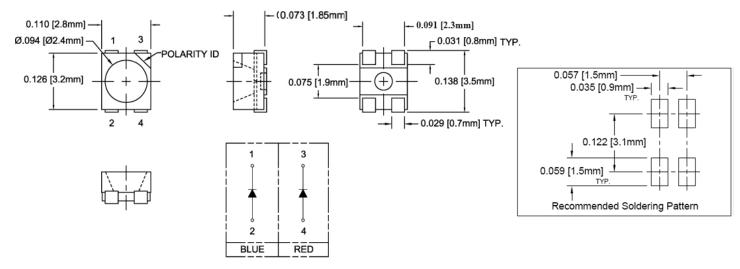


SMTL4-SBC-RB


- Industry Standard PLCC4 Footprint
- 2 Super Bright Chips in One Low Profile Package
- High Luminous Intensity
- Wide Viewing Angle
- ♦ High Power Efficiency

Bivar SMTL4 Super Bright Bi-Color LED combines two chips in a single package and is offered in an industry standard PLCC4 footprint. The SMTL4 LED has a water clear lens for high luminous intensity and wide viewing angle making them ideal for outdoor illumination applications where higher ambient lighting conditions exist. The robust package is ideal for harsh working environments and can be clustered in LED arrays for maximum illumination. Low power consumption and excellent long life reliability are suitable for battery powered equipment. Bivar SMTL4 LED is packaged in standard tape and reels for pick and place assemblies.

Part Number	Material	Emitted Color	Luminous Intensity Typ. mcd	Lens Color	Viewing Angle	
SMTL4-SBC-RB	AlGaInP	Red	180	Water Clear	120°	
SWIL4-SBC-RB	InGaN	Blue	285	vvater Clear		

Outline Dimensions

Outline Drawings Notes:

- 1. All dimensions are in inches [millimeters].
- 2. Standard tolerance: ±0.010" unless otherwise noted.

Absolute Maximum Ratings

 $T_A = 25$ °C unless otherwise noted

Power Dissipation	Red - 72 mW Blue - 100 mW
Continuous Forward Current	Red - 30 mA Blue - 25 mA
Peak Forward Current ¹	100 mA
Reverse Voltage	5 V
Electrostatic Discharge Classification (HBM)	2000 V
Derating Linear From 25°C	0.4 mA/°C
Operating Temperature Range	-40 ~ +85°C
Storage Temperature Range	-40 ~ +85°C
Soldering Temperature ²	260°C

Notes: 1. 10% Duty Cycle, Pulse Width ≤ 0.1 msec.

2. Solder time less than 5 seconds at temperature extreme.

Handling: Reflow soldering must not be performed more than twice. Hand soldering must not be performed more than once

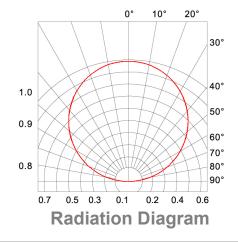
more than once.

Sensitive to static electricity or surge voltage. Proper handling required to avoid ESD damage and impair LED reliability.

Electrical Characteristics

 $T_A = 25$ °C & $I_F = 20$ mA unless otherwise noted

Emitting Color				vard Forward C		Dominant Wavelength (nm) ²		Luminous Intensity (mcd)			Viewing Angle gle 2 Θ ½ (deg)	
	MIN	TYP	MAX	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	TYP
Red	1.7	2.0	2.4	20	10	623	631	640	115	180	225	120
Blue	2.6	3.0	3.5	20	10	463	470	472	180	285	450	120


Notes: 1. Tolerance of Forward Voltage: ±0.05V.

2. Tolerance of Dominant Wavelength: ±1nm.

3. Tolerance of Luminous Intensity: ±15%.

Directivity Radiation

 $T_A = 25$ °C unless otherwise noted

Typical Electrical / Optical Characteristics Curves

 $T_A = 25$ °C unless otherwise noted

Relative Spectrum Emission I $_{rel}$ = f (I), T $_{A}$ = 25°C , I $_{F}$ = 20 mA V(I) = Standard eye response curve

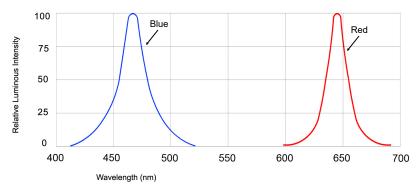


Fig.1 Relative Luminous Intensity vs. Wavelength

Relative Luminous Intensity I_V/I_V (20 mA) = f (I_F) T_A = 25°C Ambient Temperature vs. Allowable Forward Current

