

40 W, 5.2 - 5.9 GHz, GaN MMIC, Power Amplifier

Description

Wolfspeed's CMPA5259025S is a gallium-nitride (GaN) HEMT-based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide allowing the technology to offer greater power density and wider bandwidths compared to Si and GaAs devices. This MMIC uses a two-stage reactively matched amplifier design approach enabling wide bandwidths to be achieved in a small-footprint, while maintaining high gain and efficiency. Operating at 28 V, the 40 W pulsed output power is designed primarily for use as an output stage for highly integrated AESA radar type architectures. In addition the high gain makes it suitable as a drive stage for a multi-device line-up using the Wolfspeed high power IMFETs as the final stage.

PN: CMPA5259025S Package Type: 5 x 5 QFN

Typical Performance Over 5.2 - 5.9 GHz ($T_c = 25^{\circ}C$)

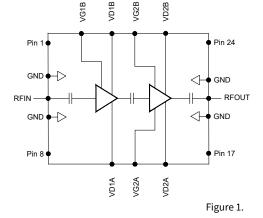
Parameter	5.2 GHz	5.55 GHz	5.9 GHz	Units
Small Signal Gain ^{1,2}	30.0	29.4	30.0	dB
Output Power ^{1,3}	46.2	46.0	46.0	dBm
Power Gain ^{1,3}	25.2	25.0	25.0	dB
Power Added Efficiency ^{1,3}	54	54	53	%

Notes:

 $^{1}V_{_{DD}}$ = 28 V, I $_{_{DO}}$ = 250 mA

² Measured at Pin = -20 dBm

 3 Measured at Pin = 21 dBm and 150 µs; Duty Cycle = 20%


Features

- >53% Typical Power Added Efficiency
- 29 dB Small Signal Gain
- 40 W Typical P_{SAT} •
- Operation up to 28 V
- High Breakdown Voltage
- **High Temperature Operation**

Note: Features are typical performance across frequency under 25°C operation. Please reference performance charts for additional details.

Applications

Civil and Military Pulsed Radar Amplifiers

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	84	VDC	25°C
Gate-source Voltage	V _{GS}	-10, +2	VDC	25°C
Storage Temperature	Τ _{stg}	-55, +150	°C	
Maximum Forward Gate Current	Ι _G	9.6	mA	25°C
Maximum Drain Current	۱ _{DMAX}	3.24	А	
Soldering Temperature	Τ _s	260	°C	

Electrical Characteristics (Frequency = 5.2 GHz to 5.9 GHz unless otherwise stated; $T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	$V_{\rm GS(TH)}$	-2.6	-2.0	-1.6	V	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 9.6 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-1.8	-	$V_{\rm DC}$	$V_{DD} = 28 \text{ V}, \text{ I}_{DQ} = 250 \text{ mA}$
Saturated Drain Current ¹	I _{DS}	9.60	11.52	-	А	$V_{\rm DS} = 6.0 \text{ V}, V_{\rm GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	$V_{_{BD}}$	84	-	-	V	$V_{gs} = -8 \text{ V}, I_{p} = 9.6 \text{ mA}$
RF Characteristics ^{2,3}						
Small Signal Gain	S21 ₁	-	29.5	-	dB	Pin = -20 dBm, Freq = 5.2 - 5.9 GHz
Output Power	P _{out1}	-	46.2	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}, P_{IN} = 21 \text{ dBm}, \text{ Freq} = 5.2 \text{ GHz}$
Output Power	P _{OUT2}	_	46.0	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}, P_{IN} = 21 \text{ dBm}, \text{ Freq} = 5.55 \text{ GHz}$
Output Power	P _{out3}	_	46.0	_	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}, P_{IN} = 21 \text{ dBm}, \text{ Freq} = 5.9 \text{ GHz}$
Power Added Efficiency	PAE ₁	_	54	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}, P_{IN} = 21 \text{ dBm}, \text{ Freq} = 5.2 \text{ GHz}$
Power Added Efficiency	PAE ₂	_	54	_	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}, P_{IN} = 21 \text{ dBm}, \text{ Freq} = 5.55 \text{ GHz}$
Power Added Efficiency	PAE ₃	_	53	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}, P_{IN} = 21 \text{ dBm}, \text{ Freq} = 5.9 \text{ GHz}$
Power Gain	G _{P1}	_	25.2	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}, P_{IN} = 21 \text{ dBm}, \text{ Freq} = 5.2 \text{ GHz}$
Power Gain	G _{P2}	_	25.0	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}, P_{IN} = 21 \text{ dBm}, \text{ Freq} = 5.55 \text{ GHz}$
Power Gain	G _{P3}	-	25.0	-	dB	$V_{_{DD}} = 28 \text{ V}, I_{_{DQ}} = 250 \text{ mA}, P_{_{IN}} = 21 \text{ dBm}, \text{ Freq} = 5.9 \text{ GHz}$
Input Return Loss	S11	-	-16	-	dB	Pin = -20 dBm, 5.2 - 5.9 GHz
Output Return Loss	S22	-	-10	-	dB	Pin = -20 dBm, 5.2 - 5.9 GHz
Output Mismatch Stress	VSWR	-	-	3:1	Ψ	No damage at all phase angles

Notes:

¹ Scaled from PCM data

² Measured in CMPA5259025S high volume test fixture at 5.2, 5.55 and 5.9 GHz and may not show the full capability of the device due to source inductance and thermal performance.

³Unless otherwise noted: Pulse Width = 150 μ s, Duty Cycle = 20%

Thermal Characteristics

Parameter	Symbol	Rating	Units	Conditions
Operating Junction Temperature	T _J	225	°C	
Thermal Resistance, Junction to Case (packaged) ¹	R _{euc}	2.47	°C/W	Pulse Width = 150 µs, Duty Cycle =20%

Notes:

 1 For the CMPA5259025S at P_{DISS} = 26 W

Typical Performance of the CMPA5259025S

Test conditions unless otherwise noted: $V_D = 28 V$, $I_{DO} = 250 mA$, Pulse Width = 150 µs, Duty Cycle = 20%, Pin = 21 dBm, $T_{BASE} = +25 °C$

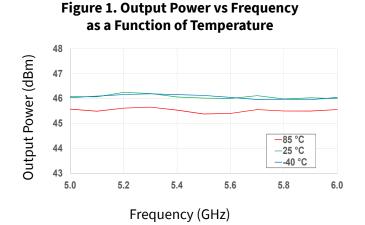


Figure 2. Output Power vs Frequency as a Function of Input Power

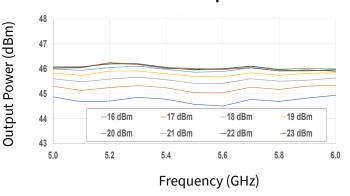
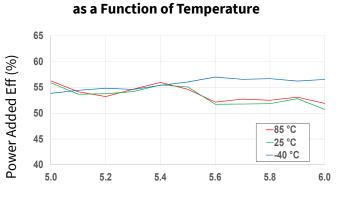
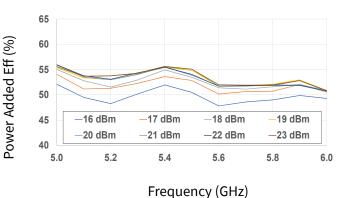




Figure 3. Power Added Eff. vs Frequency

Frequency (GHz)

