ISP5261

Data Sheet

Wi-Fi 6 and Bluetooth Low Energy / 802.15.4

Built-in Antennas Smart Module

This highly miniaturized LGA module, 12 x 12 x 1. 8mm, is based on the RW612 Wi-Fi 6 / Bluetooth LE / 802.15.4 Wireless MCU. Integrating a Cortex M33 CPU, a QSPI flash and a RAM memory combined with optimized antennas, ISP5261 offers the perfect stand-alone Dual-Band Wi-Fi 6 and Bluetooth LE combo module with integrated antennas.

Key Features

- Wi-Fi 6 IEEE 802.1lax/ac/n/a/g/b/e/i/k/v/w
- Wi-Fi dual-band (2.4GHz/5GHz) support, 20MHz channel
- Bluetooth Low Energy 5.3 Long Range, and Wi-Fi Coexistence
- **802.15.4**
- Matter, Thread
- Fully integrated RF Matching and Antennas Wi-Fi & Bluetooth at 2.4 GHz, Wi-Fi at 5 GHz
- Integrated 40 MHz & 32.768 kHz Crystals
- DC/DC converters with loading circuit
- Based on NXP RW612
- Configurable 64 GPIOs including ADC & DAC
- Digital interfaces
 USB, QSPI, UART, I²S, PDM, PWM
- Power supply 3.3V
- Very small size 12 x 12 x 1.8 mm
- Temperature -40 to +85 °C

Applications

- Low Power Wi-Fi Connections
- IoT router connections
- Thread Matter Router Bridge

Certifications

- Bluetooth SIG
- Wi-Fi Alliance
- CSA Matter and Thread
- CE
- FCC, IC
- TELEC, KCC
- RoHS, Reach & POP compliant
- Conflict Mineral Declaration

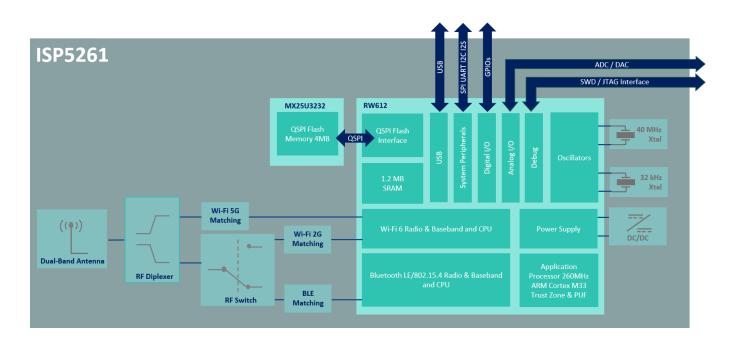
Document Revision History

Revision	Date	Ref	Change Description
RO	15/10/2023	jfc pg	Initial preliminary document
RI	24/11/2023	jfc pg	Errata and typo corrections
R2	04/12/2023	jf pg	Power supply data correction
R3	23/10/2024	jf pg	Remove preliminary references Update electrical values in chapter 2.2 and 2.3. Correct schematic in chapter 2.10 Add configuration pin section in chapter 3.

Contents

1.	Block Diagram & Features	4
2.	Specifications	5
2.1.	General Notice	
2.2.	Absolute Maximum Ratings	5
2.3.	Operating Conditions	6
2.4.	Current Consumption	
2.5.	Reference Clock Specifications	7
2.6.	Transmit Frequency Error	7
2.7.	Radio specifications	7
2.8.	2.4GHz Dual-band Antenna Performance	9
2.9.	5GHz Dual-band Antenna Performance	1C
2.10.	Electrical Schematic	12
3.	Pin Description	13
4.	Mechanical Outline	18
4.1.	Mechanical Dimensions	
4.2.	SMT Assembly Guidelines	19
4.3.	Antenna Keep-Out Zone	19
4.4.	Electromagnetic Interference	19
5.	Package & Ordering Information	20
5.1.	Marking	
5.2.	Package Labelling	20
5.3.	Prototype Packaging	2 ¹
5.4.	Jedec Trays	2 ¹
5.5.	Tape and Reel	22
5.6.	Ordering Information	23
6.	Storage and Soldering Information	24
6.1.	Storage and Handling	24
6.2.	Moisture Sensitivity	24
6.3.	Soldering information	25
7.	Quality and User information	26
7.1.	Certifications	26
7.2.	Discontinuity	26
7.3.	Disclaimer	26

1. Block Diagram & Features


This module is based on NXP RW612 single-chip Wi-Fi/Bluetooth LE/802.15.4 Wireless MCU System on Chip (SoC). It integrates a 32-bit ARM CortexTM-M33 CPU running at 260MHz, 4MB of QSPI flash memory, 1.2MB SRAM as well as analog and digital peripherals. Despite the small size of 12 x 12 x 1.8 mm, the module integrates decoupling capacitors, 40 MHz crystal for Wi-Fi and Bluetooth LE and 32.768kHz crystal for low power timing, DC-DC converters, RF matching circuits and a dual-band antenna. