Model 375 HFF LVDS VCXO

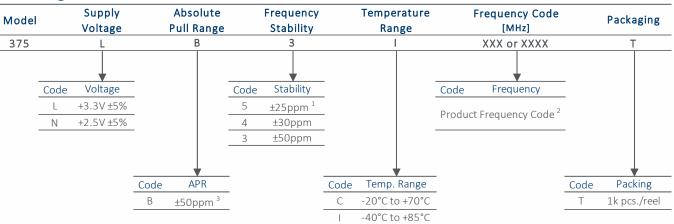
Cis

Features

- Ceramic Surface Mount Package
- Ultra-Low Phase Jitter Performance
- High Frequency Fundamental Crystal Design
- Frequency Range 100 250MHz *
- +2.5V or +3.3V Operation
- Output Enable Standard
- Tape and Reel Packaging, EIA-418

Applications

- Small Cells
- Wireless Communication
- Broadband Access
- SONET/SDH/DWDM
- Base Stations
- Ethernet/GbE/SyncE
- Digital Video
- Test and Measurement


Part Dimensions: 5.0 × 3.2 × 1.2mm • 62.28mg	

Standard Frequencies						
- 100.00MHz	- 156.25MHz					
- 122.88MHz	- 160.00MHz					
- 125.00MHz	- 166.00MHz					
- 153.60MHz	- 200.00MHz					
- 155.52MHz	- 204.80MHz					
* Check factory for availability of frequencies not listed.						

Description

CTS Model 375 is a low cost, small size, high performance VCXO. Employing the latest IC technology, coupled with a high frequency fundamental crystal, M375 has excellent stability and low jitter/phase noise performance.

Ordering Information

Notes:

- 1] Check factory availability with "I" temperature range.
- 2] Refer to document 016-1454-0, Frequency Code Tables. 3-digits for frequencies <100MHz, 4-digits for frequencies 100MHz or greater.
- 3] Frequencies ≥200MHz, APR is ±30ppm.

Not all performance combinations and frequencies may be available. Contact your local CTS Representative or CTS Customer Service for availability.

This product is specified for use only in standard commercial applications. Supplier disclaims all express and implied warranties and liability in connection with any use of this product in any non-commercial applications or in any application that may expose the product to conditions that are outside of the tolerances provided in its specification.

DOC# 008-0559-0 Rev. D

www.ctscorp.com

Page 1 of 7

Operating Conditions

SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC}	-	-0.3	-	5.0	V
V _C	-	-0.5	-	V _{CC}	V
		3.14	3.3	3.47	V
V _{CC}	±5%	2.38	2.5	2.63	
I _{CC}	LVDS Load	-	20	55	mA
RL	Between Outputs	-	100	-	Ohms
т		-20	125	+70	°C
١ _A	-	-40	+25	+85	C
T _{STG}	-	-40	-	+100	°C
	V _{CC} V _C V _{CC} I _{CC} R _L T _A	V _{CC} - V _C - V _{CC} ±5% I _{CC} LVDS Load R _L Between Outputs T _A -	$ \begin{array}{c ccc} & - & -0.3 \\ \hline V_{CC} & - & -0.5 \\ \hline V_{CC} & \pm 5\% & 3.14 \\ \hline 2.38 \\ \hline I_{CC} & LVDS \ Load & - \\ \hline R_L & Between \ Outputs & - \\ \hline T_A & - & -20 \\ \hline -40 \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccccc} & - & -0.3 & - & 5.0 \\ \hline V_{CC} & - & -0.5 & - & V_{CC} \\ \\ & & & & & & & \\ V_{CC} & \pm 5\% & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ \hline V_{CC} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ \hline V_{CC} & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ \hline V_{CC} & & & & & & & \\ & & & & & & & & \\ \hline V_{CC} & & & & & & & \\ \hline & & & & & & & \\ \hline V_{CC} & & & & & & & \\ \hline & & & & & & & & \\ \hline V_{CC} & & & & & & & \\ \hline & & & & & & & & \\ \hline V_{CC} & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & &$

Frequency Stability

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Frequency Range	f _o	- 100 - 250			MHz	
Frequency Stability [Note 1]	∆f/f _O	±25ppm stability, -20°C to +70°C only		25, 30 or 50		±ppm
Absolute Pull Range	APR	Frequencies <200MHz	50	-	-	±ppm
[Note 2]	APR	Frequencies ≥200MHz	30	-	-	±ppm
Aging	$\Delta f/f_{25}$	First Year @ +25°C, nominal V $_{CC}$ and V $_{C}$	-3	-	3	ppm
1.] Inclusive of initial tolerance at tim	ne of shipment, chan	ges in supply voltage, load, temperature and 1st ye	ar aging.			

2.] Minimum guaranteed frequency shift from f o over variations in temperature, aging, power supply and load.

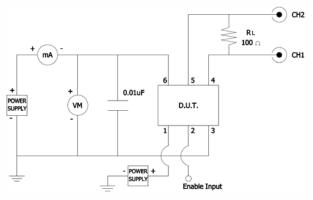
Output Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Output Type	-	-		LVDS		-
Output Voltage Levels	V _{OH}	LVDS Load	-	1.43	1.60	V
Output voltage Levels	V _{OL}	LVDS Load	0.90	1.10	-	v
Differential Output Voltage	V _{OD}	R _L = 100 Ohms	247	350	454	mV
Offset Voltage	V _{OS}	R _L = 100 Ohms	1.125	1.25	1.375	V
Output Duty Cycle	SYM	@ 1.25V	45	-	55	%
Rise and Fall Time	T _R , T _F	@ 20%/80% Levels	-	0.4	1.0	ns
Start Up Time	Τs	Application of V_{CC}	-	5	10	ms
Enable Function						
Enable Input Voltage	V _{IH}	Pin 2 Logic '1', Output Enabled	$0.7V_{CC}$	-	-	V
Disable Input Voltage	V _{IL}	Pin 2 Logic '0', Output Disabled	-	-	$0.3V_{CC}$	V
Standby Current	I _{STB}	Pin 2 Logic '0', Output Standby	-	-	10	μΑ
Enable Time	T _{PLZ}	Pin 2 Logic '1'	-	-	20	μs
Phase Jitter, RMS	tjrms	Bandwidth 12kHz - 20MHz	-	70	200	fs
Phase Noise	-	See Typical Plots	-	-	-	-

DOC#008-0559-0 Rev. D

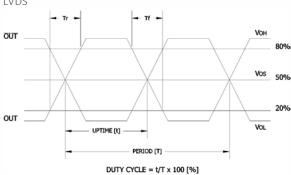
www.ctscorp.com

Enable Truth Table


Pin 2	Pin 4 & 5	Pin 2	Pin 4 & 5	Pin 2	Pin 4 & 5
Logic '1'	Output	Open	Output	Logic 'O'	High Imp.

Control Voltage

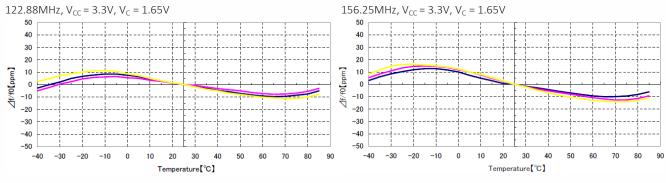
PARAMETER	SYMBOL CONDITIONS		MIN	TYP	MAX	UNIT	
Control Voltage		V _{CC} = +3.3V	0.00	1.65	3.30	V	
	Vc	$V_{CC} = +2.5V$	0.25	1.25	2.25	V	
Frequency Deviation		V _C = 0.0V		-155 to -75			
	A C / C	$V_{c} = +3.3V$		75 to 155		ppm	
	$\Delta f/f_0$ –	$V_{\rm C} = 0.0 V$		-140 to -50			
		$V_{\rm C} = +2.5 V$		50 to 140		ppm	
Linearity	L	Best Straight Line Fit	-	5	10	%	
Gain Transfer	K	Pull Sensitivity; @ +1.65V, +25°C	-	75	-	ppm/V	
	K _V	Pull Sensitivity; @ +1.25V, +25°C	-	75	-	ppm/V	
Input Impedance	Z _{Vc}	-	10	-	-	MOhms	
Modulation Roll-off	-	@ -3dB	20	-	-	kHz	
Transfer Function	-	-		Positive		-	

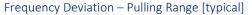

Test Circuit

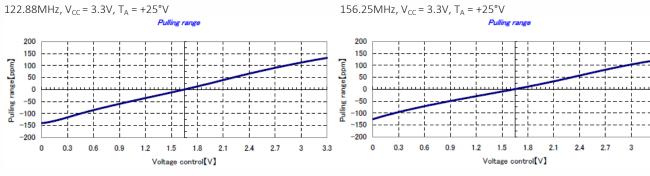
LVDS

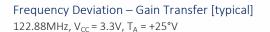
Output Waveform

DOC#008-0559-0 Rev. D


www.ctscorp.com


Page 3 of 7



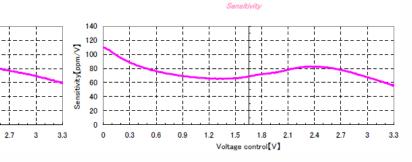

Performance Data

Frequency Deviation - Over Temperature [typical]

Sensitivity

1.5

1.8


Voltage control[V]

2.1

1.2

2.4

156.25MHz, V_{CC} = 3.3V, T_A = +25°V

140

120

100

80

60

40

20 0

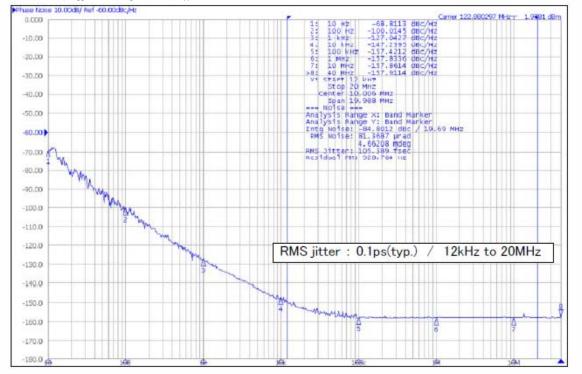
0 0.3 0.6 0.9

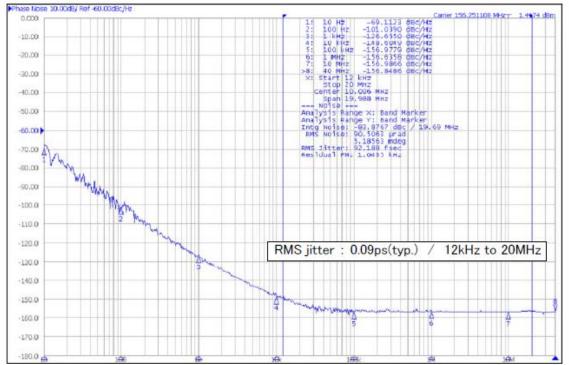
Sensitivity[ppm/V]

DOC# 008-0559-0 Rev. D

www.ctscorp.com

Page 4 of 7

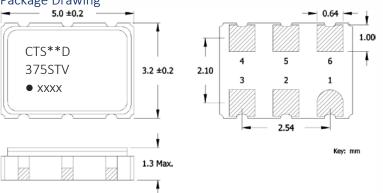

3.3


Performance Data

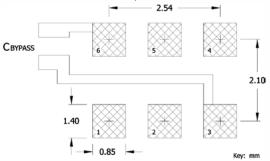
Phase Noise [typical]

122.88MHz, V_{CC} = 3.3V, V_{C} = 1.65V, T_{A} = +25°C

DOC# 008-0559-0 Rev. D


www.ctscorp.com

Page 5 of 7



Mechanical Specifications

Recommended Pad Layout

Pin Assignments

Pin	Symbol	Function
1	V _C	Control Voltage
2	EOH	Enable
3	GND	Circuit & Package
4	Output	RF Output
5	Output	RF Output, Complementary
6	V _{cc}	Supply Voltage

Table I - Date Code

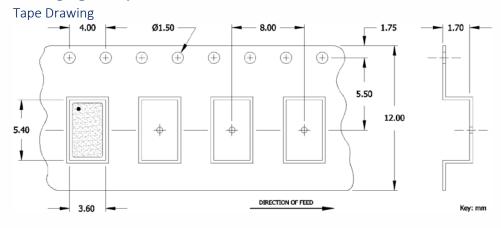
	MONTH					JAN FEB MAR APR MAY		JUN	JUL	AUG	SEP	ост	NOV	DEC		
	YE	AR			JAN	FED	WAR	APR	WAT	JON	JUL	AUG	SEP	001	NUV	DEC
2001	2005	2009	2013	2017	А	В	С	D	E	F	G	Н	J	К	L	Μ
2002	2006	2010	2014	2018	Ν	Р	Q	R	S	Т	U	V	W	Х	Y	Z
2003	2007	2011	2015	2019	а	b	С	d	е	f	g	h	j	k		m
2004	2008	2012	2016	2020	n	р	q	r	S	t	u	V	W	х	У	Z

