

High-Power NPN Silicon Transistor MJ802

This transistor is for use as an output device in complementary audio amplifiers to 100–Watts music power per channel.

Features

- High DC Current Gain $h_{FE} = 25-100$ @ $I_C = 7.5$ A
- Excellent Safe Operating Area
- Complement to the PNP MJ4502
- Pb-Free Package is Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CER}	100	Vdc
Collector-Base Voltage	V _{CB}	100	Vdc
Collector-Emitter Voltage	V _{CEO}	90	Vdc
Emitter-Base Voltage	V _{EB}	4.0	Vdc
Collector Current	I _C	30	Adc
Base Current	I _B	7.5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	200 1.14	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$\theta_{\sf JC}$	0.875	°C/W

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1

30 AMPERE POWER TRANSISTOR NPN SILICON 100 VOLTS – 200 WATTS

TO-204AA (TO-3) CASE 1-07 STYLE 1

MARKING DIAGRAM

MJ802 = Device Code
G = Pb-Free Package
A = Assembly Location

YY = Year WW = Work Week MEX = Country of Origin

ORDERING INFORMATION

Device	Package	Shipping [†]
MJ802G	TO-204 (Pb-Free)	100 Units / Tray

DISCONTINUED (Note 1)

MJ802	TO-204	100 Units / Tray

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

 DISCONTINUED: This device is not recommended for new design. Please contact your onsemi representative for information. The most current information on this device may be available on www.onsemi.com.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MJ802

ELECTRICAL CHARACTERISTICS (T_C = 25 °C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	•			•
Collector–Emitter Breakdown Voltage (I_C = 200 mAdc, R_{BE} = 100 Ω)	BV _{CER}	100	_	Vdc
Collector-Emitter Sustaining Voltage (Note 2) (I _C = 200 mAdc)	V _{CEO(sus)}	90	_	Vdc
Collector–Base Cutoff Current $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0, T_C = 150^{\circ}\text{C})$	Ісво	- -	1.0 5.0	mAdc
Emitter-Base Cutoff Current (V _{BE} = 4.0 Vdc, I _C = 0)	I _{EBO}	_	1.0	mAdc
ON CHARACTERISTICS ⁽¹⁾	·			
DC Current Gain (Note 2) ($I_C = 7.5$ Adc, $V_{CE} = 2.0$ Vdc)	h _{FE}	25	100	-
Base–Emitter "On" Voltage ($I_C = 7.5 \text{ Adc}$, $V_{CE} = 2.0 \text{ Vdc}$)	V _{BE(on)}	_	1.3	Vdc
Collector–Emitter Saturation Voltage ($I_C = 7.5$ Adc, $I_B = 0.75$ Adc)	V _{CE(sat)}	_	0.8	Vdc
Base–Emitter Saturation Voltage $(I_C = 7.5 \text{ Adc}, I_B = 0.75 \text{ Adc})$	V _{BE(sat)}	_	1.3	Vdc
DYNAMIC CHARACTERISTICS	•	,		•
Current Gain – Bandwidth Product (I _C = 1.0 Adc, V _{CF} = 10 Vdc, f = 1.0 MHz)	f _T	2.0	_	MHz

^{2.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

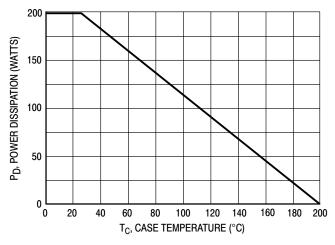


Figure 1. Power-Temperature Derating Curve

MJ802

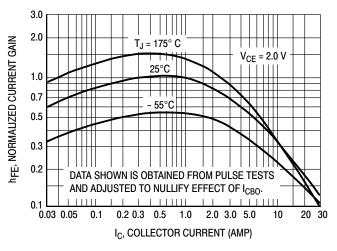


Figure 2. DC Current Gain

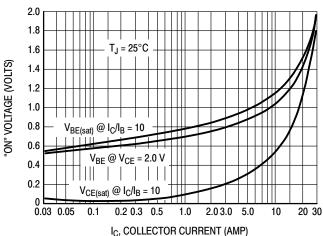


Figure 3. "On" Voltages

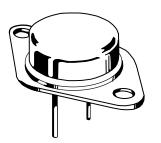
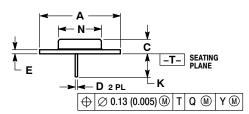
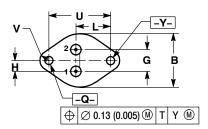



Figure 4. Active Region Safe Operating Area

The Safe Operating Area Curves indicate $I_C - V_{CE}$ limits below which the device will not enter secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a catastrophic failure. To insure operation below the maximum T_J , power temperature derating must be observed for both steady state and pulse power conditions.





TO-204 (TO-3) CASE 1-07 ISSUE Z

DATE 10 MAR 2000

SCALE 1:1

CASE: COLLECTOR

CASE: CATHODE

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

- 2. CONTROLLING DIMENSION: INCH.
 3. ALL RULES AND NOTES ASSOCIATED WITH
 REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	1.550 REF		1.550 REF 39.37 REF		
В		1.050		26.67	
C	0.250	0.335	6.35	8.51	
D	0.038	0.043	0.97	1.09	
Е	0.055	0.070	1.40	1.77	
G	0.430 BSC		10.92 BSC		
Н	0.215	BSC	5.46	BSC	
K	0.440	0.480	11.18	12.19	
L	0.665 BSC		16.89	BSC	
N		0.830		21.08	
Q	0.151	0.165	3.84	4.19	
U	1.187 BSC		30.15 BSC		
٧	0.131	0.188	3.33	4.77	

STYLE 2: PIN 1. BASE 2. COLLECTOR STYLE 3: PIN 1. GATE 2. SOURCE STYLE 5: PIN 1. CATHODE 2. EXTERNAL TRIP/DELAY CASE: ANODE STYLE 4: PIN 1. GROUND 2. INPUT STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR CASE: EMITTER CASE: DRAIN CASE: OUTPUT STYLE 6: STYLE 7: STYLE 8: STYLE 9: PIN 1. CATHODE #1 2. CATHODE #2 PIN 1. GATE 2. EMITTER PIN 1. ANODE 2. OPEN PIN 1. ANODE #1 2. ANODE #2

CASE: CATHODE

CASE: ANODE

DOCUMENT NUMBER:	98ASB42001B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-204 (TO-3)		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves onsem and of 15G11 if are trademarks of Semiconductor Components industries, LLC due onsem or its substitutines in the Office States and/or other countries. Onsem reserves the right to make changes without further notice to any products herein. onsem makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales