PHP20N06T

N-channel TrenchMOS standard level FET

Rev. 02 — 27 November 2009

Product data sheet

1. Product profile

1.1 General description

Standard level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product is designed and qualified for use in computing, communications, consumer and industrial applications only.

1.2 Features and benefits

- Low conduction losses due to low on-state resistance
- Suitable for high frequency applications due to fast switching characteristics

1.3 Applications

DC-to-DC convertors

Switched-mode power supplies

1.4 Quick reference data

Table 1. Quick reference

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	-	55	V
I_D	drain current	T_{mb} = 25 °C; V_{GS} = 10 V; see <u>Figure 3</u> and <u>1</u>	-	-	20.3	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C;see <u>Figure 2</u>	-	-	62	W
Dynamic	characteristics					
Q_{GD}	gate-drain charge	$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$ $V_{DS} = 44 \text{ V}; T_j = 25 \text{ °C};$ see Figure 13	-	6	-	nC
Static ch	aracteristics					
R _{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 10 \text{ A};$ $T_j = 175 \text{ °C};$ see Figure 11 and 12	-	-	150	mΩ
		$V_{GS} = 10 \text{ V}; I_D = 10 \text{ A};$ $T_j = 25 \text{ °C};$ see Figure 11 and 12	-	64	75	mΩ

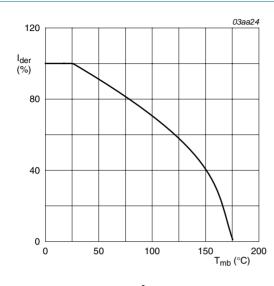
2. Pinning information

Table 2. Pinning information

	9			
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		
2	D	drain	mb	D
3	S	source		$G \longrightarrow X$
	D	mounting base; connected to drain	1 2 3	mbb076 S
			SOT78 (TO-220AB)	

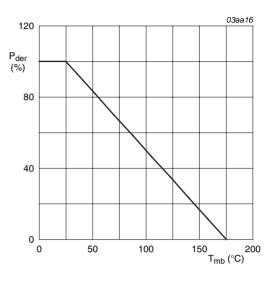
3. Ordering information

Table 3. Ordering information


Type number	Package		
	Name	Description	Version
PHP20N06T	TO-220AB	plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead TO-220AB	SOT78

4. Limiting values

Table 4. Limiting values


In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage	$T_j \ge 25 ^{\circ}\text{C}; T_j \le 175 ^{\circ}\text{C}$	-	55	V
V_{DGR}	drain-gate voltage	$R_{GS} = 20 \text{ k}\Omega$	-	55	V
V_{GS}	gate-source voltage		-20	20	V
I_D	drain current	V _{GS} = 10 V; T _{mb} = 100 °C; see <u>Figure 1</u>	-	14.3	Α
		$V_{GS} = 10 \text{ V}; T_{mb} = 25 \text{ °C}; \text{ see } \frac{\text{Figure 3}}{\text{Mode } 100 \text{ Figure } 100 } \text{ and } \frac{1}{100 }$	-	20.3	Α
I_{DM}	peak drain current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$; see Figure 3	-	81	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	62	W
T _{stg}	storage temperature		-55	175	°C
Tj	junction temperature		-55	175	°C
Source-dr	ain diode				
I _S	source current	$T_{mb} = 25 ^{\circ}C$	-	20.3	Α
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$	-	81	Α
Avalanche	ruggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 11 A; $V_{sup} \le$ 55 V; R_{GS} = 50 Ω; unclamped	-	30.3	mJ

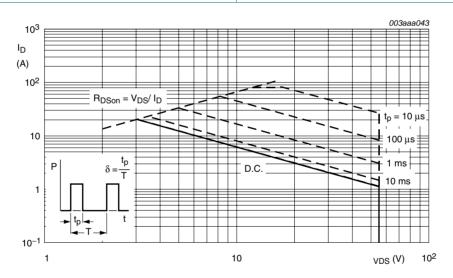

$$I_{der} = \frac{I_D}{I_{D(25^{\circ}C)}} \times 100\%$$

Fig 1. Normalized continuous drain current as a function of mounting base temperature