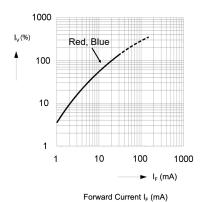
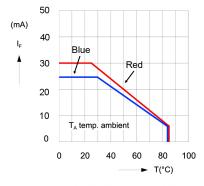
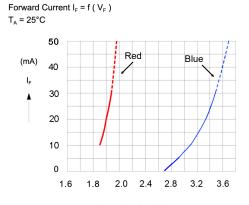
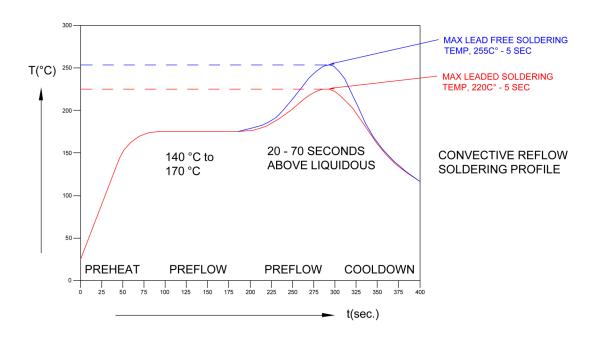




Fig.2 Relative Luminous Intensity vs. Forward Current

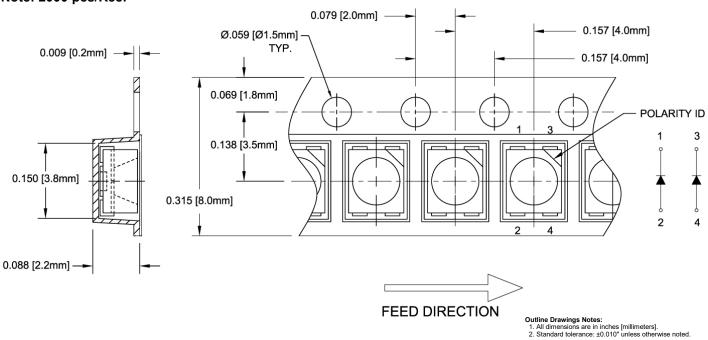
Ambient Temperature T_A (°C)

Fig.3 Forward Current vs. Ambient Temperature

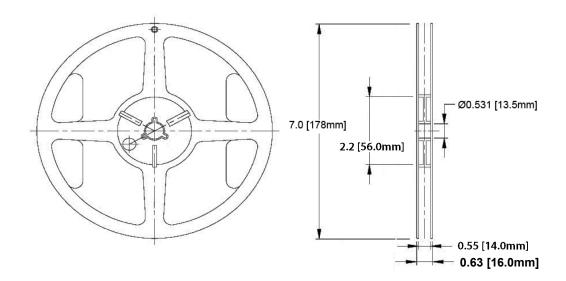


Forward Voltage (V)

Fig.4 Forward Current vs. Forward Voltage



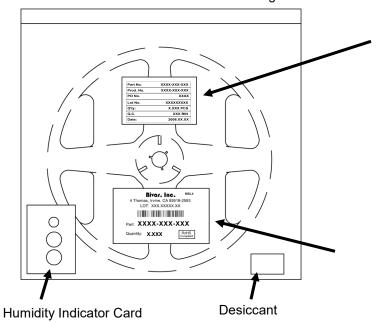
Recommended Soldering Conditions



Tape and Reel Dimensions

Note: 2000 pcs/Reel

Outline Drawings Notes:


- 1. All dimensions are in inches [millimeters].
- 2. Standard tolerance unless otherwise noted: X.XXX ± 0.010"

X.X ± 0.1"

Packaging and Labeling Plan

Note: 1 Reel / Bag

Sealed ESD and Moisture Barrier Bag

Part No.	XXXX-XXX-XXX
Prod. No.	XXXX-XXX-XXX
PO No.	xxxx
Lot No.	XXXXXXXX
Q'ty:	X.XXX PCS
Q.C.	XXX BIN
Date:	2008.XX.XX

Internal Quality Control Label

Bivar. Inc.

MSL4

4 Thomas, Irvine, CA 92618-2593 LOT: XXX.XXXXXXXX

Part: XXXX-XXX

Quantity: XXXX

RoHS Compliant

Bivar Standard Packaging Label

REVISION HISTORY							
Rev	Description	Date	Approved				
Α	Engineering Release	02/26/16	Jeffrey Chiang				
В	Updated Dimensions and Properties	05/24/24	Ricardo Pereyra				