Figure 4. Power Added Eff. vs Frequency as a Function of Input Power

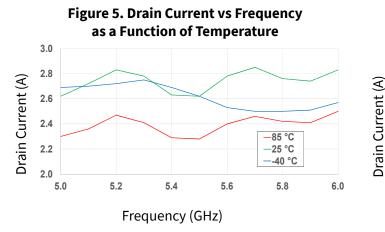
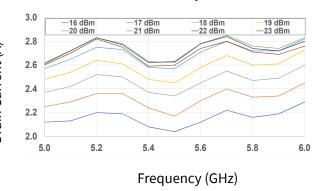
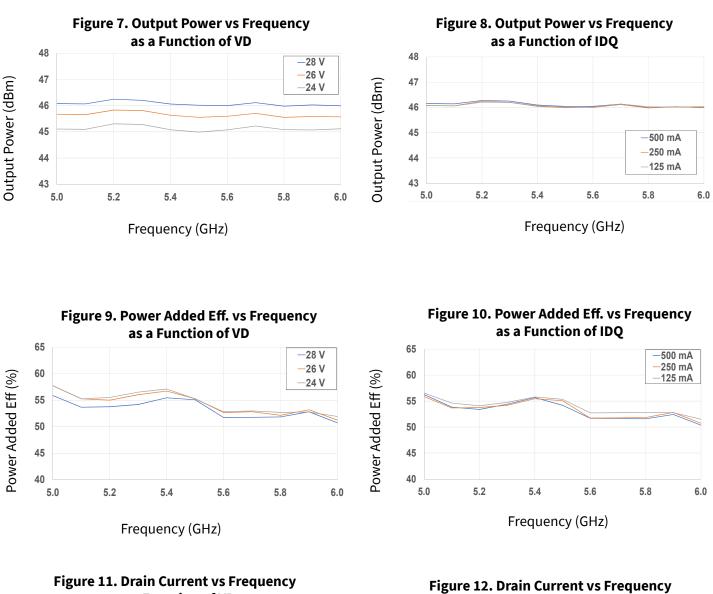
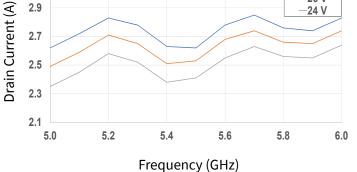
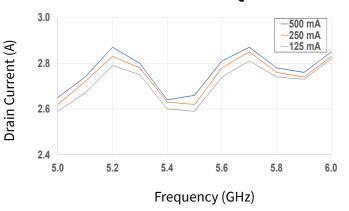




Figure 6. Drain Current vs Frequency as a Function of Input Power



Typical Performance of the CMPA5259025S


Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 250 \text{ mA}$, Pulse Width = 150 µs, Duty Cycle = 20%, Pin = 21 dBm, $T_{BASE} = +25 \text{ °C}$

as a Function of IDQ

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DQ} = 250 \text{ mA}$, Pulse Width = 150 µs, Duty Cycle = 20%, Pin = 21 dBm, $T_{BASE} = +25 \text{ °C}$

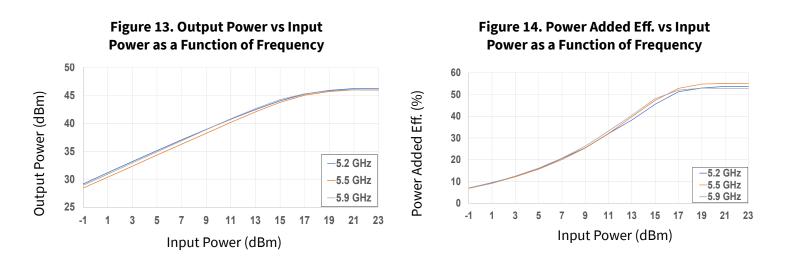


Figure 15. Large Signal Gain vs Input Power as a Function of Frequency

9 11 13 15 17 19 21 23

Input Power (dBm)

Figure 16. Drain Current vs Input Power as a Function of Frequency

-1

1

3

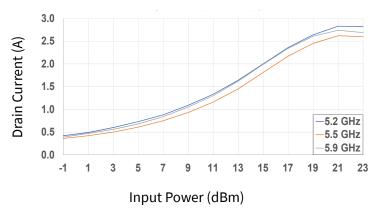
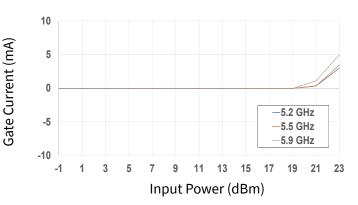



Figure 17. Gate Current vs Input Power as a Function of Frequency

Test conditions unless otherwise noted: V_D = 28 V, I_{DO} = 250 mA, Pulse Width = 150 µs, Duty Cycle = 20%, Pin = 21 dBm, T_{BASE} = +25 °C

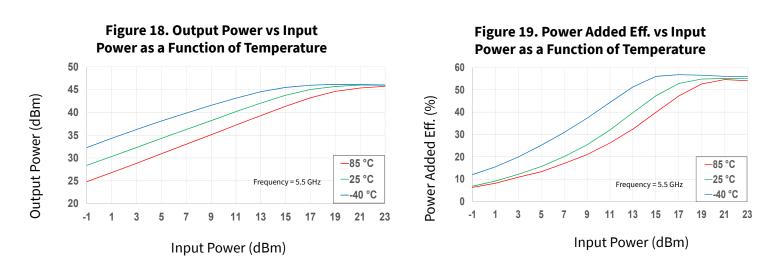


Figure 20. Large Signal Gain vs Input Power as a Function of Temperature

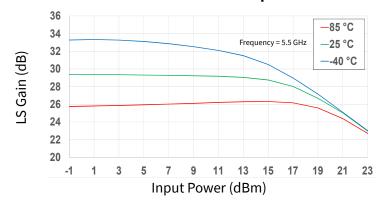
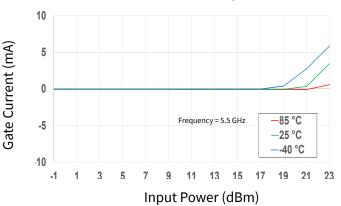



