MCXE315/316/317/31B

Robust 5V Arm Cortex M7 MCU, SIL2 compliant

Rev. 2 — 5 August 2025

Objective data sheet

5V robust Arm®Cortex®-M7 core 32-bit MCU, up to 4 MB Flash, 512 KB SRAM, EdgeLock® Secure Enclave, Advanced Profile

Features

- Arm® Cortex®-M7 160 MHz with 846 CoreMark® (5.28 CoreMark/MHz)
- · EC61508 safety, target SIL 2 certification.
- Platform Security with EdgeLock® Secure Enclave, Advanced Profile.
- -40 °C to +135 °C temperature range.

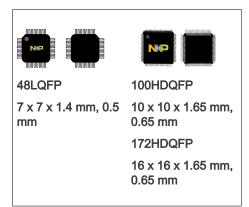
Operating characteristics

- Voltage range: 2.97 V to 5.5 V
- Ambient temperature range: -40 °C to 135 °C for all power modes

Arm™ Cortex-M7 core, 32-bit CPU

- · M7 supports up to 160 MHz frequency
- Arm Core based on the Armv7 and Thumb[®]-2 ISA
- Integrated Digital Signal Processor (DSP)
- Configurable Nested Vectored Interrupt Controller (NVIC)
- · Single Precision Floating Point Unit (FPU)

Clock interfaces


- 8 40 MHz Fast External Oscillator (FXOSC)
- 48 MHz Fast Internal RC oscillator (FIRC)
- 32 kHz Low Power Oscillator (SIRC)
- · 32 kHz Slow External Oscillator (SXOSC)
- · System Phased Lock Loop (SPLL)

I/O and package

- LQFP48, HDQFP100, HDQFP172
- Up to 32-channel DMA with up to 128 request sources using DMAMUX

Memory and memory interfaces

- · Up to 4 MB program flash memory with ECC
- Up to 128 KB of flexible program or data flash memory
- Up to 512 KB SRAM with ECC, includes 96 KB of TCM RAM ensuring maximum CPU performance of fast control loops with minimal latency
- · Data and instruction cache for each core to minimize performance impact of memory access latencies
- · QuadSPI support

Mixed-signal analog

- · Up to three 12-bit Analog-to-Digital Converters (ADC) with up to 24 channel analog inputs per module
- One Temperature Sensor (TempSense)
- Up to three Analog Comparators (CMP), with each comparator having an internal 8-bit DAC

Human-Machine Interface (HMI)

- · Up to 145 GPIO pins
- Non-Maskable Interrupt (NMI)
- · Up to 59 pins with wakeup capability
- · Up to 32 pins with interrupt support

Power management

- Low-power Arm Cortex-M7 core with excellent energy efficiency, balanced with performance
- · Power Management Controller (PMC) with simplified mode management (RUN and STANDBY)
- · Supports peripheral specific clock gating. Only specific peripherals remain working in low power modes.

Communications interfaces

- Up to 16 serial communication interface (LPUART) modules, with LIN, UART and DMA support
- · Up to six Low Power Serial Peripheral Interface (LPSPI) modules with DMA support
- · Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support
- Up to Six FlexCAN modules (with optional CAN-FD support)
- FlexIO module for flexible and high performance serial interfaces
- · Up to one ethernet modules
- · Up to two Synchronous Audio Interface (SAI) modules

Reliability, safety and security

- · Up to two Internal Software Watchdog Timers (SWT)
- · Error-Correcting Code (ECC) on all memories
- · Error Detection Code (EDC) on data path
- Cyclic Redundancy Check (CRC) module
- 120-bit Unique Identification (ID) number
- · Extended Cross domain Domain Controller (XRDC), providing protection for master core access rights
- · Virtualization Wrapper (VIRT_WRAPPER), providing I/O protection

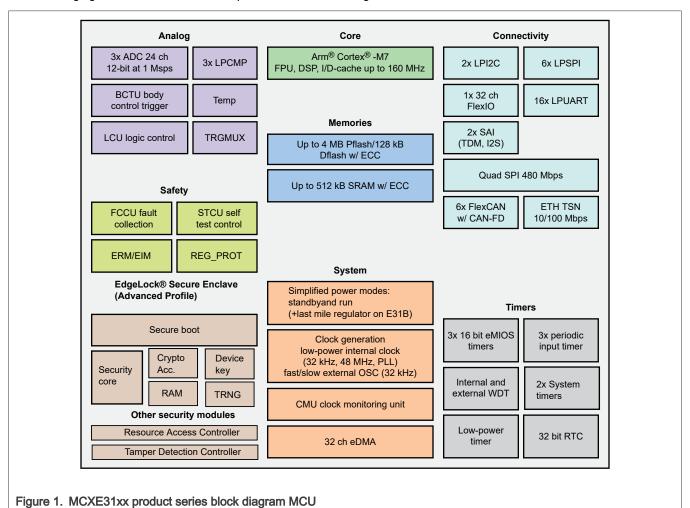
Debug functionality

- Serial Wire JTAG debug Port (SWJ-DP), with 2 pin Serial Wire Debug (SWD) for external debugger
- · Debug Watchpoint and Trace (DWT), with four configurable comparators as hardware watchpoints
- Serial Wire Output (SWO)-synchronous trace data support
- · Instrumentation Trace Macrocell (ITM) with software and hardware trace, plus time stamping
- · CoreSight AHB Trace Macrocell (HTM)
- · Flash Patch and Breakpoints (FPB) with ability to patch code and data from code space to system space
- · Serial Wire Viewer (SWV): A trace capability providing displays of reads, writes, exceptions, PC Samples and print
- · Full data trace for up to 16 output wide

MCXEP172M160FB0

• Embedded Cross Trigger (ECT) is used for multicore run-control and trace cross triggering, using CoreSight Cross Trigger Interface (CTI)

Timing and control


- Up to three enhanced modular I/O system (eMIOS), offering up to 72 timer channels (IC/OC/PWM)
- Up to two System Timer Modules (STM)
- Up to two Logic Control Units (LCU)
- Full cross triggering support for ADC / timer (BCTU)
- · One Trigger MUX Control (TRGMUX) module
- Up to three Periodic Interrupt Timer (PIT) modules
- 32-bit Real Time Counter (RTC) with autonomous periodic interrupt (API) function

1 Overview

The MCXE31 product series further extends the highly-scalable portfolio of Arm ® Cortex ® - M4F MCX E24 series chips in the commercial and industrial industry with the Arm Cortex-M7 core at higher frequency, more memory, SIL 2 rating and advanced security module. With a focus on commercial and industrial environment robustness, the MCXE31 series devices are well suited to a wide range of applications in electrical harsh environments, and are optimized for cost-sensitive applications offering new, space saving package options. The MCXE31 series offers a broad range of memory, peripherals and performance options. Devices in this series share common peripherals and pin-out, allowing developers to migrate easily within a chip series or among other chip series to take advantage of more memory or feature integration.

2 Block diagram

The following figure shows the MCXE31xx product series block diagram:

3 Feature comparison

The following table compares some of the prominent features related to memory and package options of these chips from the MCXE31x family/product series:

- MCXE315
- MCXE316
- MCXE317

MCXEP172M160FB0

© 2025 NXP B.V. All rights reserved.

• MCXE31B

Table 1. MCXE31 chip's feature comparison

Feature		C	Chip				
	MCXE315	MCXE316	MCXE317	MCXE31B			
Core		1:	x M7				
Safety/SIL			2				
Program flash memory	512 KB	1 MB	2 MB	4 MB			
Data flash memory (KB)	64	4	1	28			
Total RAM (KB)	112KB (incl. 96KB TCM)	128KB (incl. 96KB TCM)	192KB (incl. 96KB TCM)	512KB (including 96Kl TCM)			
Standby RAM	16 KB		32 KB				
Security		EdgeLock Er	nclave (HSE_B)				
Frequency (MHz)		120		160			
DMA channels		12					
FlexCAN instances	3	}	6	6			
EMAC instances		_		1			
SAI instances		_		2			
LPUART instances	4	8	16				
LPSPI instances		6					
I ² C instances			2				
FlexIO (incl. SENT support) channels	10	6	:	32			
QuadSPI instances		_		11			
ADC instances		2		3			
LPCMP instances	1		2	3			
PIT instances		2		3			
SWT instances		1		1			
STM instances		1		2			
LCU instances			2				
BCTU instances			1				
TRGMUX instances			1				
eMIOS instances		2		3			
RTC instances			1	•			
172-HDQFP package	N	0	Y	'es			
100-HDQFP package		Yes		No			
48-pin LQFP package	Ye	es	1	No			

1. 4-bit data width, SDR mode only

4 Ordering information (flash vs package)

The following table lists the available part numbers and their associated flash size / package.

Table 2. Ordering information

Orderable Part Number	Core	Core speed	Flash	RAM	Security	Ethernet	Package	Ambient Temperatur e
MCXE315M LF			512KB 112K SRAM	112K SRAM			48 (7x7) LQFP	
MCXE315M PA						100 (10x10) HDQFP		
MCXE316M LF		120MH-	1MD	120K SDAM		No	48 (7x7) LQFP	
MCXE316M PA	Cortex M7	120MHz	E	EdgeLock Enclave (HSE_B)	NO	100 (10x10) HDQFP	-40 to 135C	
MCXE317M PA			OMP	400K CDAM				
MCXE317M PB			2MB	192K SRAM			172 (16x16) HDQFP	
MCXE31BM PB		160MHz	4MB	512K SRAM		Yes		

4.1 Determining valid orderable parts

To determine the orderable part numbers for this device, please contact NXP sales representative.

5 General

5.1 Absolute maximum ratings

CAUTION

When the MCU is in an unpowered state, current injected through the chip pins may bias internal chip structures (for example, ESD diodes) and incorrectly power up these internal structures through inadvertent paths. The presence of such residual voltage may influence different chip-internal blocks in an unpredictable manner and may ultimately result in unpredictable chip behavior (for example, POR flag not set). Once in the illegal state, powering up the chip further and then applying reset will clear the illegal state. Injection current specified for the chip under the aspect of absolute maximum ratings represent the capability of the internal circuitry to withstand such condition without causing physical damage. Functional operation of the chip under conditions - specified as absolute maximum ratings - is not implied.

NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in the following table for specific conditions. Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device. All the limits defined in the datasheet specification must be honored together and any violation to any one or more will not guarantee desired operation. Unless otherwise specified, all maximum and minimum values in the datasheet are across process, voltage, and temperature.

Table 3. Absolute maximum ratings

Symbol	Description	Min	Тур	Max	Unit
VDD_HV_A	Main I/O and analog supply voltage ^{1,2}	-0.3	_	6.0	V
VDD_HV_B	Secondary I/O supply voltage ^{1 2}	-0.3	_	6.0	V
V25	Flash memory supply (2.5 V), internally regulated ²	-0.3	_	2.9	V
V11	Core logic voltage supply (1.1 V), internally regulated ²	-0.3	_	1.26	V
VREFH	ADC high reference voltage ^{1,2}	-0.3	_	6.0	V
VREFL	ADC low reference voltage ²	-0.3	_	0.3	V
VGPIO_trans	Transient overshoot voltage allowed on I/O pin 1,2,3	-	_	6.0	V
I_INJPAD_DC_ABS	NJPAD_DC_ABS Continuous DC input current (positive/negative) that can be injected into an I/O pin ⁴		_	3	mA
I_INJSUM_DC_ABS	Sum of absolute value of injected currents on all the I/O pins (continuous DC limit) 4,5	_	_	30	mA
TSTG	Storage ambient temperature ⁶	-55	_	150	°C

- 1. 6.0 V maximum for 10 hours over lifetime; 7.0 V maximum for 60 seconds over lifetime.
- 2. All voltages are referred to VSS unless otherwise specified.
- 3. When a low impedance voltage source, without current limitation, is connected to one or more I/O pins, the VGPIO trans absolute max rating must be honored. During current injection, the voltage at the I/O pin or pins could go beyond this limit if (and ONLY IF) the injected current is being limited (I_INJPAD_DC_ABS is respected).
- 4. When the input pad voltage levels are close to VDD_HV_A (respectively to VDD_HV_B) or VSS, plus /minus the forward voltage of ESD diodes, practically, no current is being injected. When these limits are exceeded, the maximum input current spec must be honored. See MCXE31 Hardware Design Guidelines for more details and recommendations for protecting the devices against injection current.
- 5. If a positive injection current is present in one or more I/O pins, and the device is in Low-Speed RUN or STANDBY mode, the VDD_HV_A (or respectively, VDD_HV_B) may lift and cause unexpected behavior. Therefore, it is recommended to add external protection hardware, to safely cover this scenario.
- 6. TSTG specifies the storage temperature range. It is not the operating temperature range. Please refer to the Thermal operating characteristics table.

5.2 Voltage and current operating requirements

NOTE

Device functionality is guaranteed down to the LVR assert level, however electrical performance of 12-bit ADC, CMP with 8-bit DAC, IO electrical characteristics, and communication modules electrical characteristics will be degraded when voltage drops below 2.97 V.

Table 4. Voltage and current operating requirements

Symbol	Description	Min	Тур	Max	Unit	Condition
VDD_HV_A	Main I/O and analog supply voltage ¹	2.97	3.3 or 5.0	5.5	V	_
VDD_HV_B	Secondary I/O supply voltage ¹					
VREFH	ADC high reference voltage ^{1,2}					
VREFL	ADC low reference voltage ¹	-0.1	0	0.1	V	_
V25	Flash memory and clock supply (2.5 V), internally regulated ¹	_	2.5	_	V	_
V11	Core logic supply (1.1 V), internally regulated ¹	_	1.14	_	V	_
VGPIO	Input voltage range at any I/O or analog pin 1,3	-0.3	_	VDD_HV_ A/B + 0.3	V	_
VODPU	Open-drain pull-up voltage ^{1,4}	_	_	VDD_HV_ A/B	V	_
IINJPAD_DC_OP	Continuous DC input current (positive/ negative) that can be injected into an I/O pin ⁵	-3	_	3	mA	VDD_HV_A >= 3.6V
IINJPAD_DC_OP	Continuous DC input current (positive/ negative) that can be injected into an I/O pin ⁵	-2	_	3	mA	VDD_HV_A >= 2.97V
IINJSUM_DC_OP	Sum of absolute value of injected currents on all the I/O pins (continuous DC limit) ^{5,6}	-30	_	30	mA	VDD_HV_A >= 3.6V
IINJSUM_DC_OP	Sum of absolute value of injected currents	-20	_	30	mA	VDD_HV_A >= 2.97V

Table continues on the next page...

Table 4. Voltage and current operating requirements...continued

Symbol	Description	Min	Тур	Max	Unit	Condition
	on all the I/O pins (continuous DC limit) ^{5,6}					
Vramp_slow	Supply ramp rate (slow) 1,7	0.5	_	_	V/min	_
Vramp_fast	Supply ramp rate (fast) 1,7	_	_	100	V/ms	_

- 1. All voltages are referred to VSS unless otherwise specified.
- 2. VREFH should always be equal to or less than VDD_HV_A +0.1. Any positive differential voltage between VREFH and VDD_HV_A i.e., VDD_HV_A < VREFH <= VDD_HV_A + 0.1V) is for RF-AC only. Appropriate decoupling capacitors should be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC
- 3. Keeping the input voltage between this range practically ensures that no (noticeable) current is being injected. When exceeding these limits, the current being injected must be lower than IINJPAD_DC_OP, all the time.
- 4. Open-drain outputs must be pulled respectively to their supply rail (VDD_HV_A or VDD_HV_B).
- 5. When the input pad voltage levels are close to VDD_HV_A (respectively to VDD_HV_B) or VSS, plus /minus the forward voltage of ESD diodes, practically, no current is being injected. When these limits are exceeded, the maximum input current spec must be honored. Refer to the MCXE31 Hardware Design Guidelines AN for more details and recommendations for protecting the devices against injection current.
- 6. If a positive injection current is present in one or more I/O pins, and the device is in Low-Speed RUN or STANDBY mode, the VDD_HV_A (or respectively, VDD_HV_B) may lift and cause unexpected behavior. Therefore, it is recommended to add external protection hardware, to safely cover this scenario.
- 7. The MCU supply ramp rate parameter must be applicable to the MCU input/external supplies. The ramp rate assumes that the MCXE31 HW design guidelines available on www.nxp.com are followed.

If total power dissipation and maximum junction temperature allows. Please refer to Thermal operating characteristics table for the maximum junction temperature, and Thermal characteristics table for the thermal characteristics, to determine the maximum power dissipation allowed for a given package.

5.3 Thermal operating characteristics

Table 5. Thermal operating characteristics

Symbol	Description	Min	Тур	Max	Unit	Condition
TA	Ambient temperature ¹	-40	_	135	°C	M- Grade
TJ	Junction temperature ^{2,3,4}	_	_	135	°C	

- 1. The device may operate at maximum TA rating as long as TJ maximum of 135 °C is not exceeded. The simplest method to determine TJ is: TJ = TA + RθJA × chip power dissipation.
- 2. The device operating specification is not guaranteed beyond 135 °C TJ.
- 3. The maximum operating requirement applies to all chapters unless otherwise specifically stated.
- Operating at maximum conditions for extended periods may affect device reliability. Refer to Product Lifetime Usage application note (AN14180).

5.4 ESD and Latch-up Protection Characteristics

Table 6. ESD and Latch-up Protection Characteristics

Symbol	Description	Min	Тур	Max	Unit
Vhbm	Electrostatic discharge voltage, human body model (HBM) ^{1,2}	-2000	_	2000	V
Vcdm	Electrostatic discharge voltage, charged- device model (CDM), all pins except corner ^{1,3}	-500	_	500	V
Vcdm	Electrostatic discharge voltage, charged- device model (CDM), corner pins ^{1 3}	-750	_	750	V
llat	Latch-up current at ambient temperature of 125°C ⁴	-100	_	100	mA

- 1. Device failure is defined as: "If after exposure to ESD pulses, the device does not meet specification requirements."
- 2. This parameter is tested in conformity with JEDEC-JS-001.
- 3. This parameter is tested in conformity with JEDEC-JS-002.
- 4. This parameter is tested in conformity with JEDEC-JESD78.

5.5 Thermal Attributes

5.5.1 Description

The tables in the following sections describe the thermal characteristics of the device.

NOTE

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting side (board) temperature, ambient temperature, air flow, power dissipation or other components on the board, and board thermal resistance.

5.5.2 Thermal characteristics

Thermal Design and Characteristics

- Junction temperature of the device does not solely depend on package thermal resistance but is also a function of chip
 power dissipation, PCB attributes, environmental conditions (ambient temperature & air flow) and cumulative effects of
 other heat generating ICs on the PCB.
- The appropriate thermal design must be carried out on package so that it can safely dissipate the necessary amount of power needed for it to function properly without exceeding the maximum junction temperature. This may involve adding a cooling solution on the package, creating thermal enhancements on the PCB and improving environmental conditions.
- The customer is encouraged to use the package model to perform design and risk assessment through simulations.
 Package models in FloTHERM or Icepak formats can be obtained under NDA from the sales team.

Thermal Ratings

• The table below is the package thermal ratings for LQFP and HDQFP package variants. These numbers are derived through simulations based on standardized tests as described in the footnotes.

 Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not meant to predict the performance of a package in an application-specific environment:

Table 7. Thermal characteristics

Rating	Conditions	Symbol	Package	Device			Unit
				MCXE31 5/ MCXE31 6	MCXE31	MCXE31 B	
Thermal resistance, Junction to		our-layer R _{⊕JA} pard (2s2p) ²	48-LQFP	45	NA	NA	°C/W
Ambient (Natural Convection) ¹	board (2s2p) ²		100-HDQFP	35.3	38	NA	°C/W
			172-HDQFP	NA	30.5	28.9	°C/W
Thermal characterization	Natural	Ψ_{JT}	48-LQFP	2	NA	NA	°C/W
parameter, Junction-to-Top of package ¹	Convection		100-HDQFP	0.66	0.8	NA	°C/W
			172-HDQFP	NA	0.5	0.4	°C/W

^{1.} Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not meant to predict the performance of a package in an application-specific environment

6 Power management

6.1 Power mode transition operating behaviors

6.1.1 Power mode transition operating behavior

The values in the table below are provided for reference only.

Table 8. Power mode transition operating behaviour

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
tMODE_ STDBYENTRY	RUN> STANDBY transition time	_	955	_	ns	_	_
tMODE_ STDBYEXIT_FAST	STANDBY> RUN transition time, fast standby exit	_	53	_	us	FIRC ON @48MHz in Standby	_
tMODE_ STDBYEXIT	STANDBY> RUN transition time, normal standby exit	_	80	_	us	_	_

^{2.} Thermal test board meets JEDEC specification for this package (JESD51-9).

6.1.2 Boot time, HSE firmware not installed

Table 9. Boot time, HSE firmware not installed

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
tBOOT_noHSE	After a POR event, amount of time to execution of the first instruction of the application core, when HSE firmware is not installed. (HSE FW feature flag is disabled)	_	2	_	ms	Device running from FIRC (clocking option D). CORE_CLK = 48 MHz; HSE_CLK = 48 MHz.	

6.1.3 Boot time, HSE firmware installed

The following table provides the boot time of the MCXE31 SBAF and Firmware initialization. To obtain the total boot time, the corresponding user code verification time must be added.

Table 10. Boot time, HSE firmware installed

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
tBOOT_HSE_ NONSECURE	After a POR event, amount of time to execution of the first instruction of the application core, when HSE firmware is installed. (BOOT SEQ = 0)			3	ms	Device running from FIRC (clocking option D). CORE_CLK = 48 MHz; HSE_CLK = 48 MHz.	
tBOOT_HSE	After a POR event, amount of time to execution of the first instruction of the application core, when HSE firmware is installed.	_	12.36	_	ms	Device running from FIRC (clocking option D). CORE_CLK = 48 MHz; HSE_CLK = 48 MHz.	_
tBOOT_HSE	After a POR event, amount of time to execution of the first instruction of the application core, when HSE firmware is installed.	_	9.51	_	ms	Device running from PLL (clocking option B). CORE_CLK = 120 MHz; HSE_CLK = 120 MHz.	_
tBOOT_HSE	After a POR event, amount of time to execution of the first instruction of the application core,	_	10.91	_	ms	Device running from PLL (clocking option A). CORE_CLK = 160 MHz; HSE_CLK = 80 MHz.	_

Table continues on the next page...

Table 10. Boot time, HSE firmware installed...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
	when HSE firmware is installed.						

6.1.4 HSE firmware memory verification time examples

Table 11. HSE firmware memory verification time examples

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
tCMAC_64KB	Memory verification of 64 KB of application firmware, using AES-128 CMAC cipher.	_	11.3	_	ms	Device running from FIRC (clocking option D). CORE_CLK = 48 MHz; HSE_CLK = 48 MHz.	_
tCMAC_1024KB	Memory verification of 1024 KB of application firmware, using AES-128 CMAC cipher.	_	176	_	ms	Device running from FIRC (clocking option D). CORE_CLK = 48 MHz; HSE_CLK = 48 MHz.	_
tGMAC_64KB	Memory verification of 64 KB of application firmware, using AES-128 GMAC cipher.	_	3.2	_	ms	Device running from FIRC (clocking option D). CORE_CLK = 48 MHz; HSE_CLK = 48 MHz.	_
tGMAC_1024KB	Memory verification of 1024 KB of application firmware, using AES-128 GMAC cipher.	_	46.8	_	ms	Device running from FIRC (clocking option D). CORE_CLK = 48 MHz; HSE_CLK = 48 MHz.	_
tHMAC_64KB	Memory verification of 64 KB of application firmware, using AES-128 HMAC cipher.	_	1.74	_	ms	Device running from FIRC (clocking option D). CORE_CLK = 48 MHz; HSE_CLK = 48 MHz.	_
tHMAC_1024KB	Memory verification of 1024 KB of application firmware, using AES-128 HMAC cipher.	_	22.87	_	ms	Device running from FIRC (clocking option D). CORE_CLK = 48 MHz; HSE_CLK = 48 MHz.	_
tRSA_64KB	Memory verification of 64 KB of application firmware, using RSA 2048 cipher.	_	31.03	_	ms	Device running from FIRC (clocking option D). CORE_CLK = 48 MHz; HSE_CLK = 48 MHz.	_

Table continues on the next page...

Table 11. HSE firmware memory verification time examples...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
tRSA_1024KB	Memory verification of 1024 KB of application firmware, using RSA 2048 cipher.	_	52.15	_	ms	Device running from FIRC (clocking option D). CORE_CLK = 48 MHz; HSE_CLK = 48 MHz.	_
tECDSA_64KB	Memory verification of 64 KB of application firmware, using ECDSA 521 bits cipher.	_	126.46	_	ms	Device running from FIRC (clocking option D). CORE_CLK = 48 MHz; HSE_CLK = 48 MHz.	_
tECDSA_1024KB	Memory verification of 1024 KB of application firmware, using ECDSA 521 bits cipher.	_	147.53	_	ms	Device running from FIRC (clocking option D). CORE_CLK = 48 MHz; HSE_CLK = 48 MHz.	_
tSHA2_256_64KB	Memory verification of 64 KB of application firmware, using SHA2 256 bits bits cipher.	_	1.62	_	ms	Device running from FIRC (clocking option D). CORE_CLK = 48 MHz; HSE_CLK = 48 MHz.	_
tSHA2_256_ 1024KB	Memory verification of 1024 KB of application firmware, using SHA2 256 bits bits cipher.	_	22.73	_	ms	Device running from FIRC (clocking option D). CORE_CLK = 48 MHz; HSE_CLK = 48 MHz.	_
tCMAC_64KB	Memory verification of 64 KB of application firmware, using AES-128 CMAC cipher.	_	6.67	_	ms	Device running from PLL (clocking option A). CORE_CLK = 160 MHz; HSE_CLK = 80 MHz.	_
tCMAC_1024KB	Memory verification of 1024 KB of application firmware, using AES-128 CMAC cipher.	_	105.24	_	ms	Device running from PLL (clocking option A). CORE_CLK = 160 MHz; HSE_CLK = 80 MHz.	_
tGMAC_64KB	Memory verification of 64 KB of application firmware, using AES-128 GMAC cipher.	_	1.85	_	ms	Device running from PLL (clocking option A). CORE_CLK = 160 MHz; HSE_CLK = 80 MHz.	_
tGMAC_1024KB	Memory verification of 1024 KB of application firmware,	_	28.03	_	ms	Device running from PLL (clocking option A). CORE_CLK = 160	_

Table continues on the next page...

Table 11. HSE firmware memory verification time examples...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
	using AES-128 GMAC cipher.					MHz; HSE_CLK = 80 MHz.	
tHMAC_64KB	Memory verification of 64 KB of application firmware, using AES-128 HMAC cipher.	_	0.98	_	ms	Device running from PLL (clocking option A). CORE_CLK = 160 MHz; HSE_CLK = 80 MHz.	_
tHMAC_1024KB	Memory verification of 1024 KB of application firmware, using AES-128 HMAC cipher.	_	13.68	_	ms	Device running from PLL (clocking option A). CORE_CLK = 160 MHz; HSE_CLK = 80 MHz.	_
tRSA_64KB	Memory verification of 64 KB of application firmware, using RSA 2048 cipher.	_	17.39	_	ms	Device running from PLL (clocking option A). CORE_CLK = 160 MHz; HSE_CLK = 80 MHz.	_
tRSA_1024KB	Memory verification of 1024 KB of application firmware, using RSA 2048 cipher.	_	23.32	_	ms	Device running from PLL (clocking option A). CORE_CLK = 160 MHz; HSE_CLK = 80 MHz.	_
tECDSA_64KB	Memory verification of 64 KB of application firmware, using ECDSA 521 bits cipher.	_	72.2	_	ms	Device running from PLL (clocking option A). CORE_CLK = 160 MHz; HSE_CLK = 80 MHz.	_
tECDSA_1024KB	Memory verification of 1024 KB of application firmware, using ECDSA 521 bits cipher.	_	84.91	_	ms	Device running from PLL (clocking option A). CORE_CLK = 160 MHz; HSE_CLK = 80 MHz.	_
tSHA2_256_64KB	Memory verification of 64 KB of application firmware, using SHA2 256 bits bits cipher.	_	0.9	_	ms	Device running from PLL (clocking option A). CORE_CLK = 160 MHz; HSE_CLK = 80 MHz.	_
tSHA2_256_ 1024KB	Memory verification of 1024 KB of application firmware, using SHA2 256 bits bits cipher.	_	13.6	_	ms	Device running from PLL (clocking option A). CORE_CLK = 160 MHz; HSE_CLK = 80 MHz.	_
tCMAC_64KB	Memory verification of 64 KB of	_	4.5	_	ms	Device running from PLL (clocking option	_

Table continues on the next page...

Table 11. HSE firmware memory verification time examples...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
	application firmware, using AES-128 CMAC cipher.					B). CORE_CLK = 120 MHz; HSE_CLK = 120 MHz.	
tCMAC_1024KB	Memory verification of 1024 KB of application firmware, using AES-128 CMAC cipher.	_	69.9	_	ms	Device running from PLL (clocking option B). CORE_CLK = 120 MHz; HSE_CLK = 120 MHz.	_
tGMAC_64KB	Memory verification of 64 KB of application firmware, using AES-128 GMAC cipher.	_	1.3	_	ms	Device running from PLL (clocking option B). CORE_CLK = 120 MHz; HSE_CLK = 120 MHz.	_
tGMAC_1024KB	Memory verification of 1024 KB of application firmware, using AES-128 GMAC cipher.	_	18.7	_	ms	Device running from PLL (clocking option B). CORE_CLK = 120 MHz; HSE_CLK = 120 MHz.	_
tHMAC_64KB	Memory verification of 64 KB of application firmware, using AES-128 HMAC cipher.	_	0.7	_	ms	Device running from PLL (clocking option B). CORE_CLK = 120 MHz; HSE_CLK = 120 MHz.	_
tHMAC_1024KB	Memory verification of 1024 KB of application firmware, using AES-128 HMAC cipher.	_	9.12	_	ms	Device running from PLL (clocking option B). CORE_CLK = 120 MHz; HSE_CLK = 120 MHz.	_
tRSA_64KB	Memory verification of 64 KB of application firmware, using RSA 2048 cipher.	_	15.4	_	ms	Device running from PLL (clocking option B). CORE_CLK = 120 MHz; HSE_CLK = 120 MHz.	_
tRSA_1024KB	Memory verification of 1024 KB of application firmware, using RSA 2048 cipher.	_	23.8	_	ms	Device running from PLL (clocking option B). CORE_CLK = 120 MHz; HSE_CLK = 120 MHz.	_
tECDSA_64KB	Memory verification of 64 KB of application firmware, using ECDSA 521 bits cipher.	_	53.95	_	ms	Device running from PLL (clocking option B). CORE_CLK = 120 MHz; HSE_CLK = 120 MHz.	_

Table continues on the next page...

Table 11. HSE firmware memory verification time examples...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
tECDSA_1024KB	Memory verification of 1024 KB of application firmware, using ECDSA 521 bits cipher.	_	62.34	_	ms	Device running from PLL (clocking option B). CORE_CLK = 120 MHz; HSE_CLK = 120 MHz.	_
tSHA2_256_64KB	Memory verification of 64 KB of application firmware, using SHA2 256 bits bits cipher.	_	0.64	_	ms	Device running from PLL (clocking option B). CORE_CLK = 120 MHz; HSE_CLK = 120 MHz.	_
tSHA2_256_ 1024KB	Memory verification of 1024 KB of application firmware, using SHA2 256 bits bits cipher.	_	9.07	_	ms	Device running from PLL (clocking option B). CORE_CLK = 120 MHz; HSE_CLK = 120 MHz.	_

6.2 Supply Monitoring

Certain monitors are present on certain devices. See Power Management chapter in reference manual.

Table 12. Supply Monitoring

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
LVD_V15	Low Voltage Detect (LVD) on V15, deassert threshold (in FPM)	1.34	1.38	1.42	V		_
HVD_V15	High Voltage Detect (HVD) on V15, assert threshold (in FPM)	_	2.5	_	V	_	_
LVR_VDD_HV_A	LVR on VDD_HV_A, assert threshold (in FPM)	2.77	2.85	2.93	V	_	_
LVR_VDD_HV_A	LVR on VDD_HV_A, assert threshold (in RPM)	2.77	2.85	2.93	V	_	_
_	VDD_HV_A LVR monitor hysteresis	_	18.75	_	mV	_	_
HVD_VDD_HV_A	HVD on VDD_HV_A, assert threshold (in FPM)	5.787	5.887	5.987	V	_	_

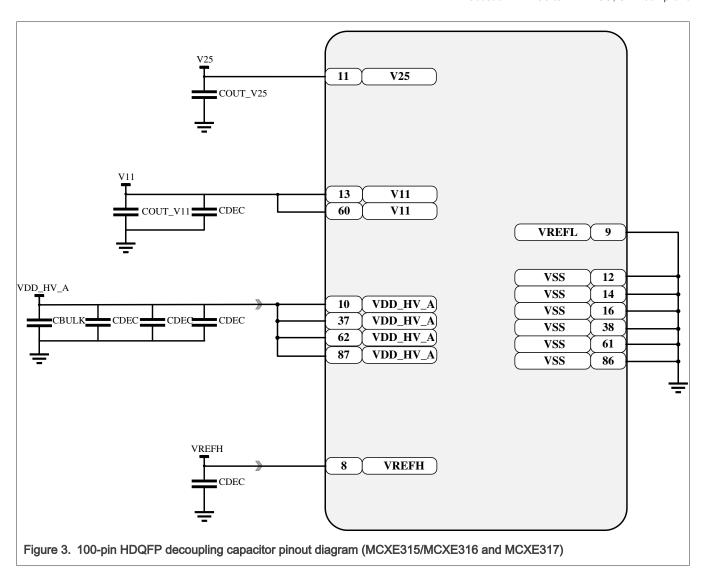
Table continues on the next page...

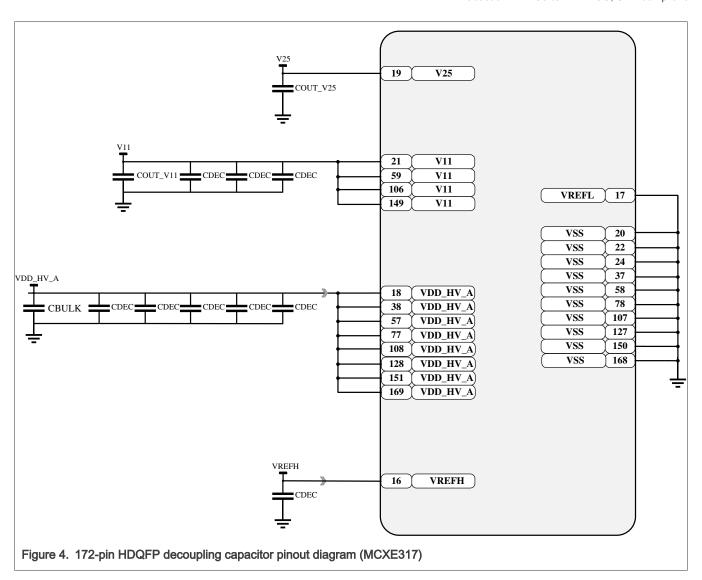
Table 12. Supply Monitoring...continued

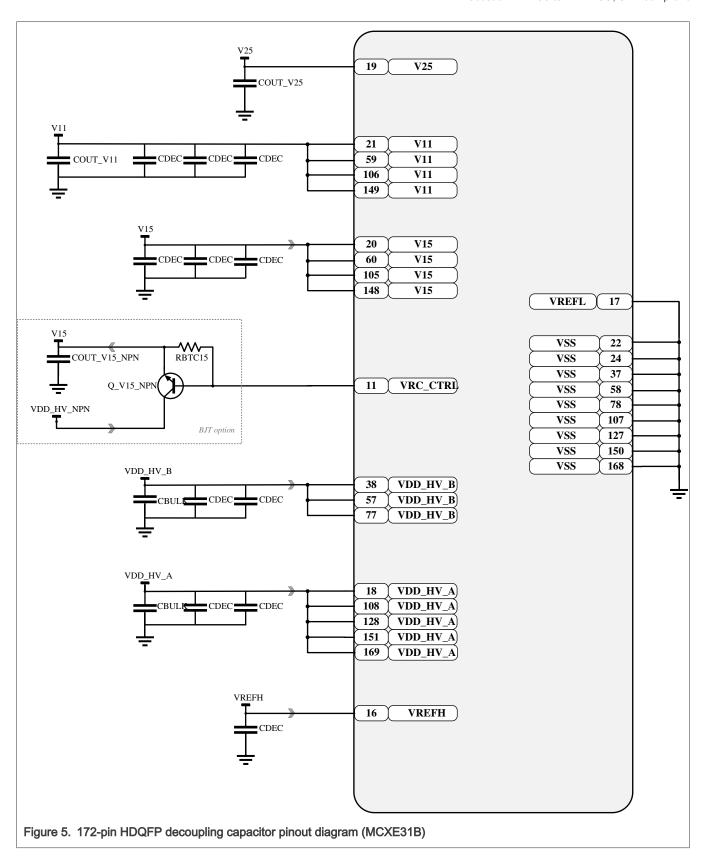
Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
_	VDD_HV_A HVD monitor hysteresis	_	37.5	_	mV	_	_
LVR_VDD_HV_B	LVR on VDD_HV_B, assert threshold (in RPM)	2.77	2.85	2.93	V	_	_
HVD_VDD_HV_B	HVD on VDD_HV_B, assert threshold (in FPM)	5.787	5.887	5.987	V	_	_
LVD_VDD_HV_A	Low Voltage Detect (LVD5A) on VDD_HV_A, assert threshold (in FPM)	4.33	4.41	4.49	V	_	_
_	VDD_HV_A LVD monitor hysteresis	_	37.5	_	mV	_	_
VPOR_VDD_HV_A	Power-On-Reset (VPOR) on VDD_HV_A, deassert threshold	0.9	1.5	2.2	V	_	_
VREF12	Bandgap reference, trimmed	1.18	1.2	1.22	V	_	_

6.3 Recommended Decoupling Capacitors

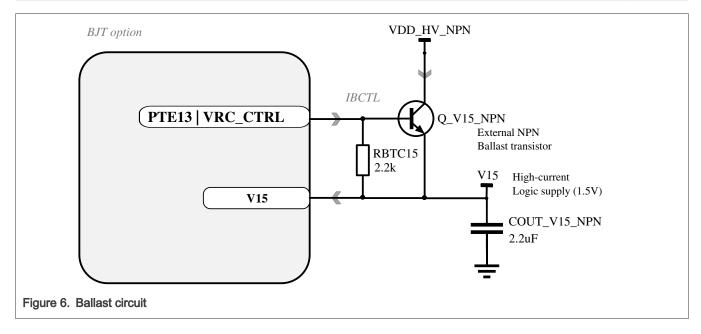
Table 13. Recommended Decoupling Capacitors


Symbol	Description	Min	Тур	Max	Unit
CDEC	Decoupling capacitor (one per supply pin) 1,2,3	70	100	_	nF
CBULK	Input supply bulk capacitor ^{2,4,5,6}	_	4.7	_	μF
COUT_V11	V11 (1.1V Regulator) output capacitor (MCXE315/ MCXE316/MCXE317 and MCXE31B) ²	_	1	_	μF
COUT_V25	V25 (2.5V Regulator) output capacitor ^{1,2}	140	220	_	nF


- 1. These capacitors must be placed as close as possible to the corresponding supply and ground pins.
- 2. All capacitors must be low ESR ceramic capacitors (for example, X7R). The minimum recommendation is after considering component aging and tolerance.
- 3. Optionally, 1 nF capacitors can be added in parallel to the decoupling capacitors.
- 4. These capacitors must be placed close to the source.
- 5. For devices where the VDD_HV_B domain is present, if the VDD_HV_B supply is different supply from VDD_HV_A, a dedicated bulk capacitor is needed.
- 6. It is also possible to use higher capacitance values (for example, 10 μF) in place of the 4.7 μF capacitor.


