a full-speed USB
device controller. The last one means it can act like a native USB device such as CDC
serial or mouse/keyboard HID.

If you're interested in playing with this chip, we've wrapped it up in a QT Py format.
The pinout and shape is Seeed Xiao (https://adafru.it/NC3) compatible, with
castellated pads so you can solder it flat to a PCB. It comes with our favorite
connector - the STEMMA QT (https://adafru.it/HMB), a chainable I2C port that can be
used with any of our STEMMA QT sensors and accessories (https://adafru.it/NmD). We
also added an RGB NeoPixel and both a reset button and 'bootloader enter' button.

©Adafruit Industries Page 4 of 32

https://wiki.seeedstudio.com/Seeeduino-XIAO/
http://adafruit.com/stemma
http://adafruit.com/stemma
https://www.adafruit.com/category/620

Please note! This is a minimal 8-bit microcontroller, and it definitely does not run
CircuitPython or Micropython. It also doesn't really run Arduino. There's an Arduino
'board support package' (https://adafru.it/19ZA) we recommend, but the compiler is for
C not C++, which means you cannot use any Arduino libraries. It's very very bare-
bones and for hacking/experimenting with this '40 cent chip' (https://adafru.it/19ZB).

It is the same size, form-factor, and pinout as the Seeed Xiao.
USB Type C connector - If you have only Micro B cables, this adapter will come
in handy (http://adafru.it/4299)!
CH552 8-bit 8051 microcontroller core with 3.3V power/logic. Internal 16 MHz
oscillator.
Native USB
Built in RGB NeoPixel LED
10 GPIO pins:

4x 8-bit analog inputs on A0, A1, A2, and A3
3 x PWM outputs
I2C port with STEMMA QT plug-n-play connector
Hardware UART
Hardware SPI
4 x Capacitive Touch with no additional components required, on A0-A3
pins

3.3V regulator with 600mA peak output (https://adafru.it/NC4)
Reset switch and bootloader for starting your project code over or entering USB
ROM bootloader mode
Really really small

•
•

•

•
•
•

◦
◦
◦
◦
◦
◦

•
•

•

©Adafruit Industries Page 5 of 32

https://github.com/DeqingSun/ch55xduino
https://github.com/DeqingSun/ch55xduino
https://hackaday.com/2023/03/03/all-the-usb-you-can-do-with-a-ch552/
https://www.adafruit.com/product/4299
https://www.adafruit.com/product/4299
https://www.diodes.com/assets/Datasheets/AP2112.pdf
https://www.diodes.com/assets/Datasheets/AP2112.pdf

Pinouts

PrettyPins PDF on GitHub (https://adafru.it/19ZC).

This QT Py does not run CircuitPython or MicroPython and cannot use any
Arduino libraries because its compiler is for C, not C++.

©Adafruit Industries Page 6 of 32

https://github.com/adafruit/Adafruit-CH552-QT-Py-PCB/blob/main/Adafruit%20CH552%20QT%20Py%20PrettyPins.pdf

Power

USB-C port - This is used for both
powering and programming the board. You
can power it with any USB C cable.
3V - This pin is the output from the 3.3V
regulator (https://adafru.it/NC4), it can
supply 600mA peak.
GND - This is the common ground for all
power and logic.
5V - This is 5V out from the USB port.

CH552 Chip

The CH552 is an 'enhanced' E8051 core
microcontroller, compatible with the
MCS51 instruction set but with 8 to 15
times faster instruction execution speed.
You can run this core at 16MHz and 3.3V
logic. It has the following features:

16K program FLASH memory
256-byte internal RAM
1K-byte internal xRAM (xRAM supports
DMA)
4 built-in ADC channels
Capacitive touch support
2 timers / PWM channels
UART
SPI
Full-speed USB device controller

©Adafruit Industries Page 7 of 32

https://learn.adafruit.com//assets/129856
https://learn.adafruit.com//assets/129856
https://www.diodes.com/assets/Datasheets/AP2112.pdf
https://www.diodes.com/assets/Datasheets/AP2112.pdf
https://learn.adafruit.com//assets/129857
https://learn.adafruit.com//assets/129857

Logic Pins

There are ten GPIO pins broken out to
pins. There is hardware I2C, UART, and
SPI. Note that A2 and MOSI share the
same pin (P1.5).

Four pins are 8-bit analog inputs (A0, A1,
A2 and A3).

You can do PWM output on four of the pins
(A2/MOSI, SDA, RX and TX).

There are five pins (A0, A1, A2/MOSI, A3,
MISO and SCK) that can do capacitive
touch without any external components
needed.