Figure 21. Drain Current vs Input **Power as a Function of Temperature** 3.0 2.5 Drain Current (A) 2.0 1.5 1.0 -85 °C Frequency = 5.5 GHz 0.5 -25 °C -40 °C 0.0 23 -1 3 9 11 13 15 17 19 21 5 7 1 Input Power (dBm)

Figure 22. Gate Current vs Input Power as a Function of Temperature

Typical Performance of the CMPA5259025S

Test conditions unless otherwise noted: $V_{D} = 28 \text{ V}$, $I_{DO} = 250 \text{ mA}$, Pulse Width = 150 μ s, Duty Cycle = 20%, Pin = 21 dBm, $T_{BASE} = +25 \text{ °C}$

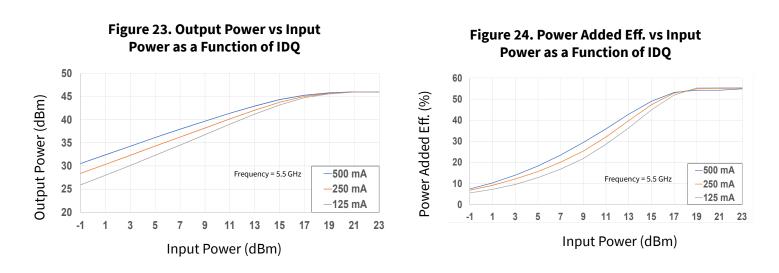
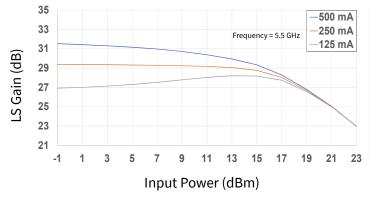



Figure 25. Large Signal Gain vs Input Power as a Function of IDQ

Gate Current (mA)

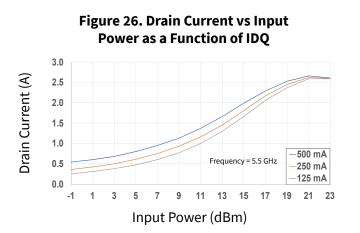
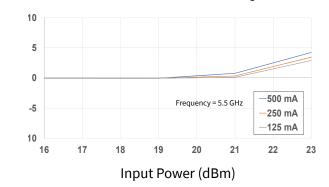



Figure 27. Gate Current vs Input Power as a Function of IDQ

7

Test conditions unless otherwise noted: V_D = 28 V, I_{DO} = 250 mA, Pulse Width = 150 µs, Duty Cycle = 20%, Pin = 21 dBm, T_{BASE} = +25 °C

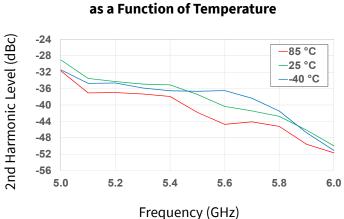
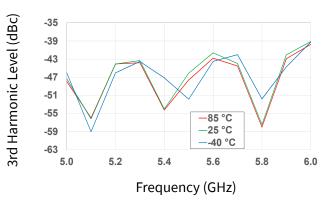
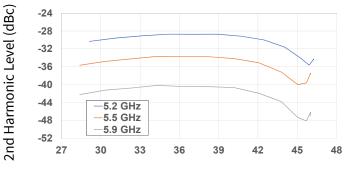
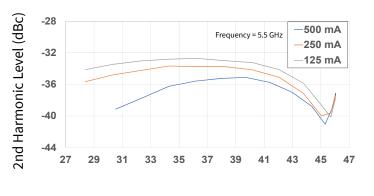