MCXEP172M160FB0

6.3.1 Recommended Decoupling Capacitor diagrams



6.4 V15 regulator (BJT option, NPN ballast transistor control) electrical specifications

MCXE31B support a linear regulator stage, with a dedicated pin to control an external NPN bipolar transistor. The chip hardware design guidelines document lists the recommended part numbers for the external devices.

Table 14. V15 regulator (BJT option, NPN ballast transistor control) electrical specifications

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
V15	V15 output	_	1.51	_	V	_	_
V15	V15 input	_	1.5	_	V	_	_
IBCTL	IBCTL (V15 reg) source	10	_	_	mA	_	_
IBCTL	IBCTL (V15 reg) sink	_	_	-50	uA	_	_
tsettle_lm	Required setting time from activating last mile regulator to load change	2	_	_	us	_	_
VDD_HV_NPN	Input voltage supply for NPN external ballast transistor	2.5	3.3 or 5	_	V	_	_

6.5 Supply currents

NOTE
All data in this table is preliminary and based on first samples.

Typical current numbers are indicative for typical silicon process and may vary based on the silicon distribution and user configuration. Typical conditions assumes VDD_HV_A = VREFH = 5 V, VDD_HV_B = 5V (if the VDD_HV_B domain present in the device), temperature = 25 °C, and typical silicon process unless otherwise stated. In STANDBY configuration, no current flows through the V15 supply.

Table 15. STANDBY mode supply currents

			STAI	NDBY ¹	
			VDD_HV_A ²		VDD_HV_B ²
Chip	Ambient Temperature (°C)	All clocks & peripherals OFF (µA)	SIRC ON (µA)	FIRC ON (24 MHz) (mA)	All Config. (μΑ)
MCXE31B	25, typ ³	50	52	0.91	1.8
	25, max ⁴	153	153	1.09	3.8
	85, typ ³	315	316	1.18	6.1
	85, max ⁴	900	910	1.78	15.4
	105, typ ³	498	530	1.40	8.5
	105, max ⁴	1672	1682	2.55	26.2
	125, typ ³	932	998	1.88	18.5
	125, max ⁴	2638	2650	3.5	47.3
MCXE317	25, typ ³	40	41	0.887	NA
	25, max ⁴	79	80	1.031	
	85, typ ³	178	178	1.027	
	85, max ⁴	496	497	1.422	
	105, typ ³	350	346	1.197	
	105, max ⁴	994	997	1.924	
	125, typ ³	620	611	1.457	
	125, max ⁴	1788	1792	2.761	
MCXE315/	25, typ ³	38.9	39.8	1.365	NA
MCXE316	25, max ⁴	77.2	79.8	1.823	
	85, typ ³	144.3	144.9	1.480	
	85, max ⁴	491.5	494.8	2.263	
	105, typ ³	263.8	264.2	1.559	
	105, max ⁴	937.4	947.1	2.597	

Table continues on the next page...

Table 15. STANDBY mode supply currents...continued

- 1. See the configurations in Table 21.
- 2. IO load current is not included. The actual current requirements for IOs will depend on the I/O configuration in the application.
- 3. "typ" is indicative of the average current numbers at the nominal internally regulated V11 supply voltage, VDD_HV_A = 5.0V, VDD_HV_B = 5.0V, for the typical silicon process..
- 4. "max" is indicative of the maximum current numbers at the maximum internally regulated V11 supply voltage (1.16 V), VDD_HV_A = 5.5V, VDD_HV_B = 5.5V, for the fast silicon process.

NOTE All data in this table is preliminary and based on first samples.

Typical current numbers are indicative for typical silicon process and may vary based on the silicon distribution and user configuration. Typical conditions assumes VDD_HV_A = VREFH = 5 V, VDD_HV_B = 5V (if the VDD_HV_B domain present in the device), temperature = 25 °C, and typical silicon process unless otherwise stated.

Table 16. Low speed RUN mode supply currents

						Lov	w Speed	RUN M	lode (m.	A) ¹				
	ature (°C)	BOOT Mode ² [Clock Option Cl FIRC @ 24 MHz	[Last Mile Disabled]	BOOT Mode ² [Clock Option C] FIRC @ 24 MHz	[Last Mile Enabled]	Low Speed RUN ² [Clock Option E] FIRC @3 MHz	[Last Mile Disabled]	Low Speed RUN ² [Clock Option E] FIRC @3 MHz	[Last Mile Enabled]	Low Speed RUN ² [Clock Option D] FIRC @48 MHz	[Last Mile Disabled]	Low Speed RUN ² [Clock Option D] FIRC @48 MHz	[Last Mile Enabled]	All Config ² .
Chip	Ambient Temperature (°C)	VDD_HV_A 3,4	V15 ⁵ / V11	VDD_HV_A 3,4	V15 ⁵ / V11	VDD_HV_A 3,4	V15 ⁵ / V11	VDD_HV_A 3,4	V15 ⁵ / V11	VDD_HV_A 3,4	V15 ⁵ / V11	VDD_HV_A 3,4	V15 ⁵ / V11	VDD_HV_B 3
MCXE31B	25, typ ⁶	20.5	-	2.8	17.9	6.4	-	2.8	4.5	37.2	-	2.9	34	0.6
	25, max ⁷	29.4	-	3.3	27.2	14.8	-	3.3	12.6	46.8	-	3.4	46.6	0.8
	85, typ ⁶	34.2	-	2.9	31.2	19.7	-	2.9	17.5	50.4	-	2.9	47.3	0.6
	85, max ⁷	71.6	-	3.5	68.7	56.2	-	3.4	54	89.1	-	3.5	86.2	0.8
	105, typ ⁶	46.1	-	2.9	43.1	31.7	-	2.9	29.3	62.2	-	2.9	59.2	0.6
	105, max ⁷	114	-	3.7	111	99.1	-	3.6	96.1	131	-	3.9	128	0.8

Table continues on the next page...

Table 16. Low speed RUN mode supply currents...continued

	125, typ ⁶	69.9	-	3.0	66.8	55.8	-	3.0	53.1	86	-	3.1	83	0.6
	125, max ^{7,}	161	-	4.2	159	148	-	4.1	145	178	-	4.3	176	0.8
MCXE317	25, typ ⁶	15	NA	N	A	5	NA	N	IA	26	NA	N	Α	NA
	25, max ⁷	20				10				32				
	85, typ ⁶	20				10				31				
	85, max ⁷	35.2				24.6				46.4				
	105, typ ⁶	26.1				16.2				37				
	105, max ⁷	52.9				42.6			64.2	-	ı			
	125, typ ⁶	35.3				25.3				46.4	-			
	125, max ^{7, 9, 10}	79.8				66.9				90.1				
MCXE315/	25, typ ⁶	12.9	NA	N	A	4.4	NA	N	IA	22.4	NA	N	Α	NA
MCXE316	25, max ⁷	14.9				6.0				24.8	-			
	85, typ ⁶	16.0				7.5				25.6				
	85, max ⁷	31.0				22.2				41.1				
	105, typ ⁶	19.1				10.5				28.7	-			
	105, max ⁷	45.8				36.8				55.6	-			
	125, typ ⁶	25.2			16.5				34.7	1				
	125, max ^{7, 8, 10}	73.2				64.3				82.4	-			

- 1. Current numbers are for reduced configuration and may vary based on user configuration and silicon process variation.
- 2. See the example configurations in Table 21
- 3. IO load current is not included. The actual current requirements for IOs will depend on the I/O configuration in the application.
- 4. RUN IDD @ VDD_HV_A includes Flash memory read current from the V25 voltage rail.
- 5. RUN IDD @ V15 includes Flash memory read current from the V11 voltage rail
- "typ" is indicative of the average current numbers at the nominal internally regulated V11 supply voltage, VDD_HV_A = 5.0V, VDD_HV_B = 5.0V, V15 = 1.5V, for the typical silicon process.
- 7. "max" is indicative of the maximum current numbers at the maximum internally regulated V11 supply voltage (1.16 V), VDD_HV_A = 5.5V, VDD_HV_B = 5.5V, V15 = 1.65V, for the fast silicon process.
- 8. For the maximum allowable RUN current in an application, the junction temperature must be kept below the maximum specification, $T_J < 150$ °C, to avoid self-heating.
- 9. For the maximum allowable RUN current in an application, the junction temperature must be kept below the maximum specification, T_J < 150°C, to avoid self-heating.
- 10. If the total power dissipation would cause the junction temperature to be exceeded when VDD_HV_A is at 5V, then VDD_HV_A should be limited to operate at 3.3V.

MCXEP172M160FB0

NOTE All data in this table is preliminary and based on first samples.

Typical current numbers are indicative for typical silicon process and may vary based on the silicon distribution and user configuration. Typical conditions assumes VDD_HV_A = VREFH = 5 V, VDD_HV_B = 5V (if the VDD_HV_B domain present in the device), temperature = 25 °C and typical silicon process unless otherwise stated.

Table 17. RUN mode supply currents (peripherals disabled) for MCXE31B

		RUN Mode (mA) ¹							
		Min. Config. ² [Clock Option F] Cortex M7 @80 MHz	Min. Config. ² [Clock Option B] Cortex M7 @120 MHz	Min. Config. ² [Clock Option A] Cortex M7 @160 MHz	All. Config. ²	All. Config. ²			
Chip	Ambient Temperature (°C)	V15 ³ / V11	V15 ³ / V11	V15 ³ / V11	VDD_HV_B 4	VDD_HV_A 4, 5			
MCXE31B	25, typ ⁶	51.3	54.8	69.6	0.6	3.1			
	25, max ⁷	60.2	64.5	80.4	0.8	3.6			
	85, typ ⁶	64.5	68.1	83.1	0.6	3.2			
	85, max	104	108	124	0.8	3.9			
	105, typ	75.4	79	93.9	0.6	3.2			
	105, max ⁷	145	149	166	0.8	4.0			
	125, typ	97.4	101.2	116.4	0.6	3.3			
	125, max ^{, 8}	191	196	212	0.8	4.3			

- 1. Current numbers are for reduced configuration and may vary based on user configuration and silicon process variation.
- 2. See the configurations in Table 22.
- 3. RUN IDD @ V15 includes Flash memory read current from the V11 voltage rail.
- 4. IO load current is not included. The actual current requirements for IOs will depend on the I/O configuration in the application.
- 5. RUN IDD @ VDD_HV_A includes Flash memory read current from the V25 voltage rail.
- 6. "typ" is indicative of the average current numbers at the nominal internally regulated V11 supply voltage, VDD_HV_A = 5.0V, VDD_HV_B = 5.0V, V15 = 1.5V, for the typical silicon process.
- 7. "max" is indicative of the maximum current numbers at the maximum internally regulated V11 supply voltage (1.16 V), VDD_HV_A = 5.5V, VDD_HV_B = 5.5V, V15= 1.65V, for the fast silicon process.
- 8. For the maximum allowable RUN current in an application, the junction temperature must be kept below the maximum specification, T_{.I} < 150°C, to avoid self-heating.

MCXEP172M160FB0

NOTE

The data in this table is preliminary and based on first samples.

Typical current numbers are indicative for typical silicon process and may vary based on the silicon distribution and user configuration. Typical conditions assumes VDD_HV_A = VREFH = 5 V, VDD_HV_B = 5V (if the VDD_HV_B domain present in the device), temperature = 25 °C and typical silicon process unless otherwise stated.

Table 18. RUN mode supply currents (peripherals disabled) for MCXE315/MCXE316 and MCXE317

		RUN Mode (mA) ¹							
		Min. Coi Cortex M7 ([Clock Op	@80 MHz	Min. Config. ² Cortex M7 @120 MHz [Clock Option B]					
Chip	Ambient Temperature (°C)	VDD_HV_A 3,4	V15 5/ V11	VDD_HV_A 3.4	V15 5/ V11				
MCXE317	25, typ ⁶	37	NA	37	NA				
	25, max ⁷	44		47					
	85, typ ⁶	42		43					
	85, max ⁷	58.5		59.7					
	105, typ ⁶	48.1		48.7					
	105, max ⁷	76.4		77.8					
	125, typ ⁶	56.5		57					
	125, max ^{7, 8, 9}	98.7		99.9					
MCXE315/MCXE316	25, typ ⁶	34.9	NA	36.5	NA				
	25, max ⁷	39.1		41.1					
	85, typ ⁶	38.1		39.8					
	85, max ⁷	54.2		55.9					
	105, typ ⁶	41.5		43.2					
	105, max ⁷	69.1		71.1					
	125, typ ⁶	47.7		49.4					
	125, max ^{7, 8, 9}	97		99.1					

- 1. Current numbers are for reduced configuration and may vary based on user configuration and silicon process variation.
- 2. See the configurations in Table 22.

- 3. IO load current is not included. The actual current requirements for IOs will depend on the I/O configuration in the application.
- 4. RUN IDD @ VDD_HV_A includes Flash memory read current from the V25 voltage rail.
- 5. RUN IDD @ V15 includes Flash memory read current from the V11 voltage rail.
- 6. "typ" is indicative of the average current numbers at the nominal internally regulated V11 supply voltage, VDD_HV_A = 5.0V, VDD_HV_B = 5.0V, V15 = 1.5V, for the typical silicon process.
- 7. "max" is indicative of the maximum current numbers at the maximum internally regulated V11 supply voltage (1.16 V), VDD_HV_A = 5.5V, VDD_HV_B = 5.5V, V15 = 1.65V, for the fast silicon process.
- 8. For the maximum allowable RUN current in an application, the junction temperature must be kept below the maximum specification, $T_J < 150$ °C, to avoid self-heating.
- 9. If the total power dissipation would cause the junction temperature to be exceeded when VDD_HV_A is at 5V, then VDD_HV_A should be limited to operate at 3.3V.

NOTE
The data in this table is preliminary and based on first samples.

Typical current numbers are indicative for typical silicon process and may vary based on the silicon distribution and user configuration. Typical conditions assumes VDD_HV_A = VREFH = 5 V, VDD_HV_B = 5V (if the VDD_HV_B domain present in the device), temperature = 25 °C and typical silicon process unless otherwise stated.

Table 19. Example RUN mode configuration supply currents for MCXE31B

			F	RUN Mode (mA)	1	
		Config. 1 ² Cortex M7 @160 MHz	Cortex M7 @120 MHz	Config. 3 ² Cortex M7 @80 MHz	All Config. ²	All Config. ²
Chip	Ambient Temperature (°C)	V15 ³ / V11	V15 ³ / V11	V15 ³ / V11	VDD_HV_B 4	VDD_HV_A 4,5
MCXE31B	25, typ ⁶	102	80	68	0.6	3.1
	25, max ⁷	115	92	79	0.8	3.6
	85, typ ⁶	116	94	81.8	0.6	3.2
	85, max ⁷	160	137	123	0.8	3.9
	105, typ ⁶	128	105	93	0.6	3.2
	105, max ⁷	203	179	165	0.8	4.0
	125, typ ⁶	151	128	116	0.6	3.3
	125, max ^{7, 8}	250	226	213	0.8	4.5

- 1. Current numbers are for reduced configuration and may vary based on user configuration and silicon process variation.
- 2. See the configurations in Table 22.
- 3. RUN IDD @ V15 includes Flash memory read current from the V11 voltage rail.

MCXEP172M160FB0

- 4. IO current is not included. The actual current requirements for IOs will depend on the I/O configuration in the application.
- 5. RUN IDD @ VDD_HV_A includes Flash memory read current from the V25 voltage rail.
- 6. "typ" is indicative of the average current numbers at the nominal internally regulated V11 supply voltage, VDD_HV_A = 5.0V, VDD_HV_B = 5.0V, V15 = 1.5V, for the typical silicon process.
- 7. "max" is indicative of the maximum current numbers at the maximum internally regulated V11 supply voltage (1.16 V), VDD_HV_A = 5.5V, VDD_HV_B = 5.5V, V15 = 1.65V, for the fast silicon process.
- 8. For the maximum allowable RUN current in an application, the junction temperature must be kept below the maximum specification, $T_J < 150$ °C, to avoid self-heating.

Table 20. Example RUN mode configuration supply currents for MCXE315/MCXE316 and MCXE317

		RUN Mode (mA) ¹					
		Confi	ig. 1 ²	Confi	ig. 2 ²		
		Corte	ex M7	Cortex M7			
		@120) MHz	@80	MHz		
Chip	Ambient Temperature (°C)	VDD_HV_A 3,4	V15 5/V11	VDD_HV_A 3.4	V15 5/ V111		
MCXE317	25, typ ⁶	54	NA	44	NA		
	25, max ⁷	62		54			
	85, typ ⁶	60		49			
	85, max ⁷	76.4		66.3			
	105, typ ⁶	65.8		55			
	105, max ⁷	94.4		84.4			
	125, typ ⁶	78.6		64.7			
	125, max ^{7, 8, 9}	120.7		110.5			
MCXE315 and MCXE316	25, typ ⁶	53.4	NA	43	NA		
	25, max ⁷	57.7		51.2			
	85, typ ⁶	56.8		50.8			
	85, max ⁷	73.2		66			
	105, typ ⁶	60.1		54			
	105, max ⁷	88.5		81.9			
	125, typ ⁶	66.3		60.2			
	125, max ^{7, 8,9}	115.3		109.3			

^{1.} Current numbers are for reduced configuration and may vary based on user configuration and silicon process variation.

- 2. See the configurations in Table 22.
- 3. IO current is not included. The actual current requirements for IOs will depend on the I/O configuration in the application.
- 4. RUN IDD @ VDD_HV_A includes Flash memory read current from the V25 voltage rail.
- 5. RUN IDD @ V15 includes Flash memory read current from the V11 voltage rail.
- 6. "typ" is indicative of the average current numbers at the nominal internally regulated V11 supply voltage, VDD_HV_A = 5.0V, VDD_HV_B = 5.0V, V15 = 1.5V, for the typical silicon process
- 7. "max" is indicative of the maximum current numbers at the maximum internally regulated V11 supply voltage (1.16 V), VDD_HV_A = 5.5V, VDD_HV_B = 5.5V, V15 = 1.65V, for the fast silicon proce
- 8. For the maximum allowable RUN current in an application, the junction temperature must be kept below the maximum specification, $T_J < 150$ °C, to avoid self-heating.
- 9. If the total power dissipation would cause the junction temperature to be exceeded when VDD_HV_A is at 5V, then VDD_HV_A should be limited to operate at 3.3V.

6.6 Operating mode

Table 21. STANDBY and low speed RUN configuration options

MODULE	STANDBY All OFF	STANDBY SIRC ON	STANDBY FIRC ON	BOOT Mode (OptionC ¹ , FIRC @24 MHz)	Low Speed RUN (OptionE ¹ , FIRC @ 3MHz)	FIRC Mode (OptionD ¹ , FIRC @48 MHz)
Core M7	OFF	OFF	OFF	24 MHz	3 MHz	48 MHz
ELE_HSEB	OFF	OFF	OFF	24 MHz	3 MHz	48 MHz
FIRC	OFF	OFF	24 MHz	24 MHz	3 MHz	48 MHz
FXOSC	OFF	OFF	OFF	OFF	OFF	OFF
SIRC	OFF	ON	OFF	ON	ON	ON
PLL	OFF	OFF	OFF	OFF	OFF	OFF
Flash	OFF	OFF	OFF	ON	ON	ON
eDMA	OFF	OFF	OFF	ON	ON	ON
FlexCAN	All OFF	All OFF	All OFF	All OFF	All OFF	All OFF
LPUART	All OFF	All OFF	All OFF	All OFF	All OFF	All OFF
LPSPI	All OFF	All OFF	All OFF	All OFF	All OFF	All OFF
LPI2C	All OFF	All OFF	All OFF	All OFF	All OFF	All OFF
EMAC/GMAC	OFF	OFF	OFF	OFF	OFF	OFF
eMIOS	All OFF	All OFF	All OFF	All OFF	All OFF	All OFF
SAR_ADC	All OFF	All OFF	All OFF	All OFF	All OFF	All OFF
LPCMP	All OFF	All OFF	All OFF	All OFF	All OFF	All OFF

1. See clocking use case examples in the Clocking chapter of the MCXE31 Reference Manual.

Table 22. RUN mode configuration options

MODULE	Min. Config. (OptionF ¹), PLL@80 MHz	Min. Config. (OptionB ¹), PLL@120 MHz	Min. Config. (OptionA ¹), PLL@160 MHz	Config. 1 Cortex M7 @160MHz	Config. 2 Cortex M7 @120MHz	Config. 35 Cortex M7 @80MHz
Core M7	80 MHz	120 MHz	160 MHz	160 MHz	120 MHz	80 MHz
ELE_HSEB ²	80 MHz	120 MHz	80 MHz	80 MHz	120 MHz	80 MHz
FIRC	ON	ON	ON	ON	ON	ON
FXOSC	ON	ON	ON	ON	ON	ON
SIRC	ON	ON	ON	ON	ON	ON
PLL	ON	ON	ON	ON	ON	ON
Flash	ON	ON	ON	ON	ON	ON
eDMA	ON	ON	ON	ON	ON	ON
FlexCAN ³	All OFF	All OFF	All OFF	2x	6x	1x
LPUART ⁴	All OFF	All OFF	All OFF	4x	8x	7x
LPSPI ⁵	All OFF	All OFF	All OFF	4x	4x	3x
LPI2C ⁶	All OFF	All OFF	All OFF	2x	2x	All OFF
EMAC/GMAC ⁷	OFF	OFF	OFF	OFF	OFF	OFF
SAI	OFF	OFF	OFF	OFF	OFF	OFF
QSPI	OFF	OFF	OFF	OFF	OFF	OFF
eMIOS ⁸	All OFF	All OFF	All OFF	3x	2x	2x
SAR_ADC ⁹	All OFF	All OFF	All OFF	3x	2x	2x
LPCMP ¹⁰	All OFF	All OFF	All OFF	2x	All OFF	All OFF

- 1. See clocking use case examples in the Clocking chapter of the MCXE31 Reference Manual.
- 2. ELE_HSEB: After start-up, the HSE core is in WFI.
- 3. FlexCAN0: Transmitting an 8-byte CAN-FD data frame at 5 Mbps, every 10 ms.
 - FlexCAN1: Transmitting a 64-byte CAN-FD data frame at 2 Mbps, every 20 ms.
 - FlexCAN2-5: Transmitting an 8-byte CAN data frame at 500 Kbps, every 20 ms.
- 4. LPUART0-15: Transmitting at 19200 bps, every 100ms.
- LPSPI0: Transmitting 32 bits at 20 Mbps (GPIO Fast pads), every 5 ms.
 - LPSPI1-5: Transmitting 32 bits at 1 Mbps, every 5 ms.
- 6. LPI2C0-1: Transmitting 3 bytes at 400 Kbps, every 100ms.
- 7. EMAC/GMAC: ON for MII interface.
- e eMIOS0: 6 channels in PWM mode @ 20 KHz.
 - eMIOS1-2: 8 channels in PWM mode @ 400 Hz.

- 9. SAR_ADC0: 16 channels at 400 Hz rate, BCTU triggered.
 - SAR_ADC1-2: 4 channels at 20 KHz rate, BCTU triggered.
- 10. LPCMP0: 8 channels enabled; LPCMP1-2: 4 channels enabled.

6.7 Cyclic wake-up current

The cyclic wake-up current is the calculated average current consumption during the periodic switching between RUN mode and STANDBY mode. This average current can be calculated with the following formula:

ICYCL = RUN Current According to Ratio + STANDBY Current According to Ratio

Where the Current According to Ratio value is calculated as follows:

Current According to Ratio = Supply Current × Ratio of Duration

As an example, the following data was obtained with an application that periodically (every 40ms) alternates between RUN mode, for approximately 200µs to scan several GPIO inputs (51 GPIOS), and spends the rest of the time in STANDBY mode.

Table 23. Cyclic wake-up current example

Chip	Device Operating Mode	Supply Current ¹ [µA]	Duration ² [ms]	Ratio of Duration ³	Current According to Ratio ⁴ [μΑ]	ICYCL - Average current ⁵ [µA]
MCXE31B	RUN	20000	0.2	0.005	100	159.7
	STANDBY	60	39.8	0.995	59.7	

- 1. The supply current is obtained through the measurements of the current during the corresponding operating mode.
- 2. The duration is defined by the application (how much time will the device spend in the according operating mode).
- 3. The ratio of duration is obtained by dividing the duration of the corresponding operating mode by the total duration of the application.
- 4. The current according to ratio is obtained by multiplying the supply current and the ratio of duration related to the proper operating mode.
- 5. The average current is calculated by the addition of each device operating mode's current according to ratio.

7 I/O parameters

7.1 GPIO DC electrical specifications, 3.3V Range (2.97V - 3.63V)

The leakage current on the GPIO pins is specified as a function of the pad type (Standard, Standard Plus, Medium, Fast, or GPI) and the number of Analog functions (CMP and ADC channels) multiplexed per pin.

For other devices, the "Analog Function Count" is defined from the number of CMP and ADC channels multiplexed to a given pin. This information can be obtained from the "Direct Signals" column in the IOMUX files attached to the Reference Manual. The "Analog Function Count" is shown in the Condition column of the following table.

Table 24. GPIO DC electrical specifications, 3.3V Range (2.97V - 3.63V)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
VIH	Input high level DC voltage threshold	0.70 x VDD_HV _A/B	_	VDD_HV _A/B + 0.3	V	VDD_HV_A/B = 3.3V	_
VIL	Input low level DC voltage threshold	VSS - 0.3	_	0.30 x VDD_HV _A/B	V	VDD_HV_A/B = 3.3V	_

Table continues on the next page...

MCXEP172M160FB0

Objective data sheet

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

Table 24. GPIO DC electrical specifications, 3.3V Range (2.97V - 3.63V)...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
WFRST	RESET Input Filtered pulse width ¹	_	_	33	ns	_	_
WNFRST	RESET Input not filtered pulse width ²	100	_	_	ns	_	_
ILKG_33_S0	3.3V input leakage current for Standard GPIO ³	-133	_	300	nA	Pins with Analog Function Count = 0	_
ILKG_33_S1	3.3V input leakage current for Standard GPIO ³	-545	_	445	nA	Pins with Analog Function Count = 1	_
ILKG_33_S2	3.3V input leakage current for Standard GPIO ³	-749	_	517	nA	Pins with Analog Function Count = 2, plus PTA12, PTD1	_
ILKG_33_S3	3.3V input leakage current for Standard GPIO ³	-1288	_	679	nA	Pins with Analog Function Count = 3, plus PTD0	_
ILKG_33_SP0	3.3V input leakage current for Standard Plus GPIO and RESET IO ³	-370	_	575	nA	Pins with Analog Function Count = 0	_
ILKG_33_SP1	3.3V input leakage current for Standard Plus GPIO and RESET IO ³	-660	_	659	nA	Pins with Analog Function Count = 1	_
ILKG_33_SP2	3.3V input leakage current for Standard Plus GPIO and RESET IO ³	-1094	_	794	nA	Pins with Analog Function Count = 2	_
ILKG_33_M0	3.3V GPIO input leakage current for Medium GPIO ³	-792	_	750	nA	Pins with Analog Function Count = 0	_
ILKG_33_M1	3.3V GPIO input leakage current for Medium GPIO ³	-989	_	824	nA	Pins with Analog Function Count = 1, plus PTC16, PTD5	_
ILKG_33_M2	3.3V GPIO input leakage current for Medium GPIO ³	-1233	_	1248	nA	Pins PTD6 and PTE8	_
ILKG_33_I	3.3V input leakage current for GPI ³	-120	_	120	nA	_	_
VHYS_33	Input hysteresis voltage	0.06 x VDD_HV _A/B	_	_	mV	Always Enabled, applies to MCXE315/ MCXE316/ MCXE317	_

Table continues on the next page...

Table 24. GPIO DC electrical specifications, 3.3V Range (2.97V - 3.63V)...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
						and MCXE31B devices.	
CIN	GPIO Input capacitance	2	4	6	pF	add 2pF for package/ parasitic	_
IPU_33	3.3V GPIO pull up/ down resistance	20	_	60	kΩ	pull up @ 0.3 x VDD_ HV_A/B, pull down @ 0.7 x VDD_HV_A/B	_
IOH_33_S	3.3V output high current for Standard GPIO ^{4,5}	1.0	_	_	mA	VOH >= VDD_HV_A/B - 0.7V	_
IOH_33_SP	3.3V output high current for Standard Plus GPIO and RESET IO ^{4,5}	1.5	_	_	mA	DSE = 0, VOH >= VDD_HV_A/B - 0.7V	_
IOH_33_M	3.3V output high current for Medium GPIO ^{4,5}	3	_	_	mA	DSE = 0, VOH >= VDD_HV_A/B - 0.7V	_
IOH_33_SP	3.3V output high current for Standard Plus GPIO and RESET IO ^{4,5}	3	_	_	mA	DSE = 1, VOH >= VDD_HV_A/B - 0.7V	_
IOH_33_M	3.3V output high current for Medium GPIO ^{4,5}	6	_	_	mA	DSE = 1, VOH >= VDD_HV_A/B - 0.7V	_
IOL_33_S	3.3V output low current for Standard GPIO ^{4,5}	1.0	_	_	mA	VOL <= 0.7V	_
IOL_33_SP	3.3V output low current for Standard Plus GPIO and RESET IO 4,5	1.5	_	_	mA	DSE =0, VOL <= 0.7V	_
IOL_33_M	3.3V output low current for Medium GPIO ^{4,5}	3.0	_	_	mA	DSE =0, VOL <= 0.7V	_
IOL_33_SP	3.3V output low current for Standard Plus GPIO and RESET IO ^{4,5}	3	_	_	mA	DSE =1, VOL <= 0.7V	_
IOL_33_M	3.3V output low current for Medium GPIO ^{4,5}	6	_	_	mA	DSE =1, VOL <= 0.7V	_

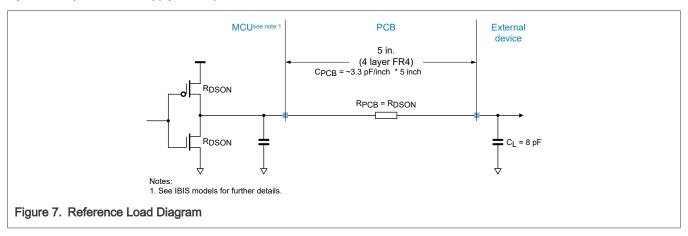

Table continues on the next page...

Table 24. GPIO DC electrical specifications, 3.3V Range (2.97V - 3.63V)...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
FMAX_33_S	3.3V maximum frequency for Standard GPIO ^{4,6}	_	_	10	MHz	2.9V - 3.6V CL(max) = 25pF	_
FMAX_33_SP	3.3V maximum frequency for Standard Plus GPIO ^{4,6}	_	_	25	MHz	2.9V - 3.6V CL (max) = 25pF	_
FMAX_33_M	3.3V maximum frequency for Medium GPIO ^{4,6}	_	_	50	MHz	2.9V - 3.6V CL (max) = 25pF	_
IOHT	Output high current total for all ports ⁷	_	_	100	mA	_	_

- 1. Maximum length of RESET pulse will be filtered by an internal filter on this pin.
- 2. Minimum length of RESET pulse, guaranteed not to be filtered by the internal filter.
- 3. A positive value is leakage flowing into pin with pin at VDD_HV_A/B (the GPIO supply level); a negative value is leakage flowing out the pin with the pin at ground.
- 4. GPIO output transition time information can be obtained from the device IBIS model. IBIS models are recommended for system level simulations, as discrete values for I/O transition times are not representative of the I/O pad behavior when connected to an actual transmission line load.
- I/O output current specifications are valid for the given reference load figure, and the constraints given in the Operating Conditions of this document.
- 6. I/O timing specifications are valid for the un-terminated 500hm transmission line reference load given in the figure below. A lumped 8pF load is assumed in addition to a 5 inch microstrip trace on standard FR4 with approximately 3.3pF/inch. For signals with frequency greater than 63MHz, a maximum 2 inch PCB trace is assumed. For best signal integrity, the series resistance in the transmission line should be matched closely to the selected output resistance (ROUT_*) of the I/O pad.
- 7. To determine total switching current on any I/O supply, current values per output pin should not be incrementally summed. I/O interfaces on the device are asynchronous to each other, so not all switching occurs at the same instant. Actual use case must be considered.

Hysteresis spec does not apply to fast pad

7.2 GPIO DC electrical specifications, 5.0V (4.5V - 5.5V)

The leakage current on the GPIO pins is specified as a function of the pad type (Standard, Standard Plus, Medium, Fast, or GPI) and the number of Analog functions (CMP and ADC channels) multiplexed per pin.

For other devices, the "Analog Function Count" is defined from the number of CMP and ADC channels multiplexed to a given pin. This information can be obtained from the "Direct Signals" column in the IOMUX files attached to the Reference Manual. The "Analog Function Count" is shown in the Condition column of the following table.

Table 25. GPIO DC electrical specifications, 5.0V (4.5V - 5.5V)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
VIH	Input high level DC voltage threshold	0.65 x VDD_HV _A/B	_	VDD_HV _A/B + 0.3	V	VDD_HV_A/B = 5.0V	_
VIL	Input low level DC voltage threshold	VSS - 0.3	_	0.35 x VDD_HV _A/B	V	VDD_HV_A/B = 5.0V	_
WFRST	RESET Input filtered pulse width ¹	_	_	33	ns	_	_
WNFRST	RESET Input not filtered pulse width ²	100	_	_	ns	_	_
ILKG_50_S0	5.0V input leakage current for Standard GPIO ³	-193	_	389	nA	Pins with Analog Function Count = 0	_
ILKG_50_S1	5.0V input leakage current for Standard GPIO ³	-691	_	580	nA	Pins with Analog Function Count = 1	_
ILKG_50_S2	5.0V input leakage current for Standard GPIO ³	-947	_	673	nA	Pins with Analog Function Count = 2, plus PTA12, PTD1	_
ILKG_50_S3	5.0V input leakage current for Standard GPIO ³	-1614	_	879	nA	Pins with Analog Function Count = 3, plus PTD0	_
ILKG_50_SP0	5.0V input leakage current for Standard Plus GPIO and RESET IO ³	-553	_	736	nA	Pins with Analog Function Count = 0	_
ILKG_50_SP1	5.0V input leakage current for Standard Plus GPIO and RESET IO ³	-855	_	846	nA	Pins with Analog Function Count = 1	_
ILKG_50_SP2	5.0V input leakage current for Standard Plus GPIO and RESET IO ³	-1389	_	1017	nA	Pins with Analog Function Count = 2	_
ILKG_50_M0	5.0V input leakage current for Medium GPIO ³	-1036	_	951	nA	Pins with Analog Function Count = 0	_

Table continues on the next page...

Table 25. GPIO DC electrical specifications, 5.0V (4.5V - 5.5V)...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
ILKG_50_M1	5.0V input leakage current for Medium GPIO ³	-1284	_	1057	nA	Pins with Analog Function Count = 1, plus PTC16, PTD5	_
ILKG_50_M2	5.0V input leakage current for Medium GPIO ³	-1518	_	1298	nA	Pins PTD6 and PTE8	_
ILKG_50_I	5.0V input leakage current for GPI ³	-150	_	150	nA	_	_
VHYS_50	input hysteresis voltage	0.06 x VDD_HV _A/B	_	_	mV	Always enabled, Applies to MCXE315/ MCXE316/ MCXE317 and MCXE31B devices.	_
CIN	GPIO Input capacitance	2	4	6	pF	add 2pF for package/ parasitic	_
IPU_50	5.0V GPIO pull up/ down resistance	20	_	55	kΩ	pull up @ 0.3 * VDD_ HV_*, pull down @ 0.7 * VDD_HV_*	_
IOH_50_S	5.0V output high current Standard GPIO ^{4,5}	1.6	_	_	mA	VOH >= VDD_HV_A/B - 0.7V	_
IOH_50_SP	5.0V output high current Standard Plus GPIO and RESET IO 4,5	2.5	_	_	mA	DSE = 0, VOH >= VDD_HV_A/B - 0.7V	_
IOH_50_M	5.0V output high current for Medium GPIO ^{4,5}	4.0	_	_	mA	DSE = 0, VOH >= VDD_HV_A/B - 0.7V	_
IOH_50_SP	5.0V output high current for Standard Plus GPIO and RESET IO ^{4,5}	5.0	_	_	mA	DSE = 1, VOH >= VDD_HV_A/B - 0.7V	_
IOH_50_M	5.0V output high current for Medium GPIO ^{4,5}	8.0	_	_	mA	DSE = 1, VOH >= VDD_HV_A/B - 0.7V	_
IOL_50_S	5.0V output low current for Standard GPIO ^{4,5}	1.6	_	_	mA	VOL <= 0.7V	_
IOL_50_SP	5.0V output low current for Standard Plus GPIO and RESET IO 4,5	2.5	_	_	mA	DSE =0, VOL <= 0.7V	_

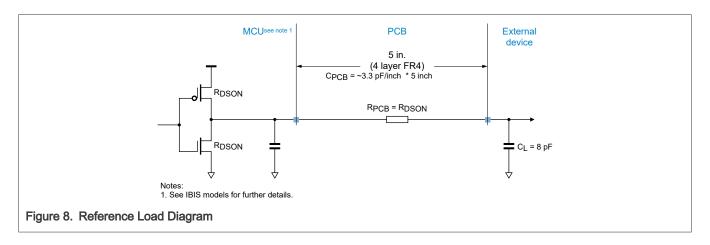

Table continues on the next page...