I2C

Note that the CH552 does not have a 'native' I2C peripheral, so in CH55xduino this is
bit-banged. However, we will call these the I2C pins

SCL - This is the I2C clock pin. There is no pull-up on this pin, so for I2C please
add an external pull-up if the breakout doesn't have one already. It's connected
to P3.3.
SDA - This is the I2C data pin. There is no pull-up on this pin, so for I2C please
add an external pull-up if the breakout doesn't have one already. It's connected
to P3.4.

These pins are also connected to the STEMMA QT port.

UART
RX - This is the UART receive pin. Connect to TX (transmit) pin on your sensor or
breakout. It's connected to P3.0.
TX - This is the UART transmit pin. Connect to RX (receive) pin on your sensor or
breakout. It's connected to P3.1.

SPI
SCK - This is the SPI clock pin. It's connected to P1.7.
MI - This is the SPI Microcontroller In / Sensor Out pin. It's connected to P1.6.

•

•

•

•

•
•

©Adafruit Industries Page 8 of 32

https://learn.adafruit.com//assets/129858
https://learn.adafruit.com//assets/129858

MO - This is the SPI Microcontroller Out / Sensor In pin. Note that this pin is
shared with A2! This pin can do capacitive touch and is one of the four ADC
inputs. It's connected to P1.5.

Accessing Logic Pins with ch55xduino

The pins on the QT Py are accessed in the Arduino IDE by their GPIO number, minus
the P and dot (.). For example, pin P1.0 is accessed as 10 . Pin P3.1 is accessed as 31 .
Here is a list of all of the available pins on the QT Py as a #define list that you can
include in your programs compiled with the ch55xduino BSP:

#define NEOPIXEL_PIN 10
#define A0 11
#define A1 14
#define A2 15
#define MOSI A2
#define MISO 16
#define SCK 17
#define RX 30
#define TX 31
#define A3 32
#define SCL 33
#define SDA 34

STEMMA QT Connector

This JST SH 4-pin STEMMA QT (https://
adafru.it/Ft4) connector is located at the
back of the board. It allows you to connect
to various breakouts and sensors with
STEMMA QT connectors (https://adafru.it/
Qgf) or to other things using assorted
associated accessories (https://adafru.it/
Ft6). It works great with any STEMMA QT
or Qwiic sensor/device. You can also use it
with Grove I2C devices thanks to this
handy cable (http://adafru.it/4528).

However, you can't use this QT Py with any Arduino libraries and it does not run
CircuitPython or MicroPython. There's an Arduino 'board support package' (https://
adafru.it/19ZA) we recommend, but the compiler is for C not C++.

•

The A2 pin is the same as MOSI pin.

©Adafruit Industries Page 9 of 32

https://learn.adafruit.com//assets/129859
https://learn.adafruit.com//assets/129859
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/category/1018
https://www.adafruit.com/category/1018
https://www.adafruit.com/category/1018
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/product/4528
https://www.adafruit.com/product/4528
https://github.com/DeqingSun/ch55xduino

NeoPixel LED

Next to the BOOT button, in the center of
the board, is the RGB NeoPixel LED. This
addressable LED can be controlled with
code. It is connected to P1.0.

Buttons

Reset button - This button restarts the
board and helps enter the bootloader. You
can click it once to reset the board without
unplugging the USB cable or battery.
BOOT button - This button is connected to
P3.6/D+. To enter bootloader mode,
disconnect the QT Py from USB power.
Hold down the BOOT button and
reconnect USB power.

Arduino IDE Setup
You've seen the warnings that you definitely can't use this QT Py with CircuitPython or
MicroPython and that technically it doesn't work with Arduino either. What you can do
though is use the ch55xduino board support package (https://adafru.it/19ZA) to write
code in the Arduino IDE to compile with its C compiler.

Install Arduino IDE
The first thing you will need to do is to download the latest release of the Arduino
IDE. You will need to be using version 1.8 or higher for this guide.

Arduino IDE Download
https://adafru.it/f1P

©Adafruit Industries Page 10 of 32

https://learn.adafruit.com//assets/129860
https://learn.adafruit.com//assets/129860
https://learn.adafruit.com//assets/129861
https://learn.adafruit.com//assets/129861
https://github.com/DeqingSun/ch55xduino
http://www.arduino.cc/en/Main/Software

Install the ch55xduino Board Support Package
After you have downloaded and installed the latest version of Arduino IDE, you will
need to start the IDE and navigate to the Preferences menu. You can access it from
the File menu in Windows or Linux, or the Arduino menu on OS X.

A dialog will pop up just like the one shown below.

We will be adding a URL to the new Additional Boards Manager URLs option. The list
of URLs is comma separated, and you will only have to add each URL once. New

©Adafruit Industries Page 11 of 32

Adafruit boards and updates to existing boards will automatically be picked up by the
Board Manager each time it is opened. The URLs point to index files that the Board
Manager uses to build the list of available & installed boards.

