

USB Type-C Port Protector for CC and SBU Pins

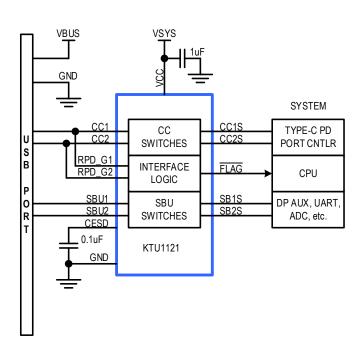
Features

- Overvoltage Protection
 - ► 24VDC Tolerance on CC1/2, SBU1/2
 - ► CC1/2 OVP = 5.8V
 - ► SBU1/2 OVP = 4.8V
 - ▶ Ultra-Fast 15ns Response Time
- IEC61000-4-5 Surge Protection
 - ▶ ±40V Surge Tolerance on CC1/2
 - ▶ ±30V Surge Tolerance on SBU1/2
- IEC61000-4-2 ESD Protection
 - ▶ ±15kV air gap on CC1/2, SBU1/2
 - ▶ ±8kV contact on CC1/2, SBU1/2
 - ► ±2kV HBM on all pins (JEDEC JS-001-2017)
- CC Switches:
 - ▶ 1.25A, 270mΩ, 40pF, 140MHz
 - Automatic 5.1kΩ dead battery pull-down
- SBU Switches:
- ► 3Ω, 11pF, 800MHz
- 2.5V to 5.5V Operating Supply Voltage Range
- -40°C to 85°C Operating Temperature Range
- 16-bump WLCSP 1.7mm x 1.7mm (0.4mm pitch)
- 20 pin TQFN 3mm x 3mm (0.4mm pitch)
- RoHS and Green Compliant

Typical Application

Brief Description

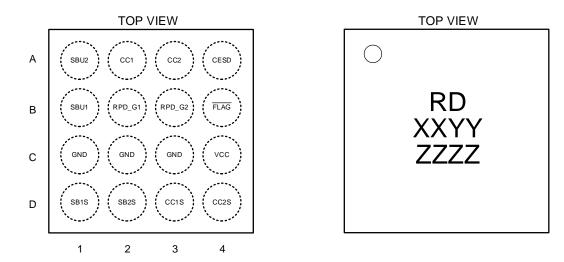
The KTU1121 provides four conducting paths with overvoltage protection (OVP) for USB Type-C CC and SBU signals. Once an overvoltage event is detected, it will shut down all paths to protect circuits in system side, like PD controller from damage.

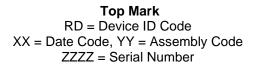

All the SBU and CC switches have very low oncapacitance for broad bandwidth to allow high-speed signal passing through without loss. The CC1/2 switches have low on-resistance for passing V_{CONN} power up to 1.25A.

During dead battery conditions, internal $5.1k\Omega$ resistors automatically pull-down on CC1/2 to ensure that the upstream source provides 5V on VBUS.

The KTU1121 is packaged in RoHS and Green compliant 16-bump WLCSP 1.7mm x 1.7mm package or 20 pin 3mm x 3mm TQFN package.

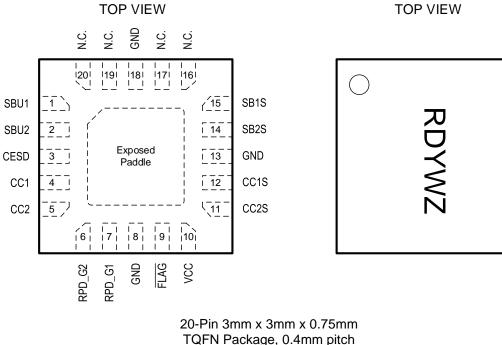
Applications


- Notebook PCs, Netbooks, Tablets, Monitors, TVs
- Gaming Devices, Set-Top Boxes, Networking



Pinout Diagram

WLCSP44-16



16-Pin 1.7mm x 1.7mm WLCSP Package, 0.4mm pitch

TQFN33-20

TOP VIEW

TQFN Package, 0.4mm pitch Top Mark RD = Device ID Code, YW = Date Code, Z = Serial Number