Table 25. GPIO DC electrical specifications, 5.0V (4.5V - 5.5V)...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
IOL_50_M	5.0V output low current for Medium GPIO ^{4,5}	4.0	_	_	mA	DSE =0, VOL <= 0.7V	_
IOL_50_SP	5.0V output low current for Standard Plus GPIO and RESET IO 4,5	5.0	_	_	mA	DSE =1, VOL <= 0.7V	_
IOL_50_M	5.0V output low current for medium GPIO ^{4,5}	8.0	_	_	mA	DSE =1, VOL <= 0.7V	_
FMAX_50_S	5.0V maximum frequency for Standard GPIO ^{4,6}	_	_	10	MHz	3.6V - 5.5V CL (max) = 25pF	_
FMAX_50_SP	5.0V maximum frequency for Standard Plus GPIO ^{4,6}	_	_	25	MHz	3.6V - 5.5V CL (max) = 25pF	_
FMAX_50_M	5.0V maximum frequency for Medium GPIO ^{4,6}	_	_	25	MHz	3.6V - 5.5V CL (max) = 25pF	_
IOHT	Output high current total for all ports ⁷	_	_	100	mA	_	_

- 1. Maximum length of RESET pulse will be filtered by an internal filter on this pin.
- 2. Minimum length of RESET pulse, guaranteed not to be filtered by the internal filter.
- 3. A positive value is leakage flowing into pin with pin at VDD_HV_A/B (the GPIO supply level); a negative value is leakage flowing out the pin with the pin at ground.
- 4. GPIO output transition time information can be obtained from the device IBIS model. IBIS models are recommended for system level simulations, as discrete values for I/O transition times are not representative of the I/O pad behavior when connected to an actual transmission line load.
- 5. I/O output current specifications are valid for the given reference load figure, and the constraints given in the Operating Conditions of this document.
- 6. I/O timing specifications are valid for the un-terminated 50ohm transmission line reference load given in the figure below. A lumped 8pF load is assumed in addition to a 5 inch microstrip trace on standard FR4 with approximately 3.3pF/inch.. For best signal integrity, the series resistance in the transmission line should be matched closely to the selected output resistance (ROUT_*) of the I/O pad.
- 7. To determine total switching current on any I/O supply, current values per output pin should not be incrementally summed. I/O interfaces on the device are asynchronous to each other, so not all switching occurs at the same instant. Actual use case must be considered.

Hysteresis spec does not apply to fast pad

7.3 5.0V (4.5V - 5.5V) GPIO Output AC Specification

Table 26. 5.0V (4.5V - 5.5V) GPIO Output AC Specification

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
TR_TF_50_S	5.0V Standard GPIO rise/fall time	5	_	21	ns	CL (max) = 25pF	_
TR_TF_50_S	5.0V Standard GPIO rise/fall time	8.5	_	31	ns	CL (max) = 50pF	_
TR_TF_50_SP	5.0V Standard Plus GPIO rise/fall time	3	_	13.2	ns	DSE=0 CL (max) = 25pF	_
TR_TF_50_SP	5.0V Standard Plus GPIO rise/fall time	1	_	7.1	ns	DSE=1 CL (max) = 25pF	_
TR_TF_50_SP	5.0V Standard Plus GPIO rise/fall time	6.4	_	18.8	ns	DSE=0 CL (max) = 50pF	_
TR_TF_50_SP	5.0V Standard Plus GPIO rise/fall time	3.4	_	11	ns	DSE=1 CL (max) =50pF	_
TR_TF_50_M	5.0V Medium GPIO rise/fall time	1.8	_	8.2	ns	DSE=0, SRE=0 CL (max) = 25pF	_
TR_TF_50_M	5.0V Medium GPIO rise/fall time	2.5	_	9.8	ns	DSE=0, SRE=1 CL (max) = 25pF	_
TR_TF_50_M	5.0V Medium GPIO rise/fall time	0.7	_	4.5	ns	DSE=1, SRE=0 CL (max) = 25pF	_
TR_TF_50_M	5.0V Medium GPIO rise/fall time	1.8	_	7.2	ns	DSE=1, SRE=1 CL (max) = 25pF	_
TR_TF_50_M	5.0V Medium GPIO rise/fall time	3.95	_	13.2	ns	DSE=0, SRE=0 CL (max) = 50pF	
TR_TF_50_M	5.0V Medium GPIO rise/fall time	4.3	_	13.8	ns	DSE=0, SRE=1 CL (max) = 50pF	_

Table continues on the next page...

Table 26. 5.0V (4.5V - 5.5V) GPIO Output AC Specification...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
TR_TF_50_M	5.0V Medium GPIO rise/fall time	1.6	_	7.1	ns	DSE=1, SRE=0 CL (max) = 50pF	_
TR_TF_50_M	5.0V Medium GPIO rise/fall time	2.7	_	9.6	ns	DSE=1, SRE=1 CL (max) = 50pF	_

7.4 3.3V (2.97V - 3.63V) GPIO Output AC Specification

Table 27. 3.3V (2.97V - 3.63V) GPIO Output AC Specification

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
TR_TF_33_S	3.3V Standard GPIO rise/fall time	5	_	28	ns	CL (max) = 25pF	_
TR_TF_33_S	3.3V Standard GPIO rise/fall time	9.5	_	43	ns	CL (max) = 50pF	_
TR_TF_33_SP	3.3V Standard Plus GPIO rise/fall time	4	_	17.5	ns	DSE=0 CL (max) = 25pF	_
TR_TF_33_SP	3.3V Standard Plus GPIO rise/fall time	1.9	_	10	ns	DSE=1 CL (max) = 25pF	_
TR_TF_33_SP	3.3V Standard Plus GPIO rise/fall time	7.5	_	27	ns	DSE=0 CL (max) = 50pF	_
TR_TF_33_SP	3.3V Standard Plus GPIO rise/fall time	3.5	_	15	ns	DSE=1 CL (max) = 50pF	_
TR_TF_33_M	3.3V Medium GPIO rise/fall time	2.2	_	12.3	ns	DSE=0, SRE=0 CL (max) = 25pF	_
TR_TF_33_M	3.3V Medium GPIO rise/fall time	3.0	_	14	ns	DSE=0, SRE=1 CL (max) = 25pF	_
TR_TF_33_M	3.3V Medium GPIO rise/fall time	0.8	_	6.6	ns	DSE=1, SRE=0 CL (max) = 25pF	_
TR_TF_33_M	3.3V Medium GPIO rise/fall time	2.4	_	10.5	ns	DSE=1, SRE=1 CL (max) = 25pF	_
TR_TF_33_M	3.3V Medium GPIO rise/fall time	4.5	_	17.3	ns	DSE=0, SRE=0 CL (max) = 50pF	_
TR_TF_33_M	3.3V Medium GPIO rise/fall time	5	_	19.8	ns	DSE=0, SRE=1 CL (max) = 50pF	_
TR_TF_33_M	3.3V Medium GPIO rise/fall time	2.2	_	10	ns	DSE=1, SRE=0 CL (max) = 50pF	
TR_TF_33_M	3.3V Medium GPIO rise/fall time	3.6	_	13.9	ns	DSE=1, SRE=1 CL (max) = 50pF	_

8 Glitch Filter

The glitch filter parameters in the following table apply to the filters of WKPU pins and TRGMUX inputs 60-63.

Table 28. Glitch Filter

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
TFILT	Glitch filter max filtered pulse width ^{1,2,3}	_	_	20	ns	_	_
TUNFILT	Glitch filter min unfiltered pulse width ^{1,3,4}	400	_	_	ns	_	_

- 1. Pulses in between the max filtered and min unfiltered may or may not be passed through.
- 2. Pulses shorter than defined by the maximum value are guaranteed to be filtered (not passed).
- 3. An input signal pulse is defined by the duration between the input signal's crossing of a Vil/Vih threshold voltage level, and the next crossing of the opposite level.
- 4. Pulses larger than defined by the minimum value are guaranteed to not be filtered (passed).

9 Flash memory specification

9.1 Flash memory program and erase specifications

Table 29. Flash memory program and erase specifications

Symbol	Characteristic ¹	Typ ²	Factory Programmi	ng ³ , ⁴	Field Updat	Unit		
			Initial Max Ir		Typical End of Life ⁵	Lifetime	Max ⁶	
			20°C ≤T _A ≤30°C	-40°C ≤T _J ≤150°C	-40°C ≤T _J ≤150°C	≤ 1,000 cycles	≤ 100,000 cycles	
t _{dwpgm}	Doubleword (64 bits) program time	102	122	129	111	150		μs
t _{ppgm}	Page (256 bits) program time	142	171	180	157	200		μs
t _{qppgm}	Quad-page (1024 bits) program time	314	377	396	341	450		μs
t _{8kpgm}	8 KB Sector program time	20	24	26	22	30		ms
t _{8kers}	8 KB Sector erase time	4.8	8.5	10.6	6.5	30		ms
t _{256kbers}	256KB Block erase time	22.8	27.4	28.8	24.4	40	_	ms
t _{512kbers}	512KB Block erase time	25.4	30.5	32.1	27.9	45	_	ms
t _{1mbers}	1MB Block erase time	30.6	36.8	38.7	33.6	50	_	ms

Table continues on the next page...

Table 29. Flash memory program and erase specifications...continued

Symbol	Characteristic ¹	Typ ²	Factory Programming ³ , ⁴		Field Update			
			Initial Max	Initial Max, Full Temp	Typical End of Life ⁵	Lifetime I	Max ⁶	
			20°C ≤T _A ≤30°C	-40°C ≤T _J ≤150°C	-40°C ≤T _J ≤150°C	≤ 1,000 cycles	≤ 100,000 cycles	
t _{2mbers}	2MB Block erase time	41.1	49.3	51.8	45.2	60	_	ms

- Program times are actual hardware programming times and do not include software overhead. Sector program times assume quad-page programming.
- 2. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25 °C. Typical program and erase times may be used for throughput calculations.
- 3. Conditions: ≤ 25 cycles, nominal voltage.
- 4. Plant Programing times provide guidance for timeout limits used in the factory.
- 5. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations.
- 6. Conditions: -40°C ≤T_J ≤150°C, full spec voltage.

9.2 Flash memory Array Integrity and Margin Read specifications

Table 30. Flash memory Array Integrity and Margin Read specifications

Symbol	Characteristic	Min	Typical	Max ^{1 2}	Units ³
t _{ai256kseq}	Array Integrity time and Margin Read time for sequential sequence on 256KB block.	_	_	8192 x Tperiod x Nread (plus 40uS adder required if User Margin Read)	_
t _{ai512kseq}	Array Integrity time and Margin Read time for sequential sequence on 512KB block.	_	_	16384 x Tperiod x Nread (plus 40uS adder required if User Margin Read)	_
t _{ai1mseq}	Array Integrity time and Margin Read time for sequential sequence on 1MB block.	_	_	32768 x Tperiod x Nread (plus 40uS adder required if User Margin Read)	_
t _{ai2mseq}	Array Integrity time and Margin Read time for sequential sequence on 2MB block.	_	_	65536 x Tperiod x Nread (plus 40uS adder required if User Margin Read)	_
t _{ai256kprop}	Array Integrity time for proprietary sequence on 256KB block.	_	_	106496 x Tperiod x Nread	_
t _{ai512kprop}	Array Integrity time for proprietary sequence on 512KB block.	_	_	229376 x Tperiod x Nread	_

Table continues on the next page...

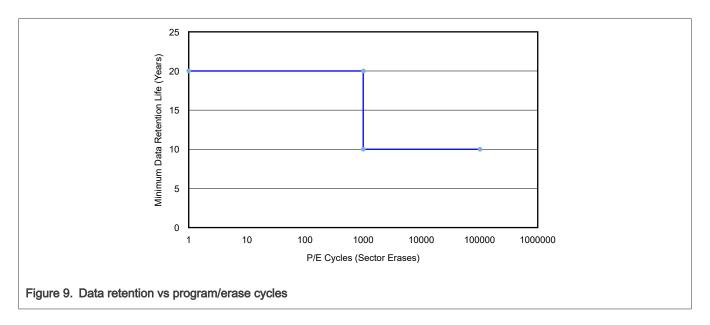
Table 30. Flash memory Array Integrity and Margin Read specifications...continued

Symbol	Characteristic	Min	Typical	Max ^{1 2}	Units ³
t _{ai1mprop}	Array Integrity time for proprietary sequence on 1MB block.	_	_	491520 x Tperiod x Nread	_
t _{ai2mprop}	Array Integrity time for proprietary sequence on 2MB block.	_	_	1048576 x Tperiod x Nread	_

- 1. Array Integrity times need to be calculated and is dependent on system frequency and number of clocks per read. The equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and Nread (which is the number of clocks required for read, including single read, dual read, quad read contribution. Thus for a read setup that requires 6 clocks to read Nread would equal 6.
- 2. Array Integrity times are actual hardware execution times and do not include software overhead or system code execution overhead.
- 3. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the equation, the results of the equation are also unit accurate.

9.3 Flash memory module life specifications

Table 31. Flash memory module life specifications


Symbol	Characteristic	Conditions	Min	Typical	Units
Array P/E cycles	Number of program/erase cycles per block for 256 KB and 512 KB blocks using Sector Erase.	_	100,000	_	P/E cycles
	Number of program/erase cycles per block for 1 MB and 2 MB blocks using Sector Erase.	_	1,000	_	P/E cycles
	Number of program/erase cycles per block using Block Erase ¹	_	25	_	P/E cycles
Data retention	Minimum data retention.	Blocks with 0 - 1,000 P/E cycles.	20	_	Years
		Blocks with 100,000 P/E cycles.	10	_	Years

^{1.} Program and erase supported for factory conditions. Nominal supply values and operation at 25°C.

9.3.1 Data retention vs program/erase cycles

Graphically, Data Retention versus Program/Erase Cycles can be represented by the following figure.

The spec window represents qualified limits.

9.4 Flash memory AC timing specifications

Table 32. Flash memory AC timing specifications

Symbol	Characteristic	Min	Typical	Max	Units
t _{done}	Time from 0 to 1 transition on the MCR[EHV] bit initiating a program/erase until the MCR[DONE] bit is cleared.	_	_	5	ns
t _{dones}	Time from 1 to 0 transition on the MCR[EHV] bit aborting a program/erase until the MCR[DONE] bit is set to a 1.	5 plus four system clock periods	_	22 plus four system clock periods ¹	μs
t _{drcv}	Time to recover once exiting low power mode.	14 plus seven system clock periods ²	17.5 plus seven system clock periods	21 plus seven system clock periods	μs
t _{aistart}	Time from 0 to 1 transition of UT0[AIE] initiating a Margin Read or Array Integrity until the UT0[AID] bit is cleared. This time also applies to the resuming from a suspend or breakpoint by clearing UT0[AISUS] or clearing UT0[NAIBP]	_	_	5	ns
t _{aistop}	Time from 1 to 0 transition of UT0[AIE] initiating an Array Integrity abort until the UT0[AID] bit is set. This time also applies to the UT0[AISUS] to UT0[AID] setting in the event of a Array Integrity suspend request.	_	_	50 system clock periods	ns
t _{mrstop}	Time from 1 to 0 transition of UT0[AIE] initiating a Margin Read abort until the UT0[AID] bit is set. This time also applies to the UT0[AISUS] to UT0[AID] setting in the event of a Margin Read suspend request.	_	_	26 plus fifteen system clock periods	μѕ

- 1. For Block Erase, Tdones times may be 3x max spec.
- 2. In extreme cases (1 block configurations) Tdrcv min may be faster (12uS plus seven system clocks)

9.5 Flash memory read timing parameters

Table 33. Flash Read Wait State Settings MCXE315/MCXE316/MCXE317/MCXE31B

Flash Frequency	RWSC setting
250 KHz < Freq ≤ 66 MHz	1
66 MHz < Freq ≤ 100 MHz	2
100 MHz < Freq ≤ 133 MHz	3
133 MHz < Freq ≤ 167 MHz	4

10 Analog modules

10.1 SAR ADC

All below specs are applicable only when one ADC instance is in operation and averaging is used or multiple ADC instances are operational at the same time but sampling different channels. Best performance can be achieved if only one ADC is operational at a time sampling one channel

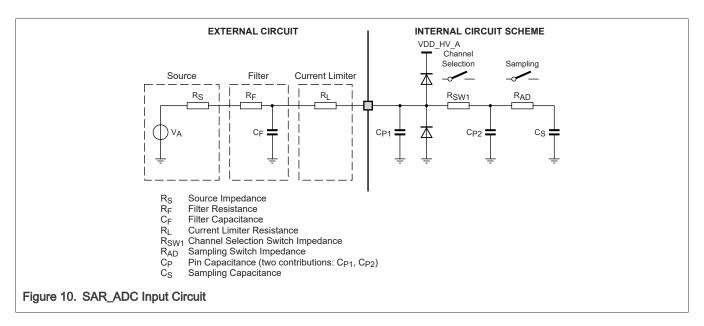
Table 34. SAR_ADC

Symbol	Description	Min	Тур	Max	Unit	Condition
VDD_HV_A	ADC Supply Voltage ¹	2.97	_	5.5	V	_
DVREFL	VSS / VREFL Voltage Difference ²	-100	_	100	mV	_
VAD_INPUT	ADC Input Voltage ³	VREFL	_	VREFH	V	_
fAD_CK	ADC Clock Frequency (MCXE315/MCXE316 and MCXE317)	10	_	120	MHz	_
fAD_CK	ADC Clock Frequency (MCXE31B	10	_	80	MHz	_
tSAMPLE	ADC Input Sampling Time	275	_	_	ns	_
tCONV	ADC Total Conversion Time	1	_	_	us	12-bit result
tCONV	ADC Total Conversion Time	0.9	_	_	us	10-bit result
CAD_INPUT	ADC Input Capacitance	_	_	13.8	pF	ADC component plus pad capacitance (~2pF)
RAD_INPUT	ADC Input Resistance	_	_	4.6	ΚΩ	ADC + mux+SOC routing
RS	Source Impedance, precision channels	_	20	_	Ω	_

Table continues on the next page...

Table 34. SAR_ADC...continued

Symbol	Description	Min	Тур	Max	Unit	Condition
RS	Source Impedance, standard channels	_	20	_	Ω	_
TUE	ADC Total Unadjusted Error ^{4,5}	_	+/-4	+/-6	LSB	without adjacent pin current injection
TUE	ADC Total Unadjusted Error ⁵	_	+/-4	+/-8	LSB	with up to +/-3mA of current injection on adjacent pins
IAD_REF	Current Consumption on ADC Reference pin, VREFH.	_	_	200	uA	Per ADC for dedicated or shared reference pins
IDDA	Current Consumption on ADC Supply, VDD_HV_A	_	2.1	_	mA	Current consumption per ADC module, ADC enabled and converting
CS	Sampling Capacitance	6.4 (gain=0) 9.72 pF(gain=m ax)	7.36 (gain=0) 11.12 pF(gain=m ax)	8.32 (gain=0) 12.52 (gain=max)	pF	all channels
RAD	Sampling Switch Impedance	80	170	520	Ohm	all channels
CP1	Pin capacitance	1.42	_	5.30	pF	all channels
CP1	Pin capacitance	1.42	_	4.38	pF	Precision channels
CP1	Pin capacitance	1.61	_	5.30	pF	Standard channels
CP2	Analog Bus Capacitance	0.32	_	4.18	pF	all channels
CP2	Analog Bus Capacitance	0.32	_	1.42	pF	Precision channels
CP2	Analog Bus Capacitance	0.497	_	4.18	pF	Standard channels
RSW1	Channel selection Switch impedance	65.9	_	1410	Ohm	all channels
RSW1	Channel selection Switch impedance	65.9	_	712	Ohm	Precision channels
RSW1	Channel selection Switch impedance	65.9	_	1410	Ohm	Standard channels


Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR_ADC.

^{2.} VSS and VREFL should be shorted on PCB. 100mV difference between VSS and VREFL is for transient only (not for DC).

^{3.} This is ADC Input range for ADC accuracy guaranteed in this input range only. For SoC Pin capability, see Operation Condition Section.

^{4.} Spec valid if potential difference between VDD_HV_A and VREFH should follow VDD_HV_A +0.1V >=VREFH >= VDD_HV_A -1.5V

^{5.} TUE spec for precision and standard channels is based on 12-bit level resolution.

10.2 Supply Diagnosis

The table below gives the specification for the on die supply diagnosis.

Table 35. Supply Diagnosis

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
AN_ACC	Offset to internally monitored supply at ADC input 1,2,3	-5	0	5	%	_	_
AN_T_on	Switching time from closed (OFF) to conducting (ON) ¹	_	2.5	12	ns	_	_
AN_TADCSA	Required ADC sampling time ²	1.2	_	_	μs	_	_

- These specs will have degraded performance when used in extended supply voltage operation range, i.e. normal supply voltage range specification is exceeded.
- 2. Required ADC sampling time specified by parameter AN_TADCSA needs to be used at the ADC conversion to guarantee the specified accuracy. A smaller sampling time leads to a less accurate result.
- 3. If V15 > VDD_HV_A +100mV then the V15 measurement via anamux may be imprecise.

10.3 Low Power Comparator (LPCMP)

Table 36. Low Power Comparator (LPCMP)

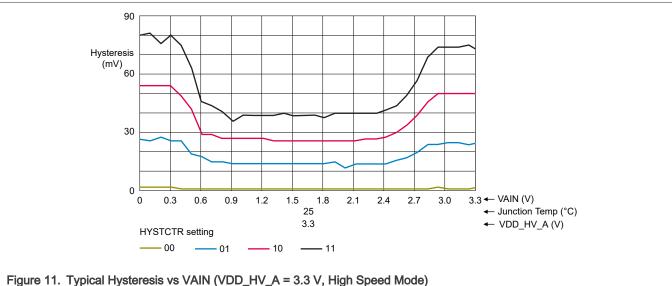
Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
idda(IDHSS)	vdda Supply Current, High Speed Mode ^{1,2}	_	240	_	uA	_	_

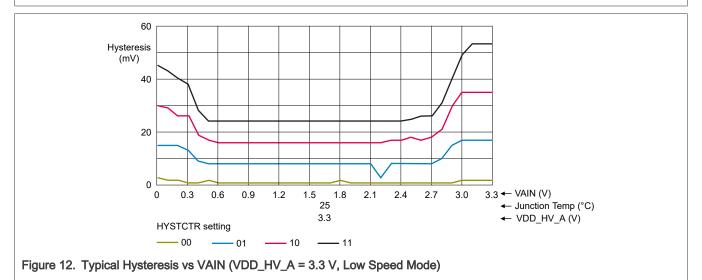
Table continues on the next page...

Table 36. Low Power Comparator (LPCMP)...continued

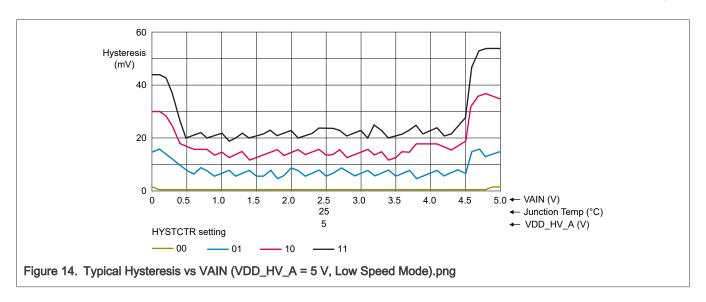
Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
idda(IDLSS)	vdda Supply Current, Low Speed Mode ^{1,2}	_	17	_	uA	_	_
idda(IDHSS)	vdda Supply Current, high speed mode, DAC only ²	_	10	_	uA	_	_
idda_lkg	vdda Supply Current, module disabled ²	_	2	_	nA	vdda=5.5V, T=25C	_
TDHSB	Propagation Delay, High Speed Mode ³	_	_	200	ns	_	_
TDLSB	Propagation Delay, Low Speed mode ³	_	_	2	us	_	_
TDHSS	Propagation Delay, High Speed Mode ⁴	_	_	400	ns	_	_
TDLSS	Propagation Delay, Low Speed mode ⁴	_	_	5	us	_	_
TIDHS	Initialization Delay, High Speed Mode ⁵	_	_	3	us	_	_
TIDLS	Initialization Delay, Low Speed mode ⁵	_	_	30	us	_	_
VAIO	Analog Input Offset Voltage, High Speed Mode	-25	+/-1	25	mV	_	_
VAIO	Analog Input Offset Voltage, Low Speed mode	-40	+ /- 5	40	mV	_	_
VAHYST0	Analog Comparator Hysteresis, High Speed Mode	_	0	_	mV	HYSTCTR[1:0]= 2'b00	_
VAHYST1	Analog Comparator Hysteresis, High Speed Mode	_	14	41	mV	HYSTCTR[1:0]= 2'b01	_
VAHYST2	Analog Comparator Hysteresis, High Speed Mode	_	27	76	mV	HYSTCTR[1:0]= 2'b10	_
VAHYST3	Analog Comparator Hysteresis, High Speed Mode	_	40	111	mV	HYSTCTR[1:0]= 2'b11	_

Table continues on the next page...


Table 36. Low Power Comparator (LPCMP)...continued


Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
VAHYST0	Analog Comparator Hysteresis, Low Speed mode	_	0	_	mV	HYSTCTR[1:0]= 2'b00	_
VAHYST1	Analog Comparator Hysteresis, Low Speed mode	_	8	60	mV	HYSTCTR[1:0]= 2'b01	_
VAHYST2	Analog Comparator Hysteresis, Low Speed mode	_	15	113	mV	HYSTCTR[1:0]= 2'b10	_
VAHYST3	Analog Comparator Hysteresis, Low Speed mode	_	23	165	mV	HYSTCTR[1:0]= 2'b11	_
INL	DAC integral linearity ^{2,6,7}	-1	_	1	LSB	vrefh_cmp = vdda, vrefl_cmp = vss	_
INL	DAC integral linearity ^{2,6,7}	-1.5	_	1.5	LSB	vrefh_cmp < vdda	_
DNL	DAC differential linearity ^{2,6}	-1	_	1	LSB	vrefh_cmp = vdda, vrefl_cmp = vss	_
DNL	DAC differential linearity ^{2,6}	-1.5	_	1.5	LSB	vrefh_cmp < vdda	_
tDDAC	DAC Initialization time	_	_	30	us	_	_
VAIN	Analog input voltage	0	_	VDDA	V	_	_

- 1. Difference at input > 200mV
- 2. vdda is comparator HV supply and internally shorted to VDD_HV_A pin. vss is comparator ground
- 3. Applied +/- (100 mV + VAHYST0/1/2/3 + max. of VAIO) around switch point
- 4. Applied +/- (30 mV + VAHYST0/1/2/3 + max. of VAIO) around switch point
- 5. Applied \pm (100 mV + VAHYST0/1/2/3).
- 6. 1 LSB = (vrefh_cmp vrefl_cmp) /256. vrefh_cmp and vrefl_cmp are comparator reference high and low
- 7. Calculation method used: Linear Regression Least Square Method


For Comparator IN signals adjacent to VDD_HV_A/VDD_HV_B/VSS or XTAL/EXTAL or switching pins cross coupling may happen and hence hysteresis settings can be used to obtain the desired Comparator performance. Additionally an external capacitor to ground (1nF) should be used to filter noise on input signal. Also source drive should not be weak (Signal with <50K pull up/down is recommended).

For devices where the VDD_HV_B domain is present, LPCMP0 channels must only be selected/enabled when VDD_HV_A >= VDD_HV_B. These channels must be disabled when VDD_HV_A goes below VDD_HV_B.

90 Hysteresis /ste. (mV) 60 30 0 5.0 ← VAIN (V) 2.5 0.5 2.0 3.0 4.0 4.5 3.5 ← Junction Temp (°C) 25 ← VDD_HV_A (V) HYSTCTR setting --- 00 -- 01 ----- 10 ------ 11 Figure 13. Typical Hysteresis vs VAIN (VDD_HV_A = 5 V, High Speed Mode).png

10.4 Temperature Sensor

The table below gives the specification for the MCU on-die temperature sensor.

Table 37. Temperature Sensor

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
TS_TJ	Junction temperature monitoring range	-40	_	150	°C	_	_
TS_IV25	ON state current consumption on V25	_	400	_	μΑ	ETS_EN=1	_
TS_ACC1	Temperature output error at circuit output (Voltage) 1,2,3	-5	0	+5	°C	100 °C < Tj <= 150 °C	_
TS_ACC2	Temperature output error at circuit output (Voltage) 1,2,3	-10	0	+10	°C	-40 °C <= Tj <=100 °C	_
TS_TSTART	Circuit start up time	_	4	30	μs	_	_
TS_TADCSA	Required ADC sampling time ¹	1.2	_	_	μs	_	_

^{1.} Required ADC sampling time specified by parameter TS_TADCSA needs to be used at the ADC conversion to guarantee the specified accuracy. A smaller sampling time leads to a less accurate result.

3. The error caused by ADC conversion and provided temperature calculation formula is not included.

^{2.} Note: The temperature sensor measures the junction temperature Tj at the location where it is placed on die. The local Tj is modulated by current and previous active state of the circuit elements on die.

11 Clocking modules

11.1 FIRC

Table 38. FIRC

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
fFIRC	FIRC nominal Frequency	_	48	_	MHz	_	_
FACC	FIRC Frequency deviation across process, voltage, and temperature after trimming	-5	_	5	%	_	_
TSTART	Startup Time ¹	_	10	25	us	_	_

^{1.} Startup time is for reference only.

11.2 SIRC

Table 39. SIRC

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
fSIRC	SIRC nominal Frequency	_	32	_	KHz	_	_
fSIRC_ACC	SIRC Frequency deviation across process, voltage, and temperature after trimming	-10	_	10	%	_	_
TSIRC_start	SIRC Startup Time 1	_	_	3	ms	_	_
TSIRC_DC	SIRC duty cycle	30	_	70	%	_	_

^{1.} Startup time is for information only.

11.3 PLL

Jitter values specified in this table are applicable for FXOSC reference clock input only.

Table 40. PLL

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
FPLL_in	PLL input frequency	8	_	40	MHz	This is the frequency after the Reference Divider within the PLL	_

Table continues on the next page...

Table 40. PLL...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
FPLL_out	PLL output frequency (PLL_PHIn_CLK)	25	_	320	MHz	_	_
FPLL_vcoRange	VCO Frequency range	640	_	1280	MHz	_	_
FPLL_DS	Modulation Depth (down spread)	-0.5	_	-3	%	_	_
FPLL_FM	Modulation frequency	_	_	32	KHz	_	_
TPLL_start	PLL lock time	_	_	1	ms	_	_
JPLL_cyc	PLL period jitter (pk-pk) 1,2,3	_	_	353	ps	FPLL_out = 120MHz, Integer Mode	_
JPLL_cyc	PLL period jitter (pk-pk) 1,2,3	_	_	853	ps	FPLL_out = 120MHz, Fractional Mode	_
JPLL_acc	PLL accumulated jitter (pk-pk) 1,2,3	_	_	840	ps	FPLL_out = 120MHz, Integer Mode	
JPLL_acc	PLL accumulated jitter (pk-pk) 1,2,3	_	_	1680	ps	FPLL_out = 120MHz, Fractional Mode	_

^{1.} For SSCG, jitter due to systematic modulation needs to be added as per applied modulation. Accumulated jitter specification is not valid with SSCG

11.4 FXOSC

Table 41. FXOSC

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
FREQ_BYPASS	Input clock frequency in bypass mode ¹	_	_	50	MHz	_	_
TRF_BYPASS	Input clock rise/fall time in bypass mode ¹	_	_	5	ns	_	_
CLKIN_DUTY_ BYPASS	Input clock duty cycle in bypass mode ¹	47.5	_	52.5	%	_	_
FXOSC_CLK	output clock frequency in crystal mode	8	_	40	MHz	_	_

Table continues on the next page...

^{2.} Jitter numbers calculated by extrapolating RMS jitter numbers to \pm 7 sigma .

^{3.} Jitter numbers are valid only at IP boundary and does not include any degradation due to IO pad for clock measurement.

Table 41. FXOSC...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
TFXOSC	Fxosc start up time (ALC enabled) ²	_	_	2	ms	_	_
IFXOSC	Oscillator Analog circuit supply current, V25 supply (ALC enable)	_	_	1	mA	using 8, 16 or 40 MHz crystal	_
IFXOSC	Oscillator Analog circuit supply current, V25 supply (ALC disabled)	_	_	2.7	mA	using 8, 16 or 40 MHz crystal	_
EXTAL_SWING_ PP	Peak-to-peak voltage swing on EXTAL pin in crystal oscillator mode (ALC enabled)	0.3	_	1.4	V	_	_
EXTAL_SWING_ PP	Peak-to-peak voltage swing on EXTAL pin in crystal oscillator mode (ALC disabled) ³	1.2	_	2.75	V	_	_
CLKIN_VIL_ EXTAL_BYPASS	Input clock low level in bypass mode ⁴	0	_	vref-1	V	vref=0.5*VDD_HV_A	_
CLKIN_VIH_ EXTAL_BYPASS	Input clock high level in bypass mode ⁴	vref+1	_	VDD_HV _A	V	vref=0.5*VDD_HV_A	
VSB	Self Bias Voltage	350	_	850	mV	_	_
GM	Amplifier Transconductance	9.7	14.04	18.5	mA/V	GM_SEL[3:0] = 4`b1111	_

- 1. For bypass mode applications, the EXTAL pin should be driven low when FXOSC is in off/disabled state.
- 2. The startup time specification is valid only when the recommended crystal and load capacitors are used. For higher load capacitances, the actual startup time might be higher.
- 3. The recommended gm setting to ensure extal swing < 2.75V at 8MHz in ALC-disabled mode is gm=4'b0010. Recommended gm settings in ALC-disabled mode for all other supported frequencies and crystals remain the same.
- 4. For bypass mode applications, the EXTAL pin should be driven symmetrical around Vref =0.5* VDD_HV_A

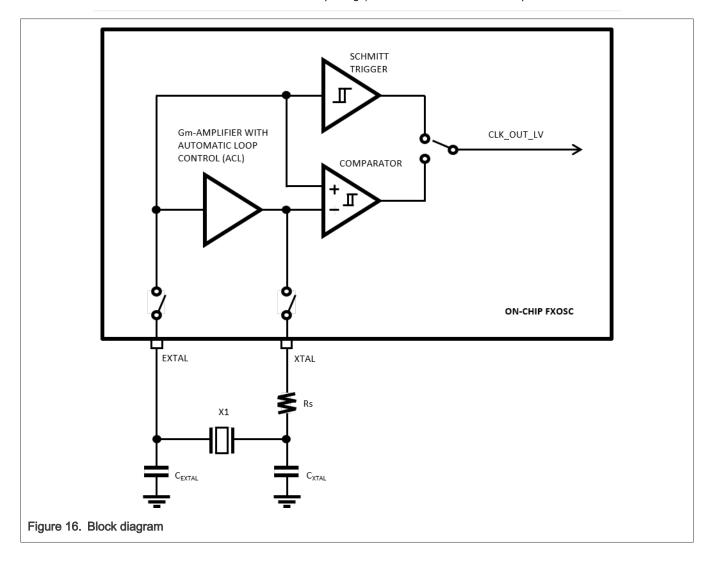
To ensure stable oscillations, FXOSC incorporates the feedback resistance internally.

In single ended bypass mode, the XTAL pin can be left unconnected.

Drive level is a crystal specification and if crystal load capacitance is increased beyond the recommended value, it may violate the crystal drive level rating. In such cases, contact NXP sales representative for selecting the correct crystal.

Crystal oscillator circuit provides stable oscillations when gmXOSC > 5 * gm_crit. The gm_crit is defined as: gm_crit = 4 * (ESR + RS) * $(2\pi F)^2$ * $(C0 + CL)^2$

where:


- gmXOSC is the transconductance of the internal oscillator circuit
- ESR is the equivalent series resistance of the external crystal
- RS is the series resistance connected between XTAL pin and external crystal for current limitation
- F is the external crystal oscillation frequency
- C0 is the shunt capacitance of the external crystal
- CL is the external crystal total load capacitance. CL = Cs+ [C1*C2/(C1+C2)]
- Cs is stray or parasitic capacitance on the pin due to any PCB traces
- C1, C2 external load capacitances on EXTAL and XTAL pins

See manufacture datasheet for external crystal component values

Figure 15. Oscillation build-up equation

NOTE

To improve the FXOSC jitter & duty cycle performance and the functionality of the pin next to the Oscillator (namely, PTE14 in 172-HDQFP and PTE3 in 100-HDQFP package) must be limited to static GPIO operation.