To find the most up to date list of URLs you can add, you can visit the list of third party
board URLs on the Arduino IDE wiki (https://adafru.it/f7U). We will only need to add
one URL to the IDE in this example, but you can add multiple URLS by separating
them with commas. Copy and paste the link below into the Additional Boards
Manager URLs option in the Arduino IDE preferences.

https://raw.githubusercontent.com/DeqingSun/ch55xduino/ch55xduino/
package_ch55xduino_mcs51_index.json

If you have multiple boards you want to support, say ESP8266 and Adafruit, have
both URLs in the text box separated by a comma (,)

Once done click OK to save the new preference settings.

Install with the Board Manager
The next step is to actually install the Board Support Package (BSP). Go to the Tools
→ Board → Board Manager submenu. A dialog should come up with various BSPs.
Search for ch55xduino.

©Adafruit Industries Page 12 of 32

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls
https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls

Click the Install button and wait for it to finish. Once it is finished, you can close the
dialog.

Code Upload Options
In the Tools → Board submenu you should see CH55x Boards and in that dropdown it
should contain the CH55x boards.

Under Board, select CH552 Board. Under Clock Source, select 16 MHz (internal),
3.3V or 5V. Under Bootloader pin, select P3.6 (D+) pull-up. These settings will work
with the CH552 QT Py. Now you can try uploading some code examples to the board.

If you're not able to upload to the board, you may need to 'manually' put it into
bootloader mode. Check this page https://learn.adafruit.com/adafruit-ch552-
qt-py/bootloader-mode

©Adafruit Industries Page 13 of 32

https://learn.adafruit.com/adafruit-ch552-qt-py/bootloader-mode
https://learn.adafruit.com/adafruit-ch552-qt-py/bootloader-mode

Blink
Blinking an LED is a great way to determine that you have your hardware and
software ducks in a row. In this example, you'll breadboard an LED to the MISO pin
(P1.6/ 16), upload the example code and see your LED blink on and off every second.

Diffused 10mm LED Pack - 5 LEDs each in
5 Colors - 25 Pack
Need some chunky indicators? We are big
fans of these diffused LEDs. They are
fairly bright, so they can be seen in
daytime, and from any angle. They go
easily into a breadboard and...
https://www.adafruit.com/product/4204

Wiring

Board GND to LED cathode (black wire)
Board MISO to LED anode (red wire)

Blink Example
// SPDX-FileCopyrightText: 2024 ladyada for Adafruit Industries
//
// SPDX-License-Identifier: MIT

#define NEOPIXEL_PIN 10
#define A0 11
#define A1 14
#define A2 15
#define MOSI A2
#define MISO 16
#define SCK 17
#define RX 30
#define TX 31
#define A3 32
#define SCL 33
#define SDA 34

©Adafruit Industries Page 14 of 32

https://www.adafruit.com/product/4204
https://www.adafruit.com/product/4204
https://www.adafruit.com/product/4204
https://learn.adafruit.com//assets/129893
https://learn.adafruit.com//assets/129893

int led = MISO;

void setup() {
pinMode(led, OUTPUT);

}

void loop() {
digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second
digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second

}

Confirm that your upload settings match
the settings listed here under Tools:

Board: CH552 Board
USB Settings: Default CDC
Upload method: USB
Clock Source: 16 MHz (internal), 3.3V or 5V
Bootloader pin: P3.6 (D+) pull-up

For the port, select the COM port that
matches your QT Py. It will not be labeled
like you may be used to with other boards
in the Arduino IDE.

You can confirm that you have the correct
port selected by selecting Get Board Info
from the Tools menu. This will open the
Board Info window. The CH552 QT Py VID
is 1209 and the PID is C550.

©Adafruit Industries Page 15 of 32

https://learn.adafruit.com//assets/129869
https://learn.adafruit.com//assets/129869
https://learn.adafruit.com//assets/129870
https://learn.adafruit.com//assets/129870

Upload the sketch to your board. You
should see the LED blink on and off every
second.

Analog In
You can use one of the ADC pins on the QT Py as an analog input. In this example,
you'll connect a potentiometer to pin A3, upload the example code to the board and
use the Serial Monitor or Serial Plotter to see the signal on the pin fluctuate as you
turn the potentiometer.