Pin Descriptions

Pin # (CSP)	Pin # (TQFN)	Name	Function	
B1	1	SBU1	Connector side of SBU1 switch	
A1	2	SBU2	Connector side of SBU2 switch	
A4	3	CESD	Capacitor connection for ESD protection for CC1, CC2, SBU1 and SBU2 inputs	
A2	4	CC1	Connector side of CC1 switch	
A3	5	CC2	Connector side of CC2 switch	
C1 ~ C3	8, 13, 18, ExPad	GND	Ground	
B4	9	FLAG	Active low fault flag output to alert system to an OVP fault condition	
C4	10	VCC	Device supply input – connect to a 2.5V to 5.5V source.	
D4	11	CC2S	System side of CC2 switch	
D3	12	CC1S	System side of CC1 switch	
D2	14	SB2S	System side of SBU2 switch	
D1	15	SB1S	System side of SBU1 switch	
B2	7	RPD_G1	Dead battery resistor setup: Short to CC1 if dead battery resistors are needed. Short to GND if not required	
B3	6	RPD_G2	Dead battery resistor setup: Short to CC2 if dead battery resistors are needed. Short to GND if no required	

Ordering Information

Part Number Marking		Operating Temperature	Package	
KTU1121EGAB-TA	RDXXYYZZZZ ¹	-40°C to +85°C	WLCSP44-16	
KTU1121EUAJ-TD	RDYWZ ²	-40°C to +85°C	TQFN33-20	

KTU1121

^{1.} XX = Date Code, YY = Assembly Code, ZZZZ = Serial Number

^{2.} YW = Date Code, Z = Serial Number

Absolute Maximum Ratings³

(T_A = 25°C unless otherwise noted)

Symbol	Description	Value	Units	
Vcc	VCC to GND	-0.3 to 6	V	
	CC1, CC2, RPD_G1, RPD_G2, SBU1, SBU2 to GND	-0.3 to 24		
VIO	V _{IO} CC1S, CC2S, SB1S, SB2S to GND		V	
	FLAG to GND	-0.3 to 6		
	CCn to CCnS Continuous Current	±1250		
l _{io}	I _{IO} CCn to CCnS Peak Current (2.5ms)		mA	
	SBUn to SBnS, Continuous Current	±100		
V _{CESD}	CESD to GND	-0.3 to 24	V	
TJ	Junction Operating Temperature Range	-40 to 150	°C	
Ts	Storage Temperature Range	-55 to 150	°C	
T _{LEAD}	Maximum Soldering Temperature (at leads, 10 sec)	260	°C	

ESD and Surge Ratings⁴

Symbol	Description	Value	Units
Vesd_hbm	JEDEC JS-001-2017 ESD Human Body Model (all pins)	±2	kV
Vesd_cdm	JEDEC JESD22-C101 Charged Device Model (all pins)	±500	V
Vesd_cd	IEC61000-4-2 ESD Contact Discharge (CC1, CC2, SBU1, SBU2)	±8	kV
V _{ESD_AGD}	AGD IEC61000-4-2 ESD Air-Gap Discharge (CC1, CC2, SBU1, SBU2)		kV
Maria	IEC61000-4-5 Surge (CC1, CC2 to GND)	±40	V
Vsurge	IEC61000-4-5 Surge (SBU1, SBU2 to GND)	±30	V

Thermal Capabilities⁵

Symbol	Description	Value	Units
WLCSP-16			
θ _{JA}	Thermal Resistance – Junction to Ambient	96	°C/W
PD	Maximum Power Dissipation at $T_A \le 25^{\circ}C$	1300	mW
$\Delta P_D / \Delta T$	Derating Factor Above $T_A = 25^{\circ}C$	-10.4	mW/°C
TQFN33-20			
θ_{JA}	Thermal Resistance – Junction to Ambient	60	°C/W
PD	Maximum Power Dissipation at $T_A \le 25^{\circ}C$	2075	mW
$\Delta P_D / \Delta T$	Derating Factor Above $T_A = 25^{\circ}C$	-16.6	mW/°C

³ Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum rating should be applied at any one time.

⁴ ESD and Surge Ratings conform to JEDEC and IEC industry standards. Some pins may actually have higher performance. Surge ratings apply with chip enabled, disabled, or unpowered based on Kinetic EVB, unless otherwise noted.

⁵ Junction to Ambient thermal resistance is highly dependent on PCB layout. Values are based on thermal properties of the device when soldered to an EV board.

Electrical Characteristics⁶

Unless otherwise noted, the *Min* and *Max* specs are applied over the full operation temperature range of -40° C to $+85^{\circ}$ C and V_{CC} = 2.5V to 5.5V. Typical values are specified at T_A = $+25^{\circ}$ C with V_{CC} = 3.0V.

Supply Specifications

Description	Conditions	Min	Тур	Max	Units
Supply Operating Range		2.5		5.5	V
Under-Voltage Lockout	Rising threshold	2.12	2.3	2.48	V
Threshold	Hysteresis		100		mV
Supply Current	$V_{CC} = 3.0V$		40		μΑ
cations					
Description	Conditions	Min	Тур	Max	Units
Output Logic Low (FLAG)	Iosink = 3mA		0.1	0.4	V
Output Logic Leakage (FLAG)	$T_A = +25^{\circ}C$, $V_O = high-Z$ or V_{CC}		0.01	1	μA
FLAG Response Time (with 100k pull-up) ⁷	Activation		45		ns
From OVP removed to FLAG recovered			5		ms
	Under-Voltage Lockout Threshold Supply Current cations Description Output Logic Low (FLAG) Output Logic Leakage (FLAG) FLAG Response Time (with 100k pull-up) ⁷ From OVP removed to FLAG	Under-Voltage Lockout ThresholdRising thresholdUnder-Voltage Lockout ThresholdHysteresisSupply Current $V_{CC} = 3.0V$ cations $V_{CC} = 3.0V$ DescriptionConditionsOutput Logic Low (FLAG)IosINK = 3mAOutput Logic Leakage (FLAG) $T_A = +25^{\circ}C$, $V_O = high-Z \text{ or } V_{CC}$ FLAG Response Time (with 100k pull-up)7ActivationFrom OVP removed to FLAG recoveredFLAG	$\begin{tabular}{ c c c c c } \hline Rising threshold & 2.12 \\ \hline Rising threshold & 2.12 \\ \hline Hysteresis & & & \\ \hline Supply Current & V_{CC} = 3.0V \\ \hline \end{tabular} tabula$	$\begin{tabular}{ c c c c c c } \hline Picture & Pising threshold & 2.12 & 2.3 \\ \hline Hysteresis & 100 \\ \hline Supply Current & V_{CC} = 3.0V & 40 \\ \hline cations \\ \hline \hline Description & Conditions & Min & Typ \\ \hline Output Logic Low (FLAG) & I_{OSINK} = 3mA & 0.1 \\ \hline Output Logic Leakage (FLAG) & T_A = +25^\circ C, V_O = high-Z or V_{CC} & 0.01 \\ \hline FLAG Response Time (with 100k pull-up)^7 & Activation & 45 \\ \hline From OVP removed to FLAG & 5 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c c c } \hline Rising threshold & 2.12 & 2.3 & 2.48 \\ \hline Hysteresis & 100 \\ \hline Supply Current & V_{CC} = 3.0V & 40 \\ \hline \hline cations \\ \hline \hline Description & Conditions & Min & Typ & Max \\ \hline Output Logic Low (FLAG) & I_{OSINK} = 3mA & 0.1 & 0.4 \\ \hline Output Logic Leakage (FLAG) & T_A = +25^\circ C, V_O = high-Z or V_{CC} & 0.01 & 1 \\ \hline FLAG Response Time (with 100k pull-up)^7 & Activation & 45 \\ \hline From OVP removed to FLAG & 5 \\ \hline \hline \end{array}$

Symbol	Description	Conditions	Min	Тур	Max	Units
T IC lunction 7	IC Junction Thormal Shutdown ⁷	T _J rising		150		°C
I J_SHDN	T _{J_SHDN} IC Junction Thermal Shutdown ⁷	Hysteresis		20		°C

(continued next page)

^{6.} Device is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range by design, characterization and correlation with statistical process controls.

^{7.} Guarantee by characterization and/or simulation.

Electrical Characteristics (continued)⁶

Unless otherwise noted, the *Min* and *Max* specs are applied over the full operation temperature range of -40° C to $+85^{\circ}$ C and V_{CC} = 2.5V to 5.5V. Typical values are specified at T_A = $+25^{\circ}$ C with V_{CC} = 3.0V.

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{CC1/2}	Switch Voltage Operating Range		-0.3		5.5	V
N/		Rising threshold	5.6	5.8	6.0	V
Vovp_cc	OVP Threshold	Hysteresis		50		mV
Ron_cc	On-Resistance (–40°C ≤ TJ ≤ +85°C)	Value, $V_{CC1/2} = 0V$ to V_{CC}		270	390	mΩ
Con_cc	On-Capacitance ⁷	Capacitance from CCx or CCxS to GND when device is powered. Measure at $V_{CCx}/V_{CCxS} = 0V$ to 1.2V, f = 400kHz.		40		pF
BWon_cc	On-Bandwidth ⁷	Measure the -3dB bandwidth from CCx to CCxS. Single ended measurement, 50Ω system. Vcm = 0.1V to 1.2V.		140		MHz
Rcc1/2_gnd	Resistance to GND	$V_{CC1/2} \leq V_{CC}, T_A = +25^{\circ}C$		12.8		MΩ
ICCLK	Switch Off Leakage Current	$V_{CC} = 0V$, $V_{CC1/2} = 5.5V$, $V_{CC1/2S} = 0V$, $T_A = +25^{\circ}C$, measure current out of CC1/2S		0.1	1	μA
V _{CC1/2_DB}	Dead Battery Threshold Voltage	$V_{CC} < V_{UVLO}, I_{CC1/2} = 80 \mu A$	0.5	0.82	1.1	V
ton_cc	Switch Turn-On Time	V _{CC} rising > V _{UVLO}		1.3	3.5	ms
toff_cc	Switch Turn-Off Time ⁷	Vcc falling < VuvLo		1		μs
tovp_cc_r	OVP Rising Response Time ⁷	$V_{CC} = 3.0V$, short CC1/2 to VBUS (20V) $T_A = +25^{\circ}C$		15		ns
Vcc1/2s_max	OVP Rising Maximum System Voltage ⁷	Hot-Plug CCx with a 1 meter USB Type C Cable. Hot-Plug voltage CCx = 24V. Vcc = $3.3V$. Place a 30Ω load on CCxS		7		V
tovp cc f	OVP Falling Debounce Time			0.9		ms