Marking Information

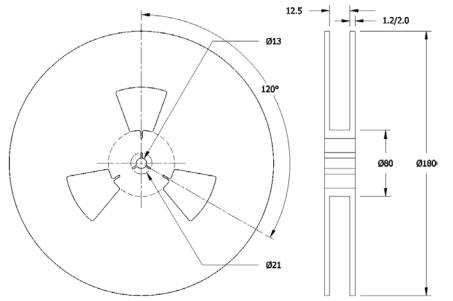
- 1. ** Manufacturing Site Code.
- 2. D Date Code. See Table I for codes.
- 3. ST Frequency Stability/Temperature Code. [Refer to Ordering Information]
- 4. V Voltage Code. L = 3.3V, N = 2.5V
- 5. xxxx Frequency Code. 4-digits required for frequencies 100MHz and above.

[See document 016-1454-0, Frequency Code Tables.]

Notes


- 1. JEDEC termination code (e4). Barrier-plating is nickel [Ni] with gold [Au] flash plate.
- Reflow conditions per JEDEC J-STD-020; +260°C maximum, 20 seconds.
- 3. MSL = 1.

DOC# 008-0559-0 Rev. D


www.ctscorp.com

Packaging - Tape and Reel

Reel Drawing

Notes

1. Device quantity is 1k pieces maximum per 180mm reel.

2. Complete CTS part number, frequency value and date code information must appear on reel and carton labels.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

CTS:

375NB3C1660T 375NB5C1660T 375LB5I1536T 375NB5C1562T 375NB5I1555T 375NB5I1228T 375NB5I1562T
<u>375LB6C1555T</u> <u>375LB3C1555T</u> <u>375LB3I1250T</u> <u>375NB5C1000T</u> <u>375NB6C1000T</u> <u>375NB5I1536T</u> <u>375NB5I1250T</u>
375NB5I1000T 375NB3I1250T 375LB6C1250T 375NB6C1228T 375LB3C2000T 375LB5I1228T 375LB5I1660T
<u>375NB5C1228T</u> <u>375LB3C1000T</u> <u>375NB3C1228T</u> <u>375LB3I2048T</u> <u>375LB3I1228T</u> <u>375NB3I1536T</u> <u>375LB3I1000T</u>
<u>375LB5C1536T</u> <u>375LB5I1250T</u> <u>375LB5C1555T</u> <u>375LB5C1228T</u> <u>375NB5I2048T</u> <u>375NB3C1000T</u> <u>375LB5C1660T</u>
<u>375NB3I1000T</u> <u>375LB5C1000T</u> <u>375LB6C2000T</u> <u>375LB3I1660T</u> <u>375NB3I2048T</u> <u>375LB3C2048T</u> <u>375NB6C1250T</u>
375NB5I1660T 375LB3I1562T 375NB3I1660T 375LB3C1660T 375NB3I2000T 375LB5I2048T 375NB3C1555T
<u>375LB5I1555T</u> <u>375NB5C2048T</u> <u>375LB6C1562T</u> <u>375LB3C1562T</u> <u>375NB3I1562T</u> <u>375NB6C1555T</u> <u>375LB5C2000T</u>
<u>375LB3I2000T</u> <u>375LB5I2000T</u> <u>375LB6C2048T</u> <u>375NB3C2048T</u> <u>375NB5C1250T</u> <u>375NB3C2000T</u> <u>375NB3C1562T</u>
<u>375LB3I1536T</u> <u>375LB6C1228T</u> <u>375LB6C1000T</u> <u>375NB6C2000T</u> <u>375NB3C1250T</u> <u>375LB5C2048T</u> <u>375LB6C1660T</u>
<u>375NB5C1555T</u> <u>375LB3C1228T</u> <u>375NB5I2000T</u> <u>375LB3I1555T</u> <u>375LB3C1250T</u> <u>375NB3C1536T</u> <u>375NB3I1228T</u>
<u>375NB6C2048T</u> <u>375LB5C1250T</u> <u>375LB5I1000T</u> <u>375NB6C1660T</u> <u>375NB6C1536T</u> <u>375LB5C1562T</u> <u>375NB3I1555T</u>
375LB3C1536T 375NB5C2000T 375NB5C1536T 375NB6C1562T 375LB6C1536T 375LB5I1562T