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100\%$$

Fig 2. Normalized total power dissipation as a function of mounting base temperature

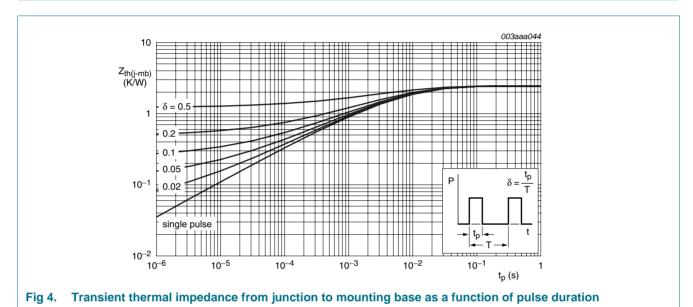

 $T_{mb} = 25$ °C; I_{DM} is single pulse

Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 4	-	-	2.4	K/W
$R_{th(j-a)}$	thermal resistance from junction to ambient	vertical in still air	-	60	-	K/W

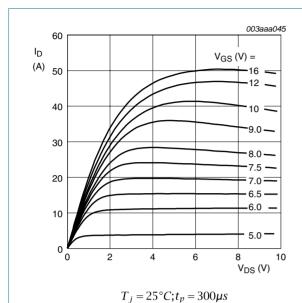
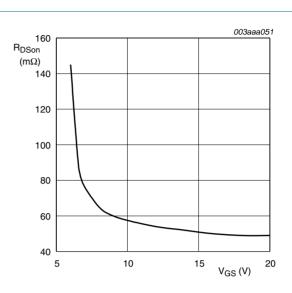
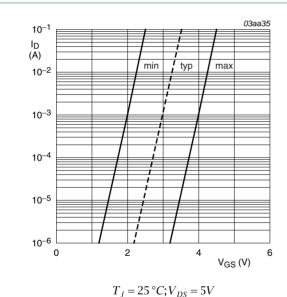

6. Characteristics

Table 6. Characteristics

Table 6.	Characteristics	O Professional Professiona Professiona Professiona Professiona Professiona Professi	p	_		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	racteristics					
$V_{(BR)DSS}$	drain-source breakdown voltage	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = -55 \text{ °C}$	50	-	-	V
		$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	55	-	-	V
V _{GS(th)} gate-source threshold voltage	gate-source threshold voltage	$I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$; $T_j = 175 \text{ °C}$; see <u>Figure 10</u>	1	-	-	V
		I_D = 1 mA; V_{DS} = V_{GS} ; T_j = -55 °C; see <u>Figure 10</u>	-	-	4.4	V
		$I_D = 1$ mA; $V_{DS} = V_{GS}$; $T_j = 25$ °C; see Figure 10	2	3	4	V
I _{DSS}	drain leakage current	$V_{DS} = 55 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	0.05	10	μΑ
		$V_{DS} = 55 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 175 ^{\circ}\text{C}$	-	-	500	μΑ
I _{GSS}	gate leakage current	$V_{GS} = 20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	2	100	nA
		$V_{GS} = -20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	2	100	nA
R _{DSon} drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 10 \text{ A}; T_j = 175 ^{\circ}\text{C};$ see Figure 11 and 12	-	-	150	mΩ	
		$V_{GS} = 10 \text{ V}; I_D = 10 \text{ A}; T_j = 25 ^{\circ}\text{C};$ see Figure 11 and 12	-	64	75	mΩ
Dynamic	characteristics					
Q _{G(tot)}	total gate charge	$I_D = 25 \text{ A}$; $V_{DS} = 44 \text{ V}$; $V_{GS} = 10 \text{ V}$;	-	11	-	nC
Q _{GS}	gate-source charge	T _j = 25 °C;see <u>Figure 13</u>	-	3	-	nC
Q_{GD}	gate-drain charge		-	6	-	nC
C _{iss}	input capacitance	$V_{DS} = 25 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$	-	320	483	pF
C _{oss}	output capacitance	T _j = 25 °C;see <u>Figure 14</u>	-	92	113	pF
C _{rss}	reverse transfer capacitance		-	64	90	pF
t _{d(on)}	turn-on delay time	$V_{DS} = 30 \text{ V}; R_L = 1.2 \Omega; V_{GS} = 10 \text{ V};$	-	10	-	ns
t _r	rise time	$R_{G(ext)} = 10 \Omega$; $T_j = 25 °C$	-	50	-	ns
t _{d(off)}	turn-off delay time		-	70	-	ns
t _f	fall time		-	40	-	ns
L _D	internal drain inductance	from drain lead 6 mm from package to centre of die; T _i = 25 °C	-	4.5	-	nΗ
		from contact screw on mounting base to centre of die; T _j = 25 °C	-	3.5	-	nΗ
L _S	internal source inductance	from source lead to source bond pad; $T_j = 25 ^{\circ}\text{C}$	-	7.5	-	nΗ
Source-di	rain diode					
V_{SD}	source-drain voltage	$I_S = 25 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C};$ see <u>Figure 15</u>	-	0.85	1.2	V
t _{rr}	reverse recovery time	$I_S = 20 \text{ A}; dI_S/dt = -100 \text{ A/}\mu\text{s}; V_{GS} = -10 \text{ V};$	-	32	-	ns
Q _r	recovered charge	$V_{DS} = 30 \text{ V}; T_j = 25 \text{ °C}$	-	120	-	nC