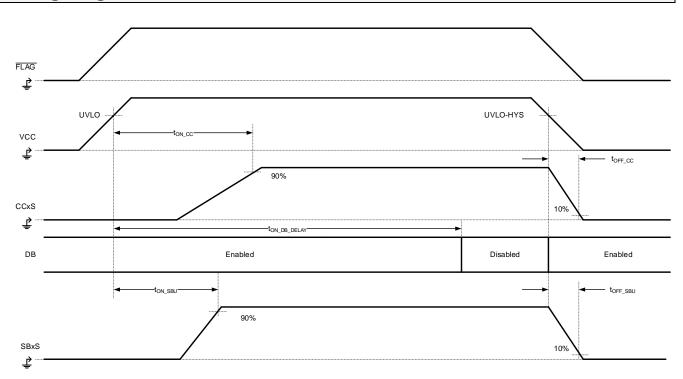
(continued next page)

Electrical Characteristics (continued)⁶

Unless otherwise noted, the *Min* and *Max* specs are applied over the full operation temperature range of -40° C to $+85^{\circ}$ C and V_{CC} = 2.5V to 5.5V. Typical values are specified at T_A = $+25^{\circ}$ C with V_{CC} = 3.0V.

Symbol	Description	Conditions	Min	Тур	Max	Units
VSBU1/2	Switch Voltage Operating Range		-0.3		4.5	V
N/		Rising threshold	4.6	4.8	5.0	V
Vovp_sbu	OVP Threshold	Hysteresis		50		mV
Ron_sbu	On-Resistance (–40°C ≤ Tյ≤ +85°C)	Value, V _{SBU1/2} = 0V to V _{CC}		3.0	6.3	Ω
Con_sbu	On-Capacitance ⁷	Capacitance from SBUx or SBxS to GND when device is powered. Measure at $V_{SBUx}/V_{SBxS} = 0.3V$ to 4.2V.		11		pF
BWon_sbu	On-Bandwidth Single Ended(-3dB) ⁷	Measure the -3dB bandwidth from SBUx to SBxS. Single ended measurement, 50Ω system. Vcm = 0.1V to 3.6V.		800		MHz
X _{TALK}	Crosstalk ⁷	Measure crosstalk at $f = 1$ MHz from SB1S to SBU2 or SB2S to SBU1. Vcm1 = 3.6V, Vcm2 = 0.3V. Terminate open sides to 50 Ω .		-70		dB
R _{SBU1/2_GND}	Resistance to GND	$V_{SBU1/2} \leq V_{CC}, T_A = +25^{\circ}C$	10	12.8		MΩ
ISBULK	Switch Off Leakage Current	$\label{eq:VCC} \begin{array}{l} V_{CC} = 0V, \ V_{SBU1/2} = 4.5V, \ V_{SB1/2S} = \\ 0V, \ T_A = +25^{\circ}C, \ measure \ current \ out \\ of \ SBU1/2S \end{array}$		0.1	1	μΑ
ton_sbu	Switch Turn-On Time	V _{CC} rising > V _{UVLO}		1.3	3.5	ms
toff_sbu	Switch Turn-Off Time ⁷	Vcc falling < VuvLo		1		μs
tovp_sbu_r	OVP Response Time ⁷	$V_{CC} = 3.0V$, initial $V_{SBU1/2} = 3.3V$, short SBU1/2 to VBUS (20V), $T_A = +25^{\circ}C$		15		ns
Vsb1/2s_max	OVP Rising Maximum System Voltage ⁷	Hot-Plug SBUx with a 1 meter USB Type C Cable. Hot-Plug voltage SBUx = 24V. Vcc = $3.3V$. Put a 150nF capacitor in series with a 40 Ω resistor to GND on SBUxS		6		V
tovp_sbu_f	OVP Falling Debounce Time			0.6		ms

Electrical Characteristics (continued)⁶


Unless otherwise noted, the *Min* and *Max* specs are applied over the full operation temperature range of -40° C to $+85^{\circ}$ C and V_{CC} = 2.5V to 5.5V. Typical values are specified at T_A = $+25^{\circ}$ C with V_{CC} = 3.0V.

Dead Battery Resistors Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{ON_DB_DELAY}	From VCC exceeding UVLO to dead battery resistors are off. (CCx and SBUx channels should be on prior to DB off)			5.7	9.5	ms
ton_db_ovp	From OVP recover to DB resistors back to turn off. Same period as tFLAG_RECOVER. See Figure 2 for more details			5		ms
Rdb	Dead Battery Pull-Down Resistance	$V_{CC} < V_{UVLO}, V_{CC1/2} = 2.6V$	4.1	5.1	6.1	kΩ

Timing Diagrams

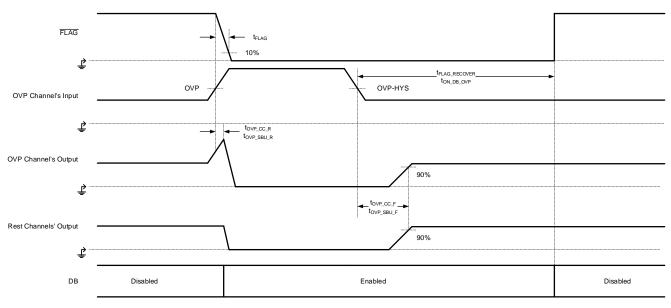
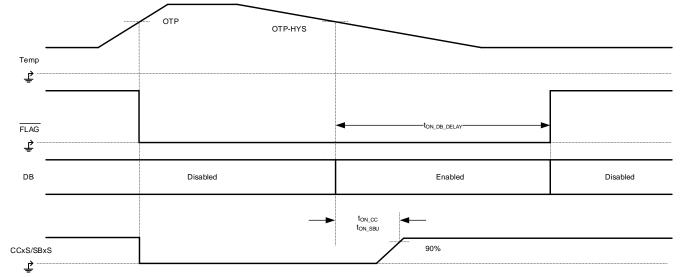
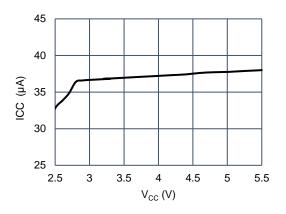
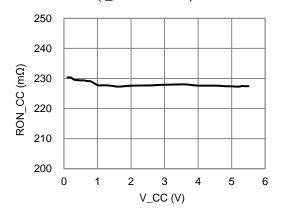


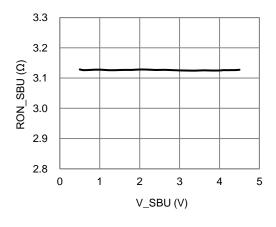
Figure 2. OVP

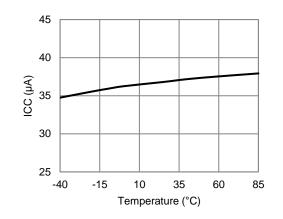



Figure 3. OTP

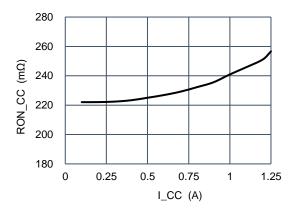

Typical Characteristics

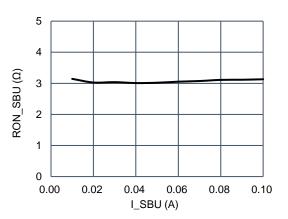
 $V_{CC} = 3.3V$, $C_{VCC} = 1\mu F$, $C_{ESD} = 0.1\mu F$, $T_{AMB} = 25^{\circ}C$ unless otherwise specified.


Vcc Supply Current vs Vcc Voltage



CC Switch R_{ON} vs. Switch Voltage (I_CC = 200mA)

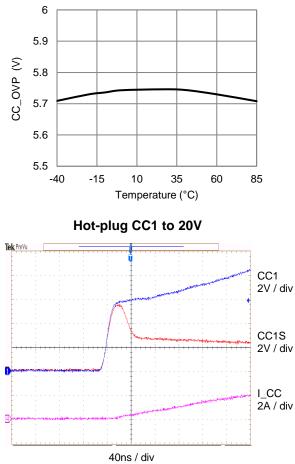

SBU Switch R_{ON} vs. Switch Voltage (I_SBU = 100mA)



