

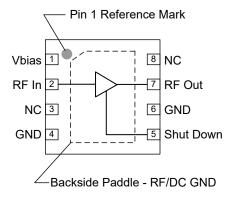
QPL9503

Ultra-Low Noise Flat Gain Amplifier

8 Pin 2X2 mm DFN Package

General Description

The QPL9503 is a flat-gain, high-linearity, ultra-low noise amplifier in a small 2 x 2 mm surface-mount package. The LNA provides a gain flatness of 2 dB (peak-to-peak) over a wide bandwidth from 3 to 6 GHz. At 5.5 GHz, the amplifier typically provides 21.6 dB gain, +35.5 dBm OIP3 at a 56mA bias setting, and 0.95 dB noise figure. The LNA can be biased from a single positive supply ranging from 3.3 to 5 volts. The device is housed in a green/RoHS-compliant industry-standard 2x2 mm package.


The QPL9503 is internally matched using a high-performance E-pHEMT process and only requires five external components for operation from a single positive supply: an external RF choke and blocking/bypass capacitors and a bias resistor going to pin 1. This LNA integrates a shut-down biasing capability to allow for operation in TDD applications.

The QPL9503 is optimized for linear performance across the 3 to 6 GHz frequency band but can operate down to 600 MHz.

Product Features

- 0.6-6 GHz Operational Bandwidth
- Ultra-low noise figure, 0.95 dB NF @ 5.5 GHz
- · Bias adjustable for linearity optimization
- 35.5 dBm OIP3 at 65mA IDD
- Shut-down control pin with +1.8V Logic
- · Unconditionally stable
- · Integrated shutdown control
- · Maintains OFF state with high power input
- +3V to +5V supply; no negative voltage required

Functional Block Diagram

Top View

Applications

- 4.5G, 5G Massive MIMO
- Repeaters / DAS
- Mobile Infrastructure
- LTE-U / LAA
- · L-band, S-band, C-band radios
- General Purpose Wireless
- · TDD or FDD systems

Ordering Information

Part No.	Description
QPL9503TR7	2500 pcs on 7" reel
QPL9503EVB-01	5-6GHz Tuned Evaluation Board

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	−65 to +150°C
T _{CASE} , Operational	-40 to +125°C
Supply Voltage (V _{DD})	+7 V
RF Input Power, CW, 50Ω, T=25°C	+30 dBm
RF Input Power, WCDMA, 10dB PAR	+27 dBm
RF Input Power, CW, OFF State	+30 dBm

Operation of this device outside the parameter ranges given above may cause permanent damage.

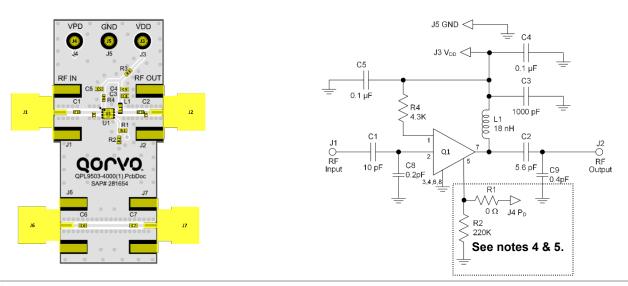
Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Supply Voltage (V _{DD})	3.3	5.0	5.25	V
T _{CASE}	-40		+105	°C
Tj for >10 ⁶ hours MTTF			+190	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Test conditions unless otherwise noted: V_{DD} =+5V, Temp=+25°C, 50 Ω system.


Parameter	Conditions	Min	Тур	Max	Units
Operational Frequency Range		600		6000	MHz
Test Frequency			5500		MHz
Gain		18.5	21.6	22.5	dB
Input Return Loss			10		dB
Output Return Loss			9		dB
Noise Figure (1)			0.9	1.3	dB
Output P1dB			+19		dBm
Output IP3	Pout=+2 dBm/tone, Δf=1 MHz	+30	+35.5		dBm
Valta and Object Decomp (alia 5)	On state	0		0.63	V
Voltage, Shut Down (pin 5)	Off state (Power down)	1.17		V_{DD}	V
Commont I	On state	35	56	90	mA
Current, I _{DD}	Off state (Power down)		3		mA
Current, I _{SD} (pin 5)	V _{PD} ≥ 1.17 V		140		μA
Switching Time	LNA ON to OFF		20		ns
Switching Time	LNA OFF to ON		400		ns
Thermal Resistance, θ _{jc}	channel to case		48		°C/W

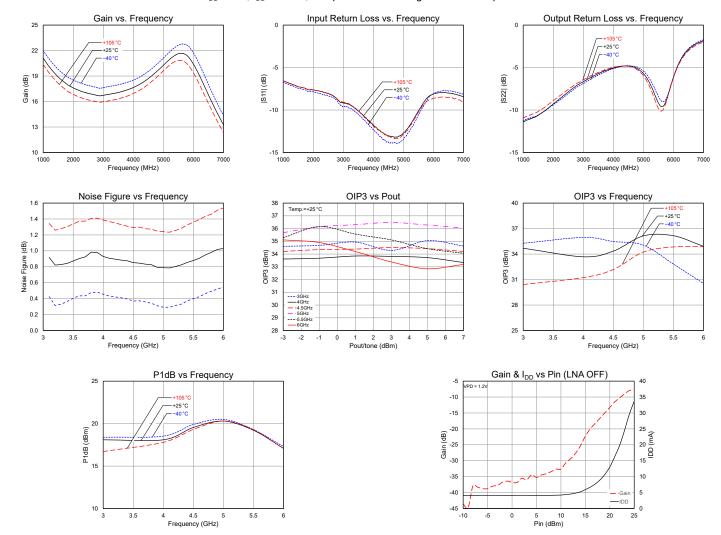
Note:

^{1.} Input trace loss deducted.

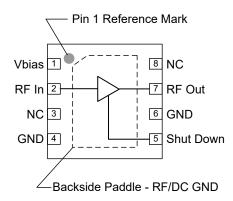
QPL9503 Evaluation Board

Notes:

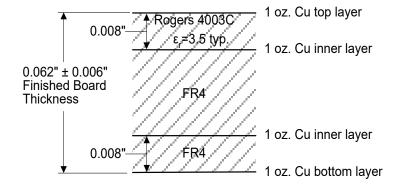
- 1. See Evaluation Board PCB Information section for material and stack-up.
- 2. R3 (0 Ω jumper) is not shown on the schematic and may be replaced with copper trace in the target application layout.
- 3. All components are of 0402 size unless stated on the schematic.
- 4. For TDD Applications: R1 = 0Ω & R2 = 220K
- 5. For FDD Applications: R2 = 220K, or 0Ω . R1 = DNP/Omitted
- 6. There is a through line on the evaluation board. It can be used for trace loss deduction.
- 7. R4 sets the I_{DD} current. Can be changed for the desired bias current.

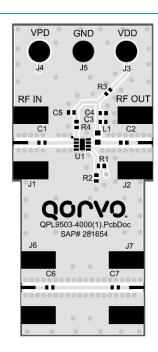

Bill of Material - QPL9503 Evaluation Board

Reference Des.	Value	Description	Manuf.	Part Number
-	-	Printed Circuit Board	Qorvo	
U1	-	LNA, Ultra Low Noise, Flat Gain	Qorvo	QPL9503
C1	10 pF	CAP, 10 pF, 1%, 50V, Hi-Q, 0402	Murata	GJM1555C1H100FB01D
C2	5.6 pF	CAP, 5.6 pF, ±0.1pF, 50V, C0G, 0402	Murata	GRM1555C1H5R6BA01D
C3	1000 pF	CAP, 1000 pF, 10%, 50V, X7R, 0402	Murata	GRM1555C1H102KA01D
C4, C5	0.1 µF	CAP, 0.1 µF, 10%, 10V, X5R, 0402	various	-
C6, C7	27 pF	CAP, 27 pF, 5%, 50V, NPO, 0402	Murata	GRM1555C1H270JA01D
C8	0.2 pF	CAP, 0.2 pF, ±0.1pF, 50V, Hi-Q, 0402	Murata	GJM1555C1HR20BB01D
C9	0.4 pF	CAP, 0.4 pF, ±0.1pF, 50V, Hi-Q, 0402	Murata	GJM1555C1HR40BB01D
L1	18 nH	IND, 18 nH, 2%, WW, 0402	Coilcraft	0402CS-18NXGRW
R1, R3	0 Ω	RES, 0 Ω, 1/16W, 0402	various	-
R2	220 K	RES, 220 K, 5%, 1/16W, 0402	various	-
R4	4.3 K	RES, 4.3 K, 5%, 1/16W, 0402	various	-


Performance Plots – QPL9503 Evaluation Board

Test conditions unless otherwise noted: V_{DD} =+5 V, I_{DD} = 65mA, Temp=+25°C. Noise figure data has input trace loss deducted.

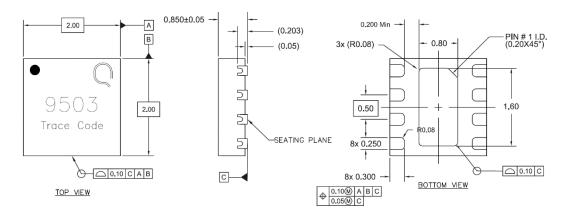

Pin Configuration and Description


Pin No.	Label	Description
1	Vbias	Bias voltage input, Sets the IDD bias current for the device.
2	RF In	RF Input pin. A DC Block is required.
5	Shut Down	Control voltage input, A voltage ≥1.17V turns off the device. If the pin is pulled to ground or driven with a voltage ≤0.63V, then the device will operate under LNA ON state.
7	RF Out	RF Output and DC voltage input through a RF choke/inductor for operation.
3 ,8	NC	No internal electrical connection. Provide grounded land pads for PCB mounting integrity.
4, 6, Backside Paddle	GND	RF/DC ground. Use recommended ground via holes to minimize inductance and thermal resistance.

Evaluation Board PCB Information

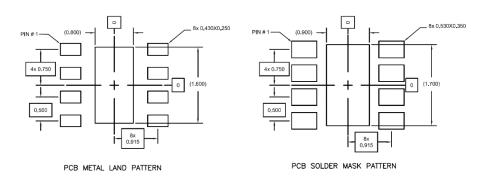
Qorvo PCB 281645 Material and Stack-up

50 Ω line dimensions: width = 0.0182", spacing = 0.020"



Package Marking and Dimensions

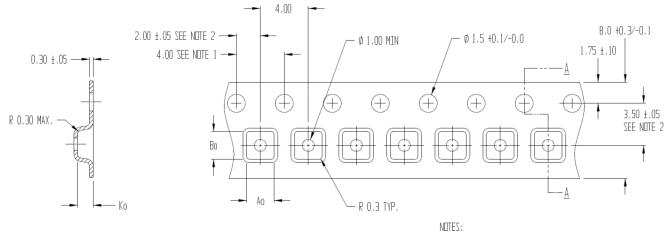
Marking: • − Pin 1 Marker 9503 − Part Number


Trace Code - Assigned by Sub-Contractor

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Except where noted, this part outline conforms to JEDEC standard MO-220, Issue E (Variation VGGC) for thermally enhanced plastic very thin fine pitch quad flat no lead package (QFN).
- 3. Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 4. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

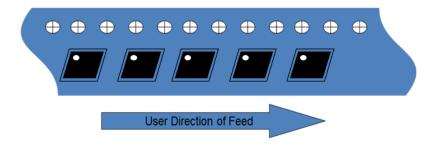
PCB Mounting Pattern


Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Use 1 oz. copper minimum for top and bottom layer metal.
- 3. Minimum 3 via holes are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25 mm (0.010").
- 4. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.

SECTION A - A

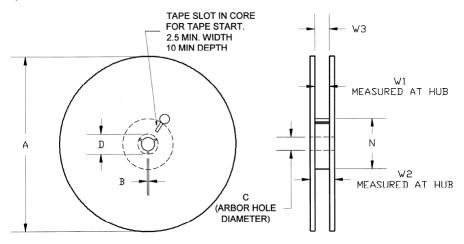
Tape and Reel Information – Carrier and Cover Tape Dimensions

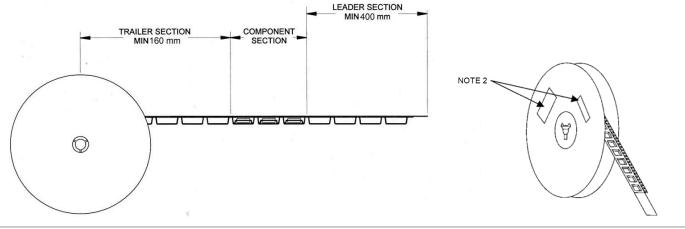


Ao = 2.30 Bo = 2.30 Ko = 1.30 1. 10 SPRDCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2

2. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE

3. Ao ANO Bo ARE CALCULATED ON A PLANE AT A DISTANCE "R" ABOVE THE BOTTOM OF THE POCKET.


Feature	Measure	Symbol	Size (in)	Size (mm)
	Length	A0	0.091	2.30
Covity	Width	В0	0.091	2.30
Cavity	Depth	K0	0.039	1.30
	Pitch	P1	0.157	4.00
Contouling Distance	Cavity to Perforation - Length Direction	P2	0.079	2.00
Centerline Distance	Cavity to Perforation - Width Direction	F	0.138	3.50
Cover Tape Width (Reference Only)		С	0.213	5.40
Carrier Tape	Width	W	0.315	8.00


Tape and Reel Information – Reel Dimensions

Standard T/R size = 2,500 pieces on a 7" reel.

Feature	Measure	Symbol	Size (in)	Size (mm)
Flange	Diameter	Α	6.969	177.00
	Thickness	W2	0.559	14.20
	Space Between Flange	W1	0.346	8.80
Hub	Outer Diameter	N	2.283	58.00
	Arbor Hole Diameter	С	0.512	13.00
	Key Slit Width	В	0.079	2.00
	Key Slit Diameter	D	0.787	20.00

Tape and Reel Information – Tape Length and Label Placement

Notes:

- 1. Empty part cavities at the trailing and leading ends are sealed with cover tape. See EIA 481-1-A.
- 2. Labels are placed on the flange opposite the sprockets in the carrier tape.

Ultra Low-Noise Flat Gain Amplifier

Handling Precautions

Parameter	Rating	Standard
ESD-Human Body Model (HBM)	Class 1C	ESDA/JEDEC JS-001-2014
ESD - Charged Device Model (CDM)	Class C3	ESDA / JEDEC JS-002-2014
MSL-Moisture Sensitivity Level	Level 1	IPC/JEDEC J-STD-020

Caution! ESD-Sensitive Device

Solderability

Compatible with lead-free (260°C max. reflow temp.) soldering process.

Solder profiles available upon request.

Contact plating: NiPdAu (Thickness: Ni 0.508 ~1.524 μm; Pd 0.023 ~ 0.1016 μm; Au 0.00254 ~ 0.01016 μm)

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>
Tel: 1-844-890-8163

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2025 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.