Nexperia PHP20N06T

N-channel TrenchMOS standard level FET


Output characteristics: drain current as a

function of drain-source voltage; typical values

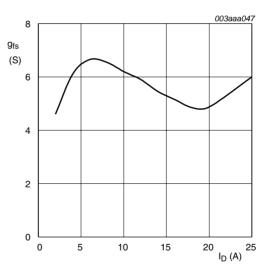

$$T_j = 25^{\circ}C; I_D = 25A$$

Fig 6. Drain-source on-state resistance as a function of gate-source voltage; typical values

g 7. Sub-threshold drain current as a function of

gate-source voltage

 $T_i = 25^{\circ}C; V_{DS} = 25V$

Fig 8. Forward transconductance as a function of drain current; typical values

Fig 5.

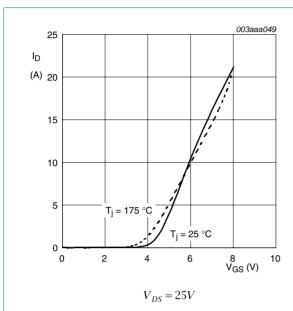
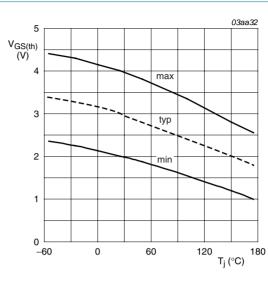



Fig 9. Transfer characteristics: drain current as a function of gate-source voltage; typical values

$$I_D = 1 \, mA; V_{DS} = V_{GS}$$

Fig 10. Gate-source threshold voltage as a function of junction temperature

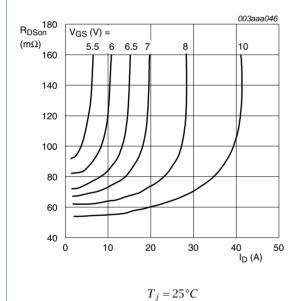


Fig 11. Drain-source on-state resistance as a function of drain current; typical values

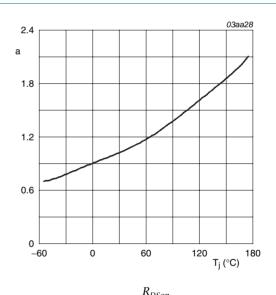


Fig 12. Normalized drain-source on-state resistance factor as a function of junction temperature