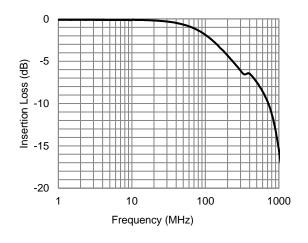
V_{cc} Supply Current vs. Temperature

CC Switch Ron vs. Switch Current

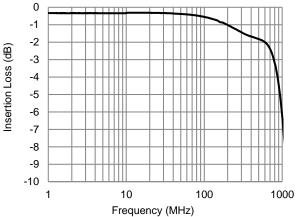
SBU Switch RON vs. Switch Current

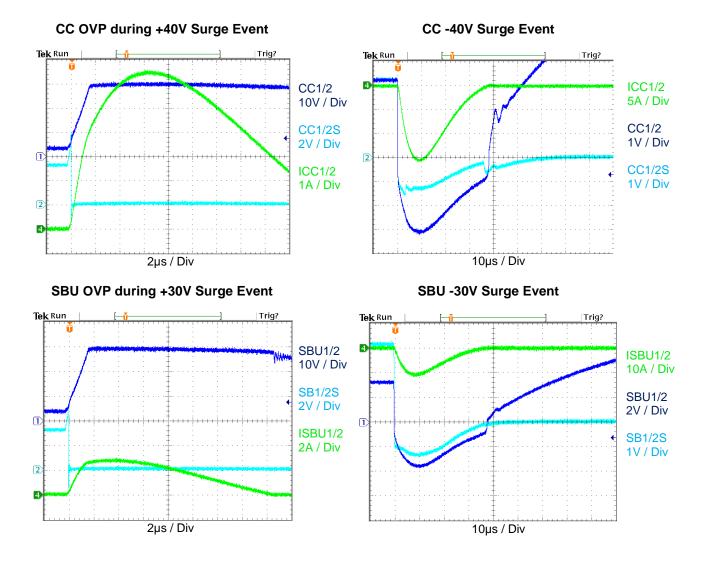


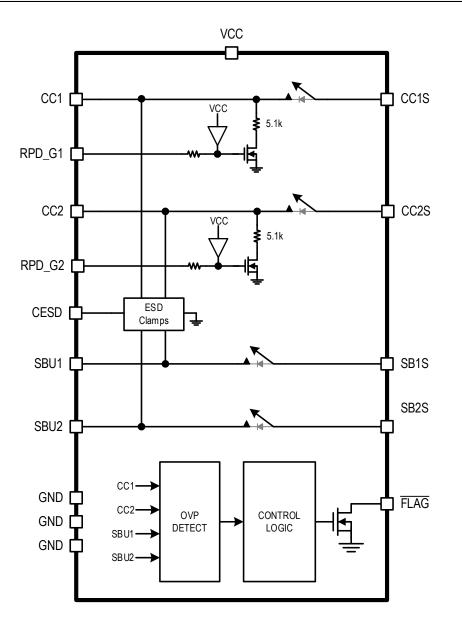
Typical Characteristics (continue)


 $V_{CC} = 3.3V$, $C_{VCC} = 1\mu F$, $C_{ESD} = 0.1\mu F$, $T_{AMB} = 25^{\circ}C$ unless otherwise specified.

CC Switch OVP Level vs. Temperature


40115 / 010


SBU Switch OVP Level vs. Temperature


Typical Characteristics (continue)

 $V_{CC} = 3.3V$, $C_{VCC} = 1\mu F$, $C_{ESD} = 0.1\mu F$, $T_{AMB} = 25^{\circ}C$ unless otherwise specified.

Functional Block Diagram

Functional Description

The KTU1121 integrates 4 switches to provide overvoltage protections for CC and SBU channels. Once there is a high voltage applied on any of them, for example, any of CC1/2 and SBU1/2 are shorted to VBUS (CC and SBU are adjacent to VBUS for a type-C connector.), all switches will be turned off to prevent damage to the downstream system.

Power Up and Down

After V_{CC} ramps up and beyond UVLO, part will turn on CC and SBU switches with respective delays of t_{ON_CC} and t_{ON_SBU} . However, longer time of $t_{ON_DB_DELAY}$ needs to wait for exiting DB (disconnecting 5.1k from CCx to GND) if RPD_G1 and RPD_G2 are all connected to CC1 and CC2 respectively, until stable connections have been established for CC channels.

When Vcc ramps down and below UVLO, all switches are turned off, and DB resistors are re-connected immediately.

More details can be found from "Power Up and Down" in "Timing Diagram" section.