11.5 SXOSC

Table 42. SXOSC

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
Fsxosc	Oscillator Crystal Frequency ¹	_	32.768	_	KHz	IP in crystal mode	_
Tstart	SXOSC startup time	_	_	2	s	start up time is dependent upon board and crystal model.	_
ISXOSC	Oscillator Analog circuit supply current	_	2.1	10	uA	_	_
gm_sxocs	NMOS Amplifier Transconductance	3	_	40	u A/V	_	_

^{1.} Supports single frequency

12 Communication interfaces

12.1 LPSPI

The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following table provides timing characteristics for classic LPSPI timing modes.

- 1. All timing is shown with respect to 50% VDD_HV_A/B thresholds.
- 2. All measurements are with maximum output load of 30pF input transition of 1 ns and pad configured DSE = 1, SRC = 0.

Table 43. LPSPI

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
fperiph	Peripheral Frequenc y 1,2,3	_	_	40	MHz	Master	_
fperiph	Peripheral Frequenc y 1,2,3	_	_	40	MHz	Slave	_
fperiph	Peripheral Frequenc y ^{2,3,4}	_	_	80	MHz	Master Loopback	_
fop	Operating frequency	_	_	15	MHz	Slave	1
fop	Operating frequency	_	_	15	MHz	Master	1
fop	Operating frequency ⁵	_	_	10	MHz	Slave_10Mbps	1
fop	Operating frequency ⁵	_	_	10	MHz	Master_10Mbps	1
tSPSCK	SPSCK period	66	_	_	ns	Slave	2
tSPSCK	SPSCK period	66	_	_	ns	Master	2
tSPSCK	SPSCK period ⁴	50	_	-	ns	Master Loopback	2

Table continues on the next page...

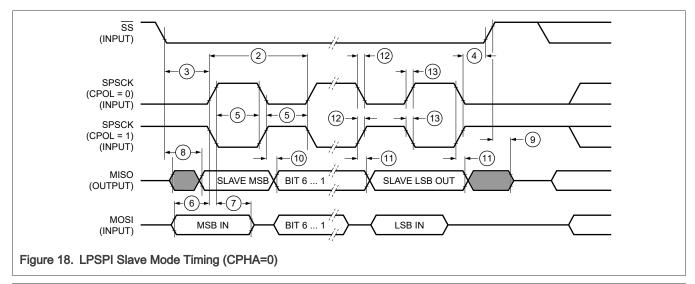
Table 43. LPSPI...continued

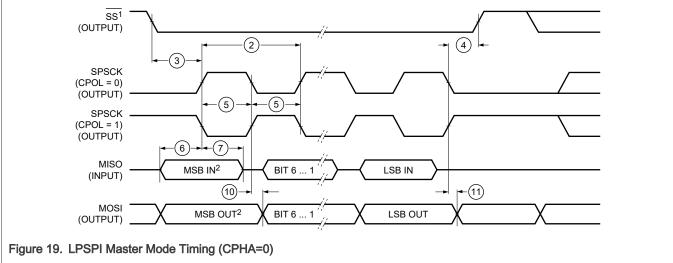
Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
tSPSCK	SPSCK period	100	_	_	ns	Master_10Mbps	2
tSPSCK	SPSCK period	100	_	_	ns	Slave_10Mbps	2
tLEAD	Enable lead time (PCS to SPSCK delay) ⁶	tSPCK/2	_	_	ns	Slave	3
tLEAD	Enable lead time (PCS to SPSCK delay) ⁶	30	_	_	ns	Master	3
tLEAD	Enable lead time (PCS to SPSCK delay) ^{4,6}	30	_	_	ns	Master Loopback	3
tLAG	Enable lag time (After SPSCK delay) ⁷	tSPCK/2	_	_	ns	Slave	4
tLAG	Enable lag time (After SPSCK delay) ⁷	30	_	_	ns	Master	4
tLAG	Enable lag time (After SPSCK delay) ^{4,7}	30	_	_	ns	Master Loopback	4
tWSPCK	Clock (SPSCK) time (SPSCK duty cycle) ⁸	tSPSCK/ 2 - 3	_	tSPSCK/ 2 + 3	ns	Slave	5
tWSPCK	Clock (SPSCK) time (SPSCK duty cycle) ⁸	tSPSCK/ 2 - 3	_	tSPSCK/ 2 + 3	ns	Master	5
tWSPCK	Clock (SPSCK) time (SPSCK duty cycle) ^{4,8}	tSPSCK/ 2 - 3	_	tSPSCK/ 2 + 3	ns	Master Loopback	5
tSU	Data setup time(inputs)	6	_	_	ns	Slave	6
tSU	Data setup time(inputs)	25	_	_	ns	Master	6
tSU	Data setup time(inputs)	5	_	_	ns	Slave_10Mbps	6
tSU	Data setup time(inputs)	36	_	_	ns	Master_10Mbps	6
tSU	Data setup time(inputs) 4	6	_	_	ns	Master_Loopback	6

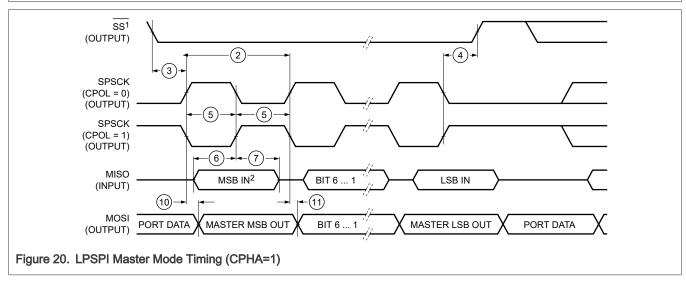
Table continues on the next page...

Table 43. LPSPI...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
tHI	Data hold time(inputs)	3		_	ns	Slave	7
tHI	Data hold time(inputs)	0	_	_	ns	Master	7
tHI	Data hold time(inputs)	4	_	_	ns	Slave_10Mbps	7
tHI	Data hold time(inputs)	0	_	_	ns	Master_10Mbps	7
tHI	Data hold time(inputs) ⁴	3	_	_	ns	Master Loopback	7
tA	MISO valid time after SS assertion	_	_	50	ns	Slave	8
tDIS	Slave MISO (SOUT) disable time	_	_	50	ns	Slave	9
tV	Data valid (after SPSCK edge) ⁹	_	_	26	ns	Slave	10
tV	Data valid (after SPSCK edge) ⁹	_	_	14	ns	Master	10
tV	Data valid (after SPSCK edge) 9	_	_	36	ns	Slave_10Mbps	10
tV	Data valid (after SPSCK edge) 9	_	_	21	ns	Master_10Mbps	10
tV	Data valid (after SPSCK edge) 4,9	_	_	17.5	ns	Master Loopback, applies to all devices LPSPI0 @20 MHz	10
tHO	Data hold time (outputs) ⁹	3	_	_	ns	Slave	11
tHO	Data hold time (outputs) ⁹	-8	_	_	ns	Master	11
tHO	Data hold time (outputs) 9	3	_	_	ns	Slave_10Mbps	11
tHO	Data hold time (outputs) 9	-15	_	_	ns	Master_10Mbps	11
tHO	Data hold time (outputs) 4,9	-2	_	_	ns	Master Loopback, applies to all devices LPSPI0 @20 MHz	11
tRI/FI	Rise/Fall time input ¹⁰	_	_	1	ns	Slave	_


Table continues on the next page...


Table 43. LPSPI...continued


Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
tRI/FI	Rise/Fall time input ¹⁰	_	_	1	ns	Master	_
tRI/FI	Rise/Fall time input ^{4,10}	_	_	1	ns	Master Loopback	_

- 1. For LPSPI0 instance, max. peripheral frequency is equal to AIPS_PLAT_CLK.
- 2. tperiph = 1/fperiph
- 3. fperiph = LPSPI peripheral clock
- 4. Master Loopback mode: In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as 1.
- 5. These specifications apply to the SPI operation, as master or slave, at up to 10 Mbps for the combinations not indicated in the table below. Unless otherwise noted, all other 'master' and 'slave' specifications are also applicable in the 10Mbps configurations. See table "LPSPI 20 MHz and 15 MHz Combinations.
- Minimum configuration value for CCR[PCSSCK] field is 3(0x00000011).
- 7. Minimum configuration value for CCR[SCKPCS] field is 3(0x00000011).
- 8. While selecting odd dividers, ensure Duty Cycle is meeting this parameter.
- 9. Output rise/fall time is determined by the output load and GPIO pad drive strength setting. See the GPIO specifications for detail.
- 10. The input rise/fall time specification applies to both clock and data, and is required to guarantee related timing parameters.

12.2 LPSPI0 15 MHz

NOTE
15 Mbps is supported on LPSPI0 only.

Table 44. LPSPI0 15 MHz

PORT	SPI Signal	15 Mbps
PTB1	LPSPI0_SOUT	LPSPI0_SOUT
РТВ0	LPSPI0_PCS0	LPSPI0_PCS0
PTC9	LPSPI0_SIN	LPSPI0_SIN
PTC8	LPSPI0_SCK	LPSPI0_SCK
PTD6	LPSPI0_PCS0	
PTD5	LPSPI0_PCS1	
PTD12	LPSPI0_SOUT	
PTD11	LPSPI0_SCK	
PTD10	LPSPI0_SIN	

NOTE

Trace length should not exceed 11 inches for SCK pad when used in Master loopback mode.

12.3 I²C

See I/O parameters for I²C specification.

"For supported baud rate see section 'Chip-specific LPI2C information' of the Reference Manual."

12.4 FlexCAN characteristics

See I/O parameters for FlexCAN specification.

"For supported baud rate, see section 'Protocol timing' of the Reference Manual."

12.5 SAI electrical specifications

12.5.1 SAI Electrical Characteristics, Slave Mode

The following table describes the SAI electrical characteristics. Measurements are with maximum output load of 30pF, input transition of 1ns and pad configured with DSE = 1'b1 and SRE = 1'b0. I/O operating voltage ranges from 2.97 V to 3.63 V.

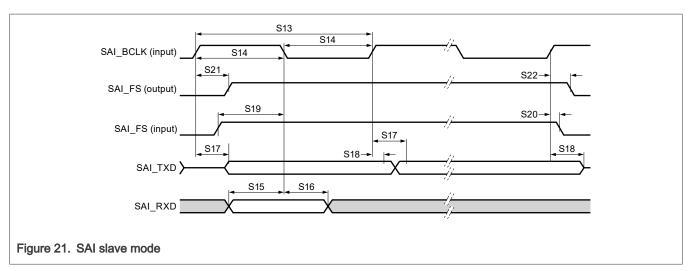
Valid pin combinations to be referred from MCXE_Use sheet in IOmux.

Table 45. SAI Electrical Characteristics, Slave Mode

	Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
S13		SAI_BCLK cycle time (input)	80	_	_	ns	_	_

Table continues on the next page...

MCXEP172M160FB0

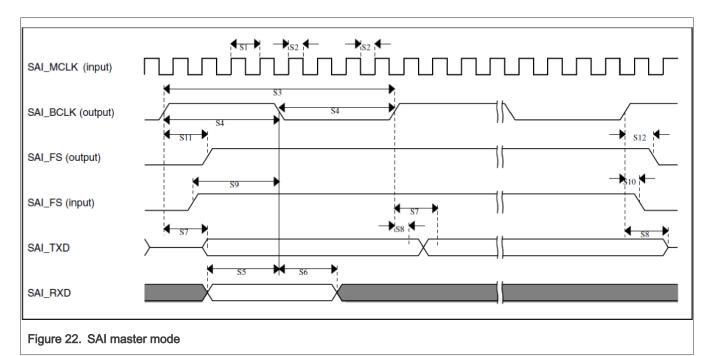

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

Table 45. SAI Electrical Characteristics, Slave Mode...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
S14	SAI_BCLK pulse width high/low (input) ¹	45	_	55	%	_	_
S15	SAI_RXD input setup before SAI_BCLK	8	_	_	ns	_	_
S16	SAI_RXD input hold after SAI_BCLK	2	_	_	ns	_	_
S17	SAI_BCLK to SAI_TXD output valid	_	_	28	ns	_	_
S18	SAI_BCLK to SAI_TXD output invalid	0	_	_	ns	_	_
S19	SAI_FS input setup before SAI_BCLK	8	_	_	ns	_	_
S20	SAI_FS input hold after SAI_BCLK	2	_	_	ns	_	_
S21	SAI_BCLK to SAI_FS output valid	_	_	28	ns	_	_
S22	SAI_BCLK to SAI_FS output invalid	0	_	_	ns	_	_

1. The slave mode parameters (S15 - S22) assume 50% duty cycle on SAI_BCLK input. Any change in SAI_BCLK duty cycle input must be taken care during the board design or by the master timing.


12.5.2 SAI Electrical Characteristics, Master Mode

The following table describes the SAI electrical characteristics. Measurements are with maximum output load of 30pF, input transition of 1ns and pad configured with DSE = 1'b1 and SRE = 1'b 0. I/O operating voltage ranges from 2.97 V to 3.63 V.

Valid pin combinations to be referred from MCXE31x*_Use sheet in IOmux.

Table 46. SAI Electrical Characteristics, Master Mode

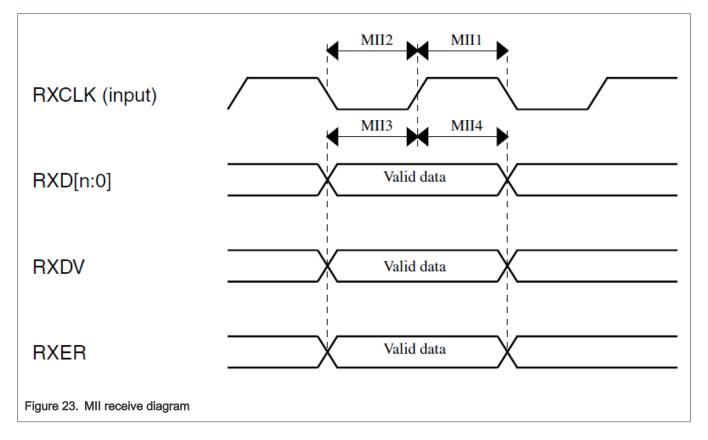
Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
S1	SAI_MCLK cycle time	40	_	_	ns	_	_
S2	SAI_MCLK pulse width high/low	45	_	55	%	_	_
S3	SAI_BCLK cycle time	80	_	_	ns	_	_
S4	SAI_BCLK pulse width high/low	45	_	55	%	_	_
S5	SAI_RXD input setup before SAI_BCLK	28	_	_	ns	_	_
S6	SAI_RXD input hold after SAI_BCLK	0	_	_	ns	_	_
S7	SAI_BCLK to SAI_TXD output valid	_	_	8	ns	_	_
S8	SAI_BCLK to SAI_TXD output invalid	-2	_	_	ns	_	_
S9	SAI_FS input setup before SAI_BCLK	28	_	_	ns	_	_
S10	SAI_FS input hold after SAI_BCLK	0	_	_	ns	_	_
S11	SAI_BCLK to SAI_FS output valid	_	_	8	ns	_	_
S12	SAI_BCLK to SAI_FS output invalid	-2	_	_	ns	_	_

12.6 Ethernet characteristics

12.6.1 Ethernet MII (10/100 Mbps)

The following timing specs are defined at the device I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. Measurements are with maximum output load of 25pF, input transition of 1ns and pad configured with DSE = 1'b1 and SRE = 1'b0. I/O operating voltage ranges from 2.97 V to 3.63 V.

Valid pin combinations to be referred from MCXE31x*_Use sheet in IOmux.


Table 47. Ethernet MII (10/100 Mbps)

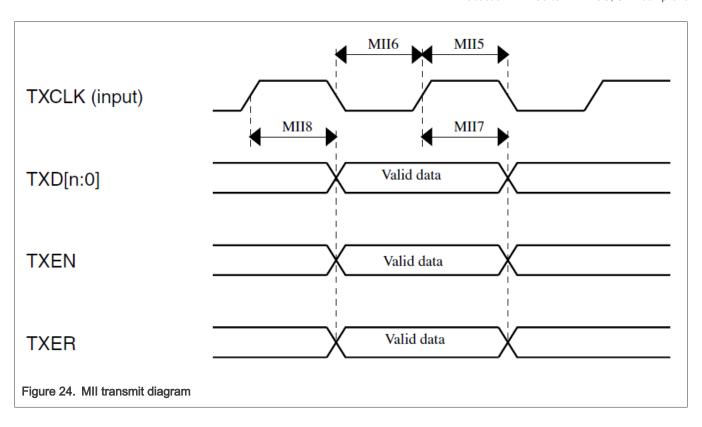

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
_	RXCLK frequency	_	2.5/25	_	MHz	10/100 Mbps	_
MII1	RXCLK pulse width high	35	_	65	%RXCLK period	_	_
MII2	RXCLK pulse width low	35	_	65	%RXCLK period		_
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5	_	_	ns	10/100 Mbps	_
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5	_	_	ns	10/100 Mbps	_
tCYC_TX	TXCLK frequency	_	2.5 / 25	_	MHz	10/100 Mbps	_
MII5	TXCLK pulse width high	35	_	65	%TXCLK period	_	_

Table continues on the next page...

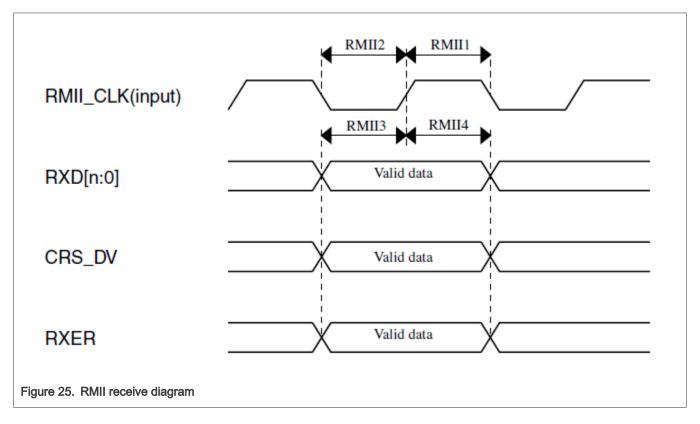
Table 47. Ethernet MII (10/100 Mbps)...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
MII6	TXCLK pulse width low	35	_	65	%TXCLK period	_	_
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2	_	_	ns	_	_
MII8	TXCLK to TXD[3:0], TXEN, TXER valid	_	_	25	ns	_	_

12.6.2 Ethernet RMII (10/100 Mbps)

The following timing specs are defined at the device I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. Measurements are with maximum output load of 25pF, input transition of 1ns and pad configured with DSE = 1'b1 and SRE = 1'b0. I/O operating voltage ranges from 2.97 V to 3.63 V.

Valid pin combinations to be referred from MCXE_Use sheet in IOmux.