Potentiometer with Built In Knob - 10K
ohm
Oh say can you seeBy the knob's early
light...Sorry - we thought that was clever.
 And while it wasn't really, this
potentiometer definitely...
https://www.adafruit.com/product/4133

If you're not able to upload to the board, you may need to 'manually' put it into
bootloader mode. Check this page https://learn.adafruit.com/adafruit-ch552-
qt-py/bootloader-mode

©Adafruit Industries Page 16 of 32

https://learn.adafruit.com//assets/129908
https://learn.adafruit.com//assets/129908
https://learn.adafruit.com/adafruit-ch552-qt-py/bootloader-mode
https://learn.adafruit.com/adafruit-ch552-qt-py/bootloader-mode
https://www.adafruit.com/product/4133
https://www.adafruit.com/product/4133
https://www.adafruit.com/product/4133

Wiring

Board GND to potentiometer GND (black
wire)
Board A3 to potentiometer wiper (yellow
wire)
Board 3V to potentiometer positive (red
wire)

Analog In Example
// SPDX-FileCopyrightText: 2024 ladyada for Adafruit Industries
//
// SPDX-License-Identifier: MIT

/*
 ReadAnalogVoltage

 Reads an analog input on pin P1.1, converts it to voltage, and prints the result
to the Serial Monitor.
 Graphical representation is available using Serial Plotter (Tools > Serial
Plotter menu).
 Attach the center pin of a potentiometer to pin P1.1, and the outside pins to +5V
and ground.

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/ReadAnalogVoltage
*/

#include <Serial.h>

#define A0 11
#define A1 14
#define A2 15 // also MISO!
#define A3 32

#define ANALOG_IN A3
#define VREF 3.3

// the setup routine runs once when you press reset:
void setup() {

// No need to init USBSerial

// By default 8051 enable every pin's pull up resistor. Disable pull-up to get
full input range.

pinMode(ANALOG_IN, INPUT);
}

// the loop routine runs over and over again forever:
void loop() {

// read the input on analog pin 0, P1.1:
int sensorValue = analogRead(ANALOG_IN);
// Convert the analog reading (which goes from 0 - 255) to VREF:
float voltage = sensorValue * (VREF / 255.0);
// print out the value you read:

©Adafruit Industries Page 17 of 32

https://learn.adafruit.com//assets/129894
https://learn.adafruit.com//assets/129894

USBSerial_println(voltage);
// or with precision:
//USBSerial_println(voltage,1);

delay(10);
}

Confirm that your upload settings match
the settings listed here under Tools:

Board: CH552 Board
USB Settings: Default CDC
Upload method: USB
Clock Source: 16 MHz (internal), 3.3V or 5V
Bootloader pin: P3.6 (D+) pull-up

For the port, select the COM port that
matches your QT Py. It will not be labeled
like you may be used to with other boards
in the Arduino IDE.

You can confirm that you have the correct
port selected by selecting Get Board Info
from the Tools menu. This will open the
Board Info window. The CH552 QT Py VID
is 1209 and the PID is C550.

Upload the sketch to your board. Open the
Serial Monitor (Tools -> Serial Monitor) at
115200 baud. As you turn the
potentiometer, you'll see the voltage
reading on pin A3 change.

©Adafruit Industries Page 18 of 32

https://learn.adafruit.com//assets/129872
https://learn.adafruit.com//assets/129872
https://learn.adafruit.com//assets/129871
https://learn.adafruit.com//assets/129871
https://learn.adafruit.com//assets/129909
https://learn.adafruit.com//assets/129909

For a more visual representation, you can
open the Serial Plotter (Tools -> Serial
Plotter) at 115200 baud. As you turn the
potentiometer, the plotter will smoothly
plot the voltage reading.

I2C
You can't use your favorite Arduino libraries with this board, but that doesn't mean
you can't use your favorite I2C sensor. In this example, you'll connect an AHT20
temperature and humidity sensor the QT Py. Then, you'll upload the example code
and open the Serial Monitor to see the temperature and humidity data print out.

Adafruit AHT20 - Temperature & Humidity
Sensor Breakout Board
The AHT20 is a nice but inexpensive
temperature and humidity sensor from the
same folks that brought us the DHT22.
You can take...
https://www.adafruit.com/product/4566

STEMMA QT / Qwiic JST SH 4-pin Cable -
100mm Long
This 4-wire cable is a little over 100mm /
4" long and fitted with JST-SH female 4-
pin connectors on both ends. Compared
with the chunkier JST-PH these are 1mm
pitch instead of...
https://www.adafruit.com/product/4210

©Adafruit Industries Page 19 of 32

https://learn.adafruit.com//assets/129911
https://learn.adafruit.com//assets/129911
https://www.adafruit.com/product/4566
https://www.adafruit.com/product/4566
https://www.adafruit.com/product/4566
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210

Wiring
You can connect the AHT20 sensor to the STEMMA QT port on the QT Py with a
STEMMA QT cable.