IC Power	Conditions	Sw	Switch On/Off Status			
IC FOWEI	Conditions	CC1/2	SBU1/2	Dead Battery	FLAG	
	No Faults	ON	ON	OFF	High-Z	
	$V_{CC1/2} > V_{OVP_CC}$	OFF	OFF	ON	Active Low	
Vcc > Vuvlo	VSBU1/2 > VOVP_SBU	OFF	OFF	ON	Active Low	
	$T_J > T_{J_SHDN}$	OFF	OFF	OFF	Active Low	
Vcc < Vuvlo	$V_{CC1/2} = 2.6V$	OFF	OFF	ON	High-Z	

Table 1. Control Logic Table (RPD_G1 and RPD_G2 are Connected to CC1 and CC2 Respectively)

Dead Battery Automatic 5.1kΩ Pull-Down

KTU1121 integrated pull-down resistor from CCx to GND, can be enabled by connecting RPD_G1 to CC1 and RPD_G2 to CC2. When under dead battery condition, DFP or adpaper can recognize the device through these pulldown resistors and start to feed power. After CC channels are turned on, KTU1121 cut those pull-down resistors automatically with a short period of delay. Those resistors are reconnected when CCx channels are off, for example when caused by UVLO or OVP, except OTP event.

See Figure 2 and Figure 3 for more details.

If there is no need for dead battery resistors, please short both RPD_G1 and RPD_G2 to ground.

Overvoltage Protection

Once any of those channels meet with OVP event, KTU1121 will shut all channels at once. FLAG will be pulled low to indicate there is a fault. After part is recovered, FLAG would be automatically return to High-Z.

Over-Temperature Protection

KTU1121 will also turn off all channels when OTP happens. FLAG will be pulled low to indicate there is a fault. However, dead-battery resistors will not be presented during OTP. They will be presented when OTP is over and before CCx channels are closed. See Figure 2.

Applications Information

For typical USB Type-C CC and SBU input port protection applications, only two external components are required for the KTU1121 to provide protection functions.

Input Supply and Bypass Capacitor Selection

Place a 1.0µF/10V ceramic capacitor between the VCC pin and ground. X5R or X7R dielectric ceramic capacitors are preferred for input supply bypass applications as they maintain better capacitance value and tolerance over operating voltage and temperature ranges when compared to lower cost Y5V dielectric type ceramic capacitors.

ESD Capacitor

KTU1121 utilizes an ESD support capacitor to meet ESD protection requirements. The ESD support capacitor should be placed between the CESD pin and ground. The CC1/2 and SBU1/2 inputs can have as much as 20V applied during a short-to-VBUS event. A 0.1µF/50V X5R or X7R dielectric ceramic capacitor is recommended for this application.

Dead Battery Detection / Operation

USB Type-C specification allows the host and peripheral device to charge internal batteries through the Type-C port receptacle. Dead battery detection is an important feature that allows a device to be charged when its internal battery supply is depleted. Another scenario for dead battery support is when the CC1/2 or SBU1/2 switches are shut down due to an OVP condition. Automatic $5.1k\Omega$ dead battery pull-down resistors on the CC1/2 inputs signal to a connected upstream USB current source PD host or wall adapter to allow charging through the USB Type-C port VBUS. When an applied adapter senses a $5.1k\Omega$ pull-down on CC1/2, 5V should be applied to the VBUS line to enable charging. For this reason, the KTU1121 contains an automatic dead battery sub-circuit. The CC1/2 pin impedance to ground is $5.1k\Omega$ when the IC is shut down by the UVLO function due to a dead battery. When the IC is enabled under regular operation conditions, the CC1/2 impedance to ground is switched to over $10M\Omega$ to support normal CC line functions. Refer to Table 1 for the control logic of CC1/2 line-states versus operation conditions.

Moisture Testing

In systems that perform moisture detection on the USB port, it is typical to apply a test current through the KTU1121 and out of the connector-side pins. Moisture presents itself as a resistance path from the connector-side pins to ground. The threshold for moisture detection is usually less than $1M\Omega$ of external leakage resistance to ground. To simplify moisture detection, the KTU1121 features over $10M\Omega$ internal impedance from the connector-side pins to ground. However, it is important to keep in mind that KTU1121's internal impedance reduces when the voltage on the connector-side pins (CC1/2, SBU1/2) is greater than the device supply voltage (V_{cc}). Therefore, it is important to use a weak test current for a suitably low moisture detection threshold. An alternate solution is to use a pull-up resistor to a voltage source, for example, $30k\Omega$ pull-up to 2.7V.

Fault Flag Operation

The KTU1121 fault flag will alert the system controller to an OVP, surge or IC over temperature fault. The fault flag circuit is an open-drain MOSFET output that connects the FLAG pin to ground when there is an active fault condition. Refer to the IC functional block diagram for internal fault flag circuit connections. Common system controllers can typically be configured to place a logic pull-up on the fault flag input signal, in these cases the FLAG output can be connected directly to the controller I/O. If a logic pull-up termination is not available, the FLAG output may be manually pulled-up high to a logic level voltage supply through a $10k\Omega$ or greater value resistor.