Table 48. Ethernet RMII (10/100 Mbps)

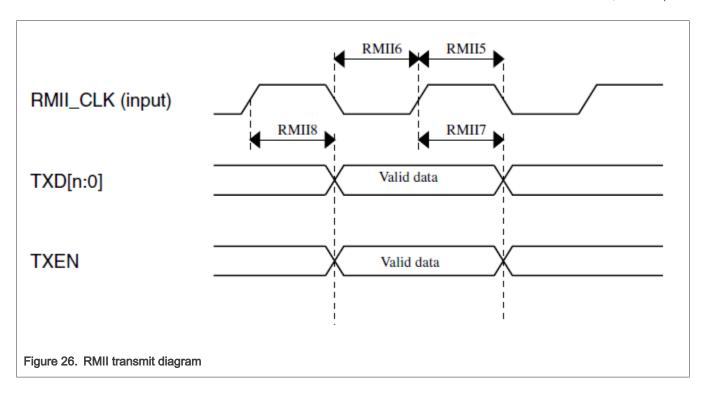

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
_	RMII input clock frequency (RMII_CLK)	_	_	50	MHz	10/100 Mbps	_
RMII1,RMII5	RMII_CLK pulse width high	35	_	65	%RMII_C LK period	_	_
RMII2,RMII6	RMII_CLK pulse width low	35	_	65	%RMII_C LK period	_	_
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	_	_	ns	_	_
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2	_	_	ns	_	_

Table continues on the next page...

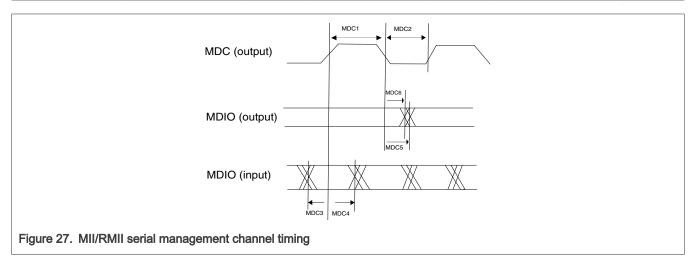
Table 48. Ethernet RMII (10/100 Mbps)...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
RMII8	RMII_CLK to TXD[1:0], TXEN data valid	_	_	15	ns	_	_
RMII7	RMII_CLK to TXD[1:0], TXEN data invalid	2	_	_	ns	_	_

12.6.3 MDIO timing specifications

The following table describes the MDIO electrical characteristics. Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1 and SRE = 1'b0). I/O operating voltage ranges from 2.97 V to 3.63 V. MDIO pin must have external Pull-up.

Valid pin combinations to be referred from MCXE31x*_Use sheet in IOmux.


Table 49. MDIO timing specifications

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
_	MDC clock frequency	_	_	2.5	MHz	_	_
MDC1	MDC pulse width high	40	_	60	%MDC period	_	MDC1
MDC2	MDC pulse width low	40	_	60	%MDC period	_	MDC2
MDC5	MDC falling edge to MDIO output valid(maximum propagation delay)	_	_	25	ns	_	MDC5
MDC6	MDC falling edge to MDIO output invalid(minimum propagation delay)	-10	_	_	ns	_	MDC6

Table continues on the next page...

Table 49. MDIO timing specifications...continued

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
MDC3	MDIO (input) to MDC rising edge setup time	25	_	_	ns	Applies to MCXE31B	MDC3
MDC4	MDIO (input) to MDC rising edge hold time	0	_	_	ns	_	MDC4

12.7 QuadSPI

12.7.1 QuadSPI Quad 3.3V SDR 120MHz

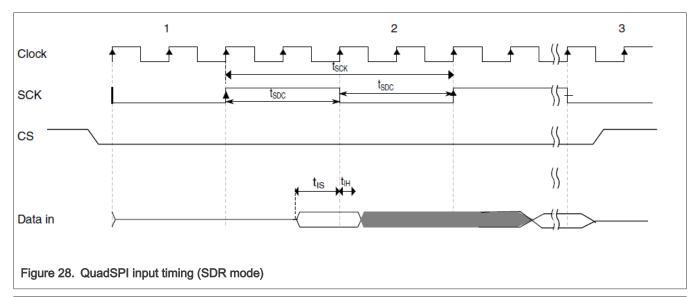
The following table applies to MCXE31B.

The following table describes the QuadSPI electrical characteristics. Measurements are with maximum output load of 25pF, input transition of 1ns and pads configured with DSE = 1'b1 and SRE = 1'b0. I/O operating voltage ranges from 2.97V to 3.63V. QuadSPI trace length should be less than or equal to 2 inches. For Single and Dual IO modes of operation if external device doesn't have pull-up feature, then external pull-up must be added at board level for unused device pins. With external pull-up, performance of the interface may degrade in Quad IO mode based on load associated with external pull-up. QuadSPI support delay chain upto length 16, wherein delay length of low-frequency segment is 16 and length of high-frequency segment is 0. See the device Reference Manual for register and bit descriptions.

Valid pin combinations to be referred from MCXE31x*_Use sheet in IOmux

Program register value QuadSPI_FLSHCR[TCSS] = 4'h3.

Program register value QuadSPI_FLSHCR[TCSH] = 4`h3.


Program register value QuadSPI_DLLCRA[SLV_FINE_OFFSET] to 4'b0001.

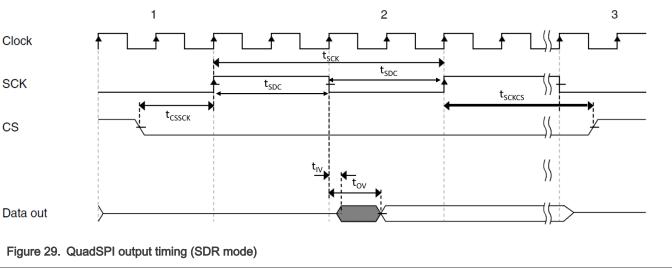

Data transitions measured at 30%/70% supply for the write path. Data transitions measured at mid-supply for the read path. Clock transitions measured at mid-supply.

Table 50. QuadSPI Quad 3.3V SDR 120MHz

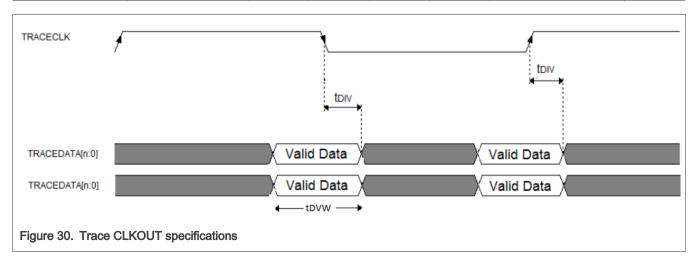
Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
fSCK	SCK clock frequency ¹	_	_	120	MHz	Pad Loopback	_
fSCK	SCK clock frequency ¹	_	_	60	MHz	Internal Loopback	_
tSCK	SCK clock period	1/fSCK	_	_	ns	Pad Loopback	_
tSCK	SCK clock period	1/fSCK	_	_	ns	Internal Loopback	_
tSDC	SCK duty cycle	45	_	55	%	Internal Loopback	_
tSDC	SCK duty cycle	45	_	55	%	Pad Loopback	_
tIS	Data input setup time	1.75	_	_	ns	Pad Loopback	_
tIS	Data input setup time	9	_	_	ns	Internal Loopback	_
tIH	Data input hold time	1	_	_	ns	Pad Loopback	
tIH	Data input hold time	1	_	_	ns	Internal Loopback	_
tOV	Data output valid time	_	_	1.75	ns	Pad Loopback	_
tOV	Data output valid time	_	_	1.75	ns	Internal Loopback	_
tIV	Data output invalid time	-1.5	_	_	ns	Pad Loopback	_
tIV	Data output invalid time	-1.5	_	_	ns	Internal Loopback	_
tCSSCK	CS to SCK time	5	_	_	ns	Pad Loopback	_
tCSSCK	CS to SCK time	5	_	-	ns	Internal Loopback	_
tSCKCS	SCK to CS time	3	_	-	ns	Pad Loopback	_
tSCKCS	SCK to CS time	3			ns	Internal Loopback	_

^{1.} This frequency specification is valid only if output valid time of external flash is ≤ 5.5ns, and if output valid time of external flash is more than 5.5ns but ≤ 6.5ns, then maximum fSCK is 104MHz.

12.8 LPUART specifications

See I/O parameters for LPUART specifications.

13 Debug modules


13.1 Debug trace timing specifications

The following table describes the Debug trace electrical characteristics. Measurements are with maximum output load of 25pF, input transition of 1ns and pad configured with DSE = 1'b1 and SRE = 1'b0.

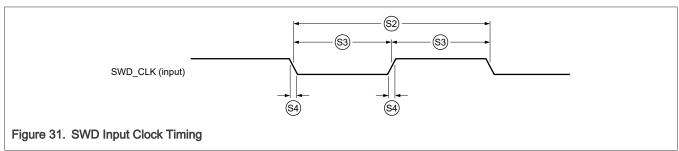
See I/O parameters for GPIO electrical specifications.

Table 51. Debug trace timing specifications

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
fTRACE	Trace clock frequency (trace on Fast pads)	_	_	120	MHz	_	_
fTRACE	Trace clock frequency (trace on StandardPlus pads)	_	_	25	MHz	_	_
tDVW	Data output valid window	1.2	_	_	ns	_	_
tDIV	Data output invalid	0.3	_	_	ns	_	_

13.2 SWD electrical specifications

The following table describes the SWD electrical characteristics. Measurements are with maximum output load of 30pF, input transition of 1ns and pad configured with DSE = 1'b1 and SRE = 1'b0.


Table 52. SWD electrical specifications

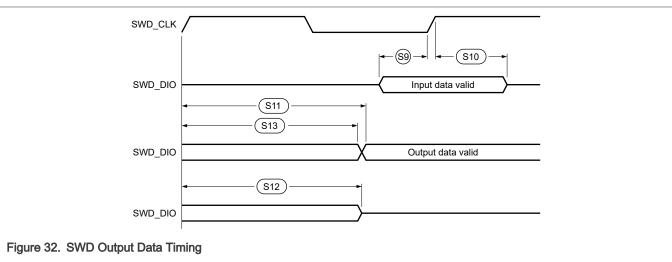

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
S1	SWD_CLK frequency	_	_	33	MHz	_	S1
S2	SWD_CLK cycle period	1 / S1	_	_	ns	_	S2
S3	SWD_CLK pulse width	40	_	60	%	_	S3
S4	SWD_CLK rise and fall times	_	_	1	ns	_	S4

Table continues on the next page...

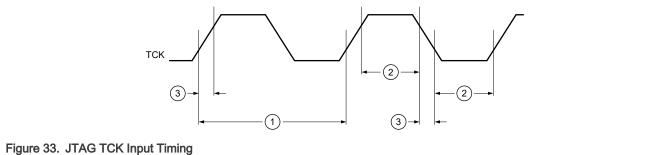
Table 52. SWD electrical specifications...continued

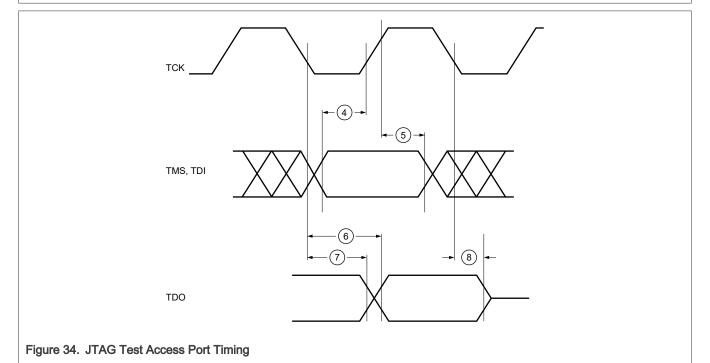
Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
S9	SWD_DIO input data setup time to SWD_CLK rise	5	_	_	ns	_	S9
S10	SWD_DIO input data hold time after SWD_CLK rising edge	5	_	_	ns	_	S10
S11	SWD_CLK high to SWD_DIO output data valid	_	_	22	ns	_	S11
S12	SWD_CLK high to SWD_DIO output data hi-Z	_	_	22	ns	_	S12
S13	SWD_CLK high to SWD_DIO output data invalid	0	_	_	ns	_	S13

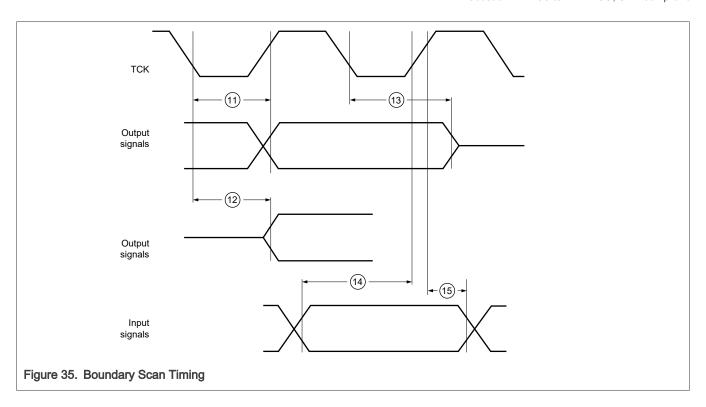
13.3 JTAG electrical specifications

The following table describes the JTAG electrical characteristics. These specifications apply to JTAG and boundary scan. Measurements are with maximum output load of 30pF, input transition of 1ns and pad configured with DSE = 1'b1 and SRE = 1'b0.

Table 53. JTAG electrical specifications


Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
tJCYC	TCK cycle time ^{1,2}	30	_	_	ns	_	1
tJDC	TCK clock pulse width	40	_	60	%	_	2
tTCKRISE	TCK rise/fall times (40%-70%)	_	_	1	ns	_	3
tTMSS, tTDIS	TMS, TDI data setup time	5	_	_	ns	_	4
tTMSH, tTDIH	TMS, TDI data hold time	5	_	_	ns	_	5
tTDOV	TCK low to TDO data valid ³	_	_	22	ns	_	6
tTDOI	TCK low to TDO data invalid	0	_	_	ns	_	7
tTDOHZ	TCK low to TDO high impedance	_	_	22	ns	_	8
tBSDV	TCK falling edge to output valid ⁴	_	_	600	ns	_	11
tBSDVZ	TCK falling edge to output valid out of high impedance	_	_	600	ns	_	12
tBSDHZ	TCK falling edge to output high impedance	_	_	600	ns	_	13
tBSDST	Boundary scan input valid to TCK rising edge	15	_	_	ns	_	14
tBSDHT	TCK rising edge to boundary scan input invalid	15	_	_	ns	_	15


^{1.} This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions. Refer to pad specification for allowed transition frequency


^{2.} Cycle time is 30ns assuming full cycle timing. Cycle time is 60ns assuming half cycle timing.

^{3.} Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.

^{4.} Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.

14 Package dimensions

14.1 Obtaining package dimensions

Package dimensions are provided in the package drawings. To find a package drawing, go to nxp.com and perform a keyword search for the drawing's document number:

Package option	Document Number
48-pin LQFP	98ASH00962A
172-pin HDQFP	98ASA01107D
100-pin HDQFP	98ASA01570D

15 Revision history

The following table lists the changes in this document.

Document ID	Release date	Description
MCXEP172M160 FB0 v.2	5 August 2025	Substantial changes throughout the data sheet.
MCXEP172M160 FB0 v.2.RC	27 Jun 2025	Substantial changes throughout the data sheet.
MCXEP172M160 FB0 v.1	6 May 2025	Substantial changes throughout the data sheet.

Table continues on the next page...

Table continued from the previous page...

Document ID	Release date	Description
MCXEP172M160 FB0 v.1.RC	21 April 2025	Substantial changes throughout the data sheet.
MCXEP172M160 FB0 v.1.B	17 March 2025	Substantial changes throughout the data sheet.
MCXEP172M160 FB0 v.1.A	4 December 2024	Initial release.

Legal information

Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet Production		This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- 2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL https://www.nxp.com.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision,

Versatile — are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by NXP Semiconductors is under license.

EdgeLock — is a trademark of NXP B.V.

eIQ — is a trademark of NXP B.V.

I2C-bus — logo is a trademark of NXP B.V.

SafeAssure — is a trademark of NXP B.V.

SafeAssure — logo is a trademark of NXP B.V.

SuperFlash — This product uses SuperFlash[®] technology. SuperFlash[®] is a registered trademark of Silicon Storage Technology, Inc.

Synopsys & Designware — are registered trademarks of Synopsys, Inc.

Synopsys — Portions Copyright © 2018-2022 Synopsys, Inc. Used with permission. All rights reserved.

Contents

1	Overview4	9.2	Flash memory Array Integrity and Margin Rea	
2	Block diagram4		specifications	
3	Feature comparison4	9.3	Flash memory module life specifications	
4	Ordering information (flash vs package)6	9.3.1	Data retention vs program/erase cycles	
4.1	Determining valid orderable parts 6	9.4	Flash memory AC timing specifications	
5	General6	9.5	Flash memory read timing parameters	
5.1	Absolute maximum ratings6	10	Analog modules	
5.2	Voltage and current operating requirements 8	10.1	SAR_ADC	46
5.3	Thermal operating characteristics9	10.2	Supply Diagnosis	
5.4	ESD and Latch-up Protection Characteristics 10	10.3	Low Power Comparator (LPCMP)	48
5.5	Thermal Attributes10	10.4	Temperature Sensor	. 52
5.5.1	Description10	11	Clocking modules	53
5.5.2	Thermal characteristics10	11.1	FIRC	53
6	Power management11	11.2	SIRC	53
6.1	Power mode transition operating behaviors 11	11.3	PLL	53
6.1.1	Power mode transition operating behavior11	11.4	FXOSC	54
6.1.2	Boot time, HSE firmware not installed12	11.5	SXOSC	57
6.1.3	Boot time, HSE firmware installed12	12	Communication interfaces	57
6.1.4	HSE firmware memory verification time examples	12.1	LPSPI	57
		12.2	LPSPI0 15 MHz	62
6.2	Supply Monitoring17	12.3	I ² C	62
6.3	Recommended Decoupling Capacitors18	12.4	FlexCAN characteristics	62
6.3.1	Recommended Decoupling Capacitor diagrams	12.5	SAI electrical specifications	62
	19	12.5.1	SAI Electrical Characteristics, Slave Mode	
6.4	V15 regulator (BJT option, NPN ballast transistor	12.5.2	SAI Electrical Characteristics, Master Mode	
	control) electrical specifications23	12.6	Ethernet characteristics	
6.5	Supply currents23	12.6.1	Ethernet MII (10/100 Mbps)	65
6.6	Operating mode31	12.6.2	Ethernet RMII (10/100 Mbps)	
6.7	Cyclic wake-up current33	12.6.3	MDIO timing specifications	
7	I/O parameters	12.7	QuadSPI	
7.1	GPIO DC electrical specifications, 3.3V Range	12.7.1	QuadSPI Quad 3.3V SDR 120MHz	70
	(2.97V - 3.63V)33	12.8	LPUART specifications	
7.2	GPIO DC electrical specifications, 5.0V (4.5V -	13	Debug modules	
	5.5V)36	13.1	Debug trace timing specifications	
7.3	5.0V (4.5V - 5.5V) GPIO Output AC Specification	13.2	SWD electrical specifications	
	40	13.3	JTAG electrical specifications	
7.4	3.3V (2.97V - 3.63V) GPIO Output AC	14	Package dimensions	
· · ·	Specification41	14.1	Obtaining package dimensions	
8	Glitch Filter42	15	Revision history	
9	Flash memory specification42	10	Legal information	
9.1	Flash memory program and erase specifications		2094	
J. 1	12011 Moniory program and oracle opcomoditions			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© 2025 NXP B.V.

All rights reserved.

For more information, please visit: https://www.nxp.com