Board STEMMA GND to sensor GND
(black wire)
Board STEMMA 3.3V to sensor 3.3V (red
wire)
Board STEMMA SCL to sensor SCL
(yellow wire)
Board STEMMA SDA to sensor SDA (blue
wire)

AHT20 I2C Example
// SPDX-FileCopyrightText: 2024 ladyada for Adafruit Industries
//
// SPDX-License-Identifier: MIT
// https://chat.openai.com/share/5dddee44-3196-4a6b-b445-58ac6ef18501

#include <SoftI2C.h>

extern uint8_t scl_pin;
extern uint8_t sda_pin;

void Wire_begin(uint8_t scl, uint8_t sda);
bool Wire_scan(uint8_t i2caddr);
bool Wire_writeBytes(uint8_t i2caddr, uint8_t *data, uint8_t bytes);
bool Wire_readBytes(uint8_t i2caddr, uint8_t *data, uint8_t bytes);
bool Wire_readRegister(uint8_t i2caddr, uint8_t regaddr, uint8_t *data, uint8_t
bytes);

bool readAHT20(float *temperature, float *humidity);
#define AHTX0_I2CADDR_DEFAULT 0x38

void setup() {
while (!USBSerial()); // wait for serial port to connect. Needed for native USB

port only
delay(100);

USBSerial_println("CH552 QT Py I2C sensor test");
Wire_begin(33, 34); // set up I2C on CH552 QT Py

USBSerial_print("I2C Scan: ");
for (uint8_t a=0; a<=0x7F; a++) {

if (!Wire_scan(a)) continue;
USBSerial_print("0x");
USBSerial_print(a, HEX);
USBSerial_print(", ");

}
USBSerial_println();

if (! Wire_scan(AHTX0_I2CADDR_DEFAULT)) {
USBSerial_println("No AHT20 found!");
while (1);

©Adafruit Industries Page 20 of 32

https://learn.adafruit.com//assets/129895
https://learn.adafruit.com//assets/129895

}
}

void loop() {
delay(100);

float t, h;
if (!readAHT20(&t, &h)) {

USBSerial_println("Failed to read from AHT20");
}
USBSerial_print("Temp: ");
USBSerial_print(t);
USBSerial_print(" *C, Hum: ");
USBSerial_print(h);
USBSerial_println(" RH%");

}

/*********************** AHT20 'driver */

#define AHTX0_CMD_TRIGGER 0xAC
#define AHTX0_STATUS_BUSY 0x80

bool AHT20_getStatus(uint8_t *status) {
return Wire_readBytes(AHTX0_I2CADDR_DEFAULT, status, 1);

}

bool readAHT20(float *temperature, float *humidity) {
uint8_t cmd[3] = {AHTX0_CMD_TRIGGER, 0x33, 0x00};
uint8_t data[6], status;
uint32_t rawHumidity, rawTemperature;

// Trigger AHT20 measurement
if (!Wire_writeBytes(AHTX0_I2CADDR_DEFAULT, cmd, 3)) {

return false;
}

// Wait until the sensor is no longer busy
do {

if (!AHT20_getStatus(&status)) {
return false;

}
delay(10); // Delay 10ms to wait for measurement

} while (status & AHTX0_STATUS_BUSY);

// Read the measurement data
if (!Wire_readBytes(AHTX0_I2CADDR_DEFAULT, data, 6)) {

return false;
}

// Parse humidity data
rawHumidity = data[1];
rawHumidity = (rawHumidity << 8) | data[2];
rawHumidity = (rawHumidity << 4) | (data[3] >> 4);
*humidity = ((float)rawHumidity * 100.0) / 0x100000;

// Parse temperature data
rawTemperature = (data[3] & 0x0F);
rawTemperature = (rawTemperature << 8) | data[4];
rawTemperature = (rawTemperature << 8) | data[5];
*temperature = ((float)rawTemperature * 200.0 / 0x100000) - 50.0;

return true;
}

/**************************** Wire I2C interface */

void Wire_begin(uint8_t scl, uint8_t sda) {
scl_pin = scl; //extern variable in SoftI2C.h
sda_pin = sda;

©Adafruit Industries Page 21 of 32

I2CInit();
}

bool Wire_scan(uint8_t i2caddr) {
return Wire_writeBytes(i2caddr, NULL, 0);

}

bool Wire_readRegister(uint8_t i2caddr, uint8_t regaddr, uint8_t *data, uint8_t
bytes) {

if (!Wire_writeBytes(i2caddr, ®addr, 1)) {
return false;

}

return Wire_readBytes(i2caddr, data, bytes);
}

bool Wire_writeBytes(uint8_t i2caddr, uint8_t *data, uint8_t bytes) {
uint8_t ack_bit;

I2CStart();
ack_bit = I2CSend(i2caddr << 1 | 0); // Shift address and append write bit
if (ack_bit != 0) {

I2CStop();
return false;

}

for (uint8_t i = 0; i < bytes; i++) {
if (I2CSend(data[i]) != 0) {

I2CStop();
return false;

}
}
I2CStop();
return true;

}

bool Wire_readBytes(uint8_t i2caddr, uint8_t *data, uint8_t bytes) {
uint8_t ack_bit;

I2CStart();
ack_bit = I2CSend(i2caddr << 1 | 1); // Shift address and append read bit
if (ack_bit != 0) {

I2CStop();
return false;

}

for (uint8_t i = 0; i < bytes; i++) {
data[i] = I2CRead();
if (i == bytes - 1) {

I2CNak(); // NAK on last byte
} else {

I2CAck(); // ACK on other bytes
}

}

I2CStop();
return true;

}

©Adafruit Industries Page 22 of 32

Confirm that your upload settings match
the settings listed here under Tools:

Board: CH552 Board
USB Settings: Default CDC
Upload method: USB
Clock Source: 16 MHz (internal), 3.3V or 5V
Bootloader pin: P3.6 (D+) pull-up

For the port, select the COM port that
matches your QT Py. It will not be labeled
like you may be used to with other boards
in the Arduino IDE.

You can confirm that you have the correct
port selected by selecting Get Board Info
from the Tools menu. This will open the
Board Info window. The CH552 QT Py VID
is 1209 and the PID is C550.

Upload the sketch to your board. Open the
Serial Monitor (Tools -> Serial Monitor) at
115200 baud. You'll see the temperature
and humidity data print out.

Capacitive Touch
The CH552 has capacitive touch support on a few pins (A0, A1, A2/MOSI, A3, MISO
and SCK) without needing any external components. In this example, you'll upload the
sketch to your board and use the Serial Monitor to monitor the touch input on pin A0.

©Adafruit Industries Page 23 of 32

https://learn.adafruit.com//assets/129873
https://learn.adafruit.com//assets/129873
https://learn.adafruit.com//assets/129874
https://learn.adafruit.com//assets/129874
https://learn.adafruit.com//assets/129875
https://learn.adafruit.com//assets/129875

Capacitive Touch Example
// SPDX-FileCopyrightText: 2024 ladyada for Adafruit Industries
//
// SPDX-License-Identifier: MIT

#include <TouchKey.h>

uint8_t count = 0;
uint8_t state = 0;

void setup() {
while (!USBSerial()); // wait for serial port to connect. Needed for native USB

port only
delay(100);
USBSerial_println("QT Py CH552 Cap Touch Test");
USBSerial_println("Uses pin A0 (P1.1)");
TouchKey_begin((1 << 1)); //Enable channel P1.1/A0

}

void loop() {
// put your main code here, to run repeatedly:
TouchKey_Process();
uint8_t touchResult = TouchKey_Get();
if (touchResult) {

if (state == 0) {
count += 1;
state = 1;
USBSerial_print("TIN1.1 touched ");
USBSerial_print(count);
USBSerial_println(" times");
}

} else {
state = 0;

}
delay(1000);

}

©Adafruit Industries Page 24 of 32

Confirm that your upload settings match
the settings listed here under Tools:

Board: CH552 Board
USB Settings: Default CDC
Upload method: USB
Clock Source: 16 MHz (internal), 3.3V or 5V
Bootloader pin: P3.6 (D+) pull-up

For the port, select the COM port that
matches your QT Py. It will not be labeled
like you may be used to with other boards
in the Arduino IDE.

You can confirm that you have the correct
port selected by selecting Get Board Info
from the Tools menu. This will open the
Board Info window. The CH552 QT Py VID
is 1209 and the PID is C550.

Upload the sketch to your board. Open the
Serial Monitor (Tools -> Serial Monitor) at
115200 baud. As you touch pin A0, you'll
see a print out to the monitor. The count
will increase by 1 with every touch.

NeoPixel
You can't use Arduino libraries with the CH552, so does that mean you can't use ever-
so-colorful, always magical NeoPixels? Nope, you absolutely can! In this example,

©Adafruit Industries Page 25 of 32

https://learn.adafruit.com//assets/129880
https://learn.adafruit.com//assets/129880
https://learn.adafruit.com//assets/129881
https://learn.adafruit.com//assets/129881
https://learn.adafruit.com//assets/129882
https://learn.adafruit.com//assets/129882

you'll upload the sketch to have the onboard NeoPixel (pin P1.0/ 10) perform a
rainbow swirl.