Recommended PCB Layout

See Figure 4 for an example PCB layout. When laying out a PCB, follow the below guidelines:

- 1. Place the bypass capacitors as close as possible to the VCC pin, and ESD protection capacitor as close as possible to the CESD pin. Capacitors must be attached to a solid ground. This minimizes voltage disturbances during transient events such as short-to-VBUS and ESD strikes.
- 2. The SBU lines must be routed as straight as possible, and any sharp bends must be minimized. Standard ESD recommendations apply to the CC1, CC2, SBU1, SBU2.

3. The optimum placement for the device is as close to the connector as possible:

- EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces, resulting in early system failures.

- The PCB designer must minimize the possibility of EMI coupling by keeping any unprotected traces away from the protected traces which are between the KTU1121 and the connector.

- 4. Route the protected traces as straight as possible.
- 5. Eliminate any sharp corners on the protected traces between the TVS and the connector by using rounded corners with the largest radii possible.

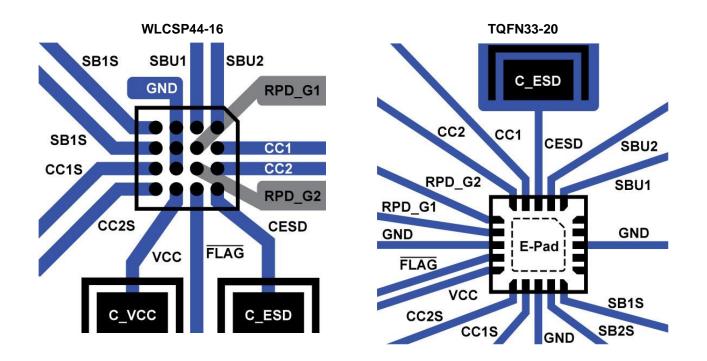
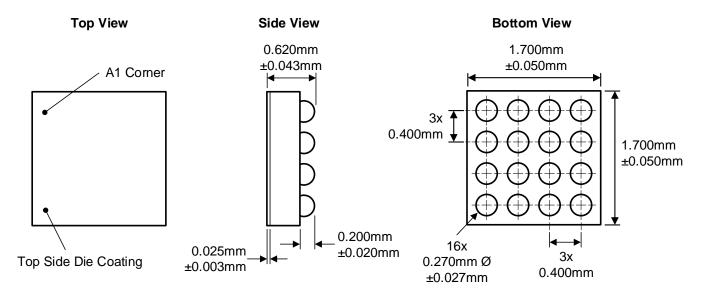
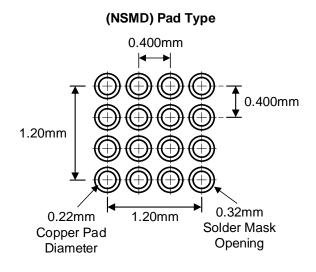



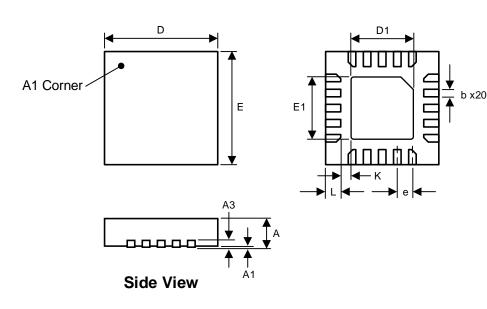
Figure 4. Recommended PCB Layout



Packaging Information

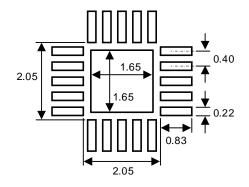
WLCSP44-16 (1.700mm x 1.700mm x 0.620mm)

Recommended Footprint



Packaging Information

TQFN33-20 (3.00mm x 3.00mm x 0.75mm)


Top View

Bottom View

	mm			
Dimension	Min.	Тур.	Max.	
А	0.70	0.75	0.80	
A1	0.00	0.02	0.05	
A3	0.203 REF			
b	0.15	0.20	0.25	
D	2.90	3.00	3.10	
D1	1.60	1.65	1.70	
E	2.90	3.00	3.10	
E1	1.60	1.65	1.70	
е	0.40 BSC			
к	0.20	_	_	
L	0.30	0.40	0.50	

Recommended Footprint

Kinetic Technologies cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Kinetic Technologies product. No intellectual property or circuit patent licenses are implied. Kinetic Technologies reserves the right to change the circuitry and specifications without notice at any time.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Kinetic Technologies: KTU1121EUAJ-TD