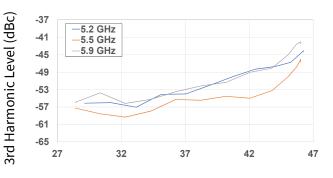
Figure 28. 2nd Harmonic vs Frequency

Figure 29. 3rd Harmonic vs Frequency as a Function of Temperature


Figure 30. 2nd Harmonic vs Output Power as a Function of Frequency

Output Power (dBm)


Figure 32. 2nd Harmonic vs Output

Power as a Function of IDQ

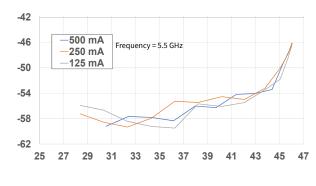

Output Power (dBm)

Figure 31. 3rd Harmonic vs Output **Power as a Function of Frequency**

Output Power (dBm)

Figure 33. 3rd Harmonic vs Output Power as a Function of IDQ

3rd Harmonic Level (dBc)

Output Power (dBm)

Test conditions unless otherwise noted: V_D = 28 V, I_{DQ} = 250 mA, Pin = -20 dBm, T_{BASE} = +25 °C

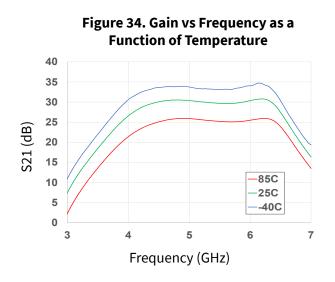


Figure 36. Input RL vs Frequency as a **Function of Temperature** 0 -5 -10 S11 (dB) -15 -20 85C 25C -25 -40C -30 3 4 5 6 7 Frequency (GHz)

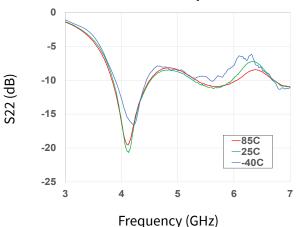


Figure 35. Gain vs Frequency as a **Function of Temperature** 36 34 32 30 S21 (dB) 28 26 24 -85C 22 25C -40C 20 5.2 4.8 5.6 6.0 Frequency (GHz)

Figure 37. Input RL vs Frequency as a Function of Temperature

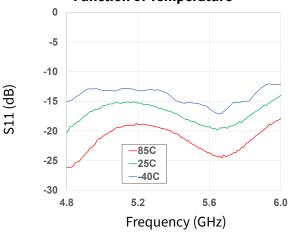
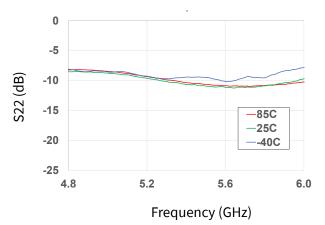



Figure 39. Output RL vs Frequency as a Function of Temperature

Typical Performance of the CMPA5259025S

Test conditions unless otherwise noted: V_{D} = 28 V, I_{DO} = 250 mA, Pin = -20 dBm, T_{BASE} = +25 °C

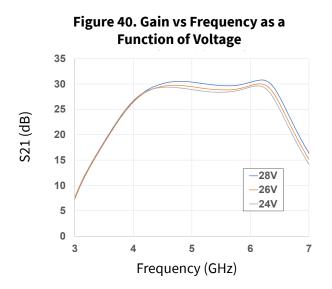


Figure 42. Input RL vs Frequency as a Function Voltage

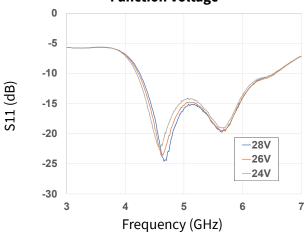
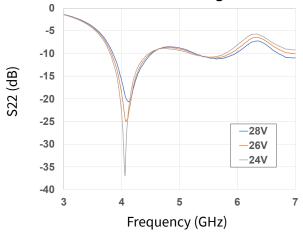