Nexperia PHP20N06T

N-channel TrenchMOS standard level FET

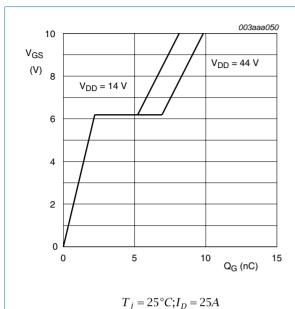
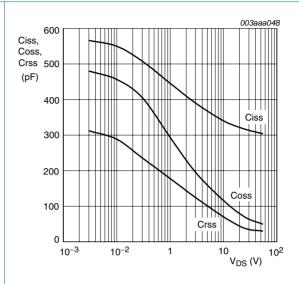
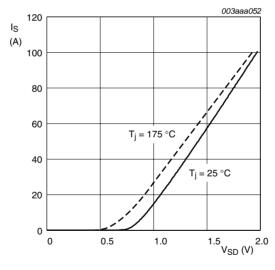
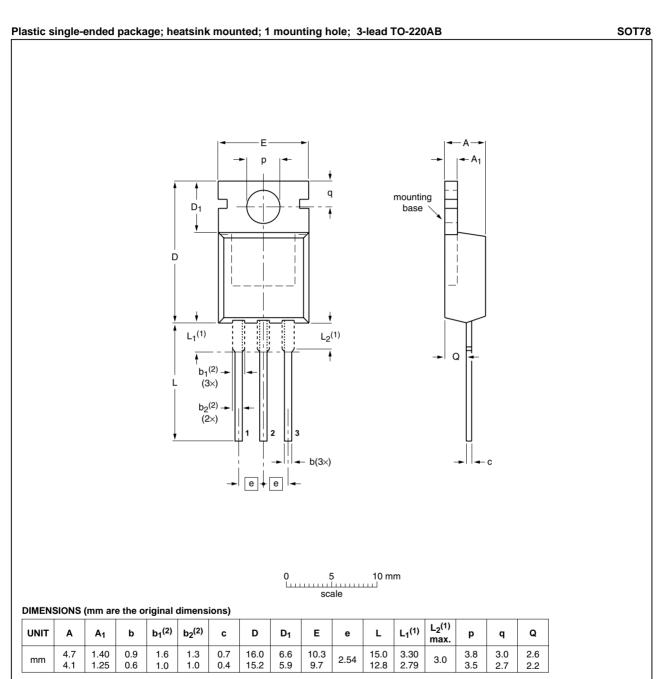




Fig 13. Gate-source voltage as a function of gate charge; typical values

$$V_{GS} = 0V; f = 1MHz$$


Fig 14. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

 $V_{GS} = 0V$

Fig 15. Source current as a function of source-drain voltage; typical values

Package outline

- Lead shoulder designs may vary.
 Dimension includes excess dambar.

OUTLINE		REFER	ENCES	EUROPEAN ISSUE DA	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT78		3-lead TO-220AB	SC-46		08-04-23 08-06-13

Fig 16. Package outline SOT78 (TO-220AB)

8. Revision history

Table 7. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PHP20N06T_2	20091127	Product data sheet	-	PHP20N06T_PHB20N06T-01
Modifications:		t of this data sheet has b of NXP Semiconductors	•	comply with the new identity
	 Legal texts 	s have been adapted to the	ne new company n	ame where appropriate.
	 Type num 	ber PHP20N06T separat	ed from data sheet	PHP20N06T_PHB20N06T-01.
PHP20N06T_PHB20N06T-01	20010222	Product specification	-	-

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

9.2 Definitions

Draft— The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet— A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General— Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes— Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use— Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications— Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data— The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values— Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale— Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license— Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control— This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

10. Contact information

For more information, please visit:http://www.nexperia.com

For sales office addresses, please send an email to:salesaddresses@nexperia.com

Nexperia

PHP20N06T

N-channel TrenchMOS standard level FET

11. Contents

1	Product profile
1.1	General description
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values2
5	Thermal characteristics4
6	Characteristics5
7	Package outline9
8	Revision history10
9	Legal information11
9.1	Data sheet status
9.2	Definitions11
9.3	Disclaimers
9.4	Trademarks11
10	Contact information 11

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nexperia:

PHP20N06T,127