NeoPixel Example
// SPDX-FileCopyrightText: 2024 ladyada for Adafruit Industries
//
// SPDX-License-Identifier: MIT

#include <WS2812.h>

#define NEOPIXEL_PIN P1_0
#define NUM_LEDS 1

#define COLOR_PER_LEDS 3
#define NUM_BYTES (NUM_LEDS*COLOR_PER_LEDS)
#if NUM_BYTES > 255
#error "NUM_BYTES can not be larger than 255."
#endif
__xdata uint8_t ledData[NUM_BYTES];

/***/
uint8_t neopixel_brightness = 255;
uint32_t Wheel(byte WheelPos);
void rainbowCycle(uint8_t wait);

#define NEOPIXEL_SHOW_FUNC CONCAT(neopixel_show_, NEOPIXEL_PIN)

void neopixel_begin() {
pinMode(NEOPIXEL_PIN, OUTPUT); //Possible to use other pins.

}

void neopixel_show() {
NEOPIXEL_SHOW_FUNC(ledData, NUM_BYTES); //Possible to use other pins.

}

void neopixel_setPixelColor(uint8_t i, uint32_t c) {
uint16_t r, g, b;
r = (((c >> 16) & 0xFF) * neopixel_brightness) >> 8;
g = (((c >> 8) & 0xFF) * neopixel_brightness) >> 8;
b = ((c & 0xFF) * neopixel_brightness) >> 8;

©Adafruit Industries Page 26 of 32

set_pixel_for_GRB_LED(ledData, i, r, g, b);
}

void neopixel_setBrightness(uint8_t b) {
neopixel_brightness = b;

}
/***/

void setup() {
neopixel_begin();
neopixel_setBrightness(50);

}

void loop() {
rainbowCycle(5);

}

void rainbowCycle(uint8_t wait) {
uint8_t i, j;

for (j=0; j<255; j++) {
for (i=0; i < NUM_LEDS; i++) {

neopixel_setPixelColor(i, Wheel(((i * 256 / NUM_LEDS) + j) & 255));
}
neopixel_show();
delay(wait);

}
}

// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {

uint8_t r, g, b;
uint32_t c;

if(WheelPos < 85) {
r = WheelPos * 3;
g = 255 - WheelPos * 3 ;
b = 0;

} else if(WheelPos < 170) {
WheelPos -= 85;
r = 255 - WheelPos * 3;
g = 0;
b = WheelPos * 3;

} else {
WheelPos -= 170;
r = 0;
g = WheelPos * 3;
b = 255 - WheelPos * 3;

}
c = r;
c <<= 8;
c |= g;
c <<= 8;
c |= b;
return c;

}

©Adafruit Industries Page 27 of 32

Confirm that your upload settings match
the settings listed here under Tools:

Board: CH552 Board
USB Settings: Default CDC
Upload method: USB
Clock Source: 16 MHz (internal), 3.3V or 5V
Bootloader pin: P3.6 (D+) pull-up

For the port, select the COM port that
matches your QT Py. It will not be labeled
like you may be used to with other boards
in the Arduino IDE.

You can confirm that you have the correct
port selected by selecting Get Board Info
from the Tools menu. This will open the
Board Info window. The CH552 QT Py VID
is 1209 and the PID is C550.

Upload the sketch to your board. You'll see
the NeoPixel begin swirling thru the colors
of the rainbow. This is the same demo that
ships on the boards.

Manual Bootloader
Uploading directly to the QT Py USB port is very convenient. However, if you find that
your COM port disappears or you're working on HID device code (https://adafru.it/
19ZD), then you may need to utilize uploading code in bootloader mode.

©Adafruit Industries Page 28 of 32

https://learn.adafruit.com//assets/129883
https://learn.adafruit.com//assets/129883
https://learn.adafruit.com//assets/129884
https://learn.adafruit.com//assets/129884
https://learn.adafruit.com//assets/129907
https://learn.adafruit.com//assets/129907
https://github.com/DeqingSun/ch55xduino/tree/ch55xduino/ch55xduino/ch55x/libraries/Generic_Examples/examples/05.USB

You can get your QT Py CH552 into bootloader mode by unplugging the USB port,
holding down the Boot button and plugging the USB cable back in. There is a catch
though: the chip does not stay in bootloader mode for very long. You only have a few
seconds to talk to the bootloader. As a result, timing is everything.

Bootloader mode is the only way you can reprogram the chip after uploading HID
code that is compiled with the USER CODE USB settings. It's also needed if bad code
is uploaded that makes the COM port unreachable.

Blink to the Rescue
Blinking an LED is not only a great place to start with new hardware, it's also a great
reset point; like a save state. You'll upload the blink example to the QT Py in
bootloader mode.

After opening the sketch in the Arduino
IDE, click on the Verify checkmark to
compile the code. This will save some time
when uploading the code to the board.

Next, unplug the USB cable from the QT
Py. Press and hold the Boot button but do
not plug the board back in yet.

The CH552 does not stay in bootloader mode for very long. You only have a
few seconds to talk to the bootloader.

©Adafruit Industries Page 29 of 32

https://learn.adafruit.com//assets/129885
https://learn.adafruit.com//assets/129885
https://learn.adafruit.com//assets/129887
https://learn.adafruit.com//assets/129887

Begin the upload process without the QT
Py plugged in by clicking the Upload
button in the Arduino IDE. You'll see the
progress at the bottom of the IDE window.

When you see
Compiling libraries... and
Compiling core... in the progress
output, plug in the QT Py while still holding
down the Boot button.

If you're successful, you'll see the Reset
OK message in red at the bottom of the
window. If you connect an LED to the
MISO pin, you should see it blinking.

After this process, you should see your CDC Serial COM port return as a Port option
in the Arduino IDE. Using this method you can iterate when working on HID device
code without worrying about losing the CDC Serial port.

Linux Troubleshooting Steps
If you are on Linux and find that these instructions don't work for you, try these
additional steps. In the terminal enter:

cd /etc/udev/rules.d
sudo touch 99.ch55xbl.rules
sudo vi 99.ch55xbl.rules

In the rules file, copy and paste the following into the file:

CH55x bootloader
copy to /etc/udev/rules.d/

SUBSYSTEM=="usb", ATTRS{idVendor}=="4348", ATTRS{idProduct}=="55e0", MODE="0666"

Then, save changes and reboot your system. This should allow access to the QT Py.

©Adafruit Industries Page 30 of 32

https://learn.adafruit.com//assets/129888
https://learn.adafruit.com//assets/129888
https://learn.adafruit.com//assets/129889
https://learn.adafruit.com//assets/129889

Windows Troubleshooting Steps
Windows 10 and 11 may not automatically load a working driver for the CH552
bootloader,
Installing the CH375 driver (https://adafru.it/1acy) is the recommended option

works with ch55xduino
works with WCHISPStudio

 Note:

Zadigs libusub-win32 also works with ch55xduino, but does not play nice
with WCHISPStudio

contributed by forum user @rybec full thread (https://adafru.it/1acz)

Downloads
Files

CH552 Product Page (https://adafru.it/19Zf)
CH552 Datasheet (https://adafru.it/19ZE)
EagleCAD PCB files on GitHub (https://adafru.it/19ZF)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/1a00)
PrettyPins pinout PDF on GitHub (https://adafru.it/19ZC)
PrettyPins pinout SVG on GitHub (https://adafru.it/1a01)

Schematic and Fab Print

•

◦
◦

•

◦

•
•
•
•
•
•

©Adafruit Industries Page 31 of 32

https://www.wch-ic.com/downloads/CH372DRV_EXE.html
https://forums.adafruit.com/viewtopic.php?t=215824
https://www.wch-ic.com/products/CH552.html
https://cdn-learn.adafruit.com/assets/assets/000/129/847/original/CH552DS1.PDF?1715004485
https://github.com/adafruit/Adafruit-CH552-QT-Py-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20CH552%20QT%20Py.fzpz
https://github.com/adafruit/Adafruit-CH552-QT-Py-PCB/blob/main/Adafruit%20CH552%20QT%20Py%20PrettyPins.pdf
https://github.com/adafruit/Adafruit-CH552-QT-Py-PCB/blob/main/Adafruit%20CH552%20QT%20Py%20PrettyPins.svg

©Adafruit Industries Page 32 of 32

	Adafruit CH552 QT Py
	Table of Contents
	Overview
	Pinouts
	Arduino IDE Setup
	Blink
	Analog In
	I2C
	Capacitive Touch
	NeoPixel
	Manual Bootloader
	Downloads

	Overview
	Pinouts
	Power
	CH552 Chip
	Logic Pins
	I2C
	UART
	SPI
	Accessing Logic Pins with ch55xduino

	STEMMA QT Connector
	NeoPixel LED
	Buttons

	Arduino IDE Setup
	Install Arduino IDE
	Install the ch55xduino Board Support Package
	Install with the Board Manager
	Code Upload Options

	Blink
	Wiring
	Blink Example

	Analog In
	Wiring
	Analog In Example

	I2C
	Wiring
	AHT20 I2C Example

	Capacitive Touch
	Capacitive Touch Example

	NeoPixel
	NeoPixel Example

	Manual Bootloader
	Blink to the Rescue
	Linux Troubleshooting Steps
	Windows Troubleshooting Steps

	Downloads
	Files
	Schematic and Fab Print