Figure 44. Output RL vs Frequency as a Function of Voltage

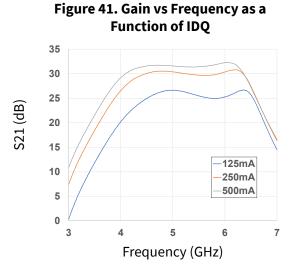
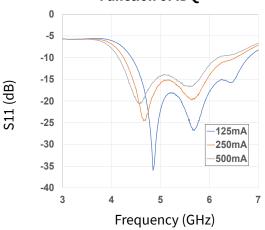
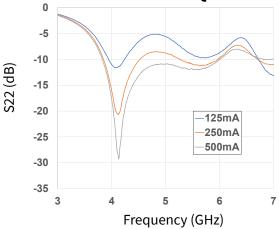
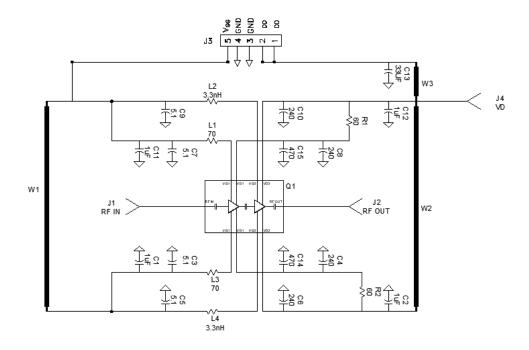
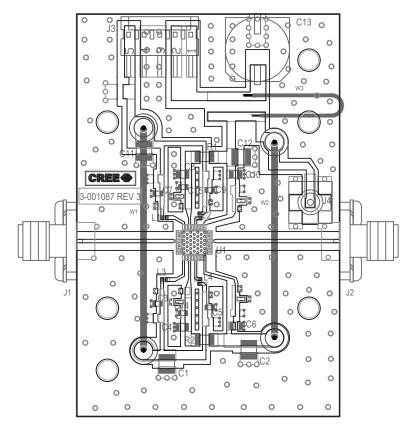


Figure 43. Input RL vs Frequency as a Function of IDQ


Figure 45. Output RL vs Frequency as a Function of IDQ

CMPA5259025S-AMP1 Demonstration Amplifier Schematic

CMPA5259025S-AMP1 Demonstration Amplifier Circuit Outline

CMPA5259025S-AMP1 Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
C13	CAP, 33 UF, 20%, G CASE	1
C1, C2, C11, C12	CAP, 1.0UF, 100V, 10%, X7R, 1210	4
C3, C5, C7, C9	CAP, 5.1pF, +/-0.05pF, 0603, ATC, 600S	4
C4, C6, C8, C10	CAP, 240 PF +/-5%, 0805, ATC, 600F	4
C14, C15	470pF, NPO/COG 0603, Murata	2
L2, L4	INDUCTOR, SMT, 0402, 3.3nH, 5%, Coilcraft	2
L1, L3	Ferrite bead, 70 ohm, 780mA, 0402, Murata	2
R1, R2	Ferrite bead, 60 ohm, 3.7A, 18806, Murata	2
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3	HEADER RT>PLZ .1CEN LK 5POS	1
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
W1	WIRE, BLACK, 20 AWG ~ 1.5"	1
W2	WIRE, BLACK, 20 AWG ~ 1.3"	3
W3	WIRE, BLACK, 20 AWG ~ 1.5"	3
	PCB, TEST FIXTURE, RF35, 0.010", 5X5 2-STAGE, QFN	1
	HEATSINK, 6X6 QFN, 3-STAGE 2.600 X 1.700 X 0.250	1
	2-56 SOC HD SCREW 3/16 SS	4
	#2 SPLIT LOCKWASHER SS	4
Q1	CMPA5259050S	1

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1B (≥ 500 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (≥ 200 V)	JEDEC JESD22 C101-C

Moisture Sensitivity Level (MSL) Classification

Parameter	Symbol	Level	Test Methodology
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20

Product Dimensions CMPA5259025S (Package 5 x 5 QFN)

12

13

14

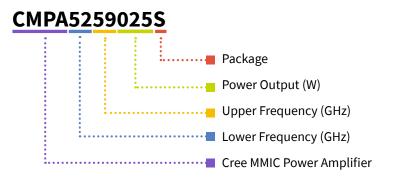
NC

VG2A

NC

26

27


28

NC

NC

VG2B

Part Number System

Table 1. Parameter	Value	Units
Lower Frequency	5.2	GHz
Upper Frequency	5.9	GHz
Power Output	25	W
Package	Surface Mount	-

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.	
Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Table 2

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA5259025S	GaN HEMT	Each	
CMPA5259025S-AMP1	Test board with GaN MMIC installed	Each	

For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

© 2021 Cree, Inc. All rights reserved. Wolfspeed® and the Wolfspeed logo are registered trademarks of Cree, Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Wolfspeed: CMPA5259025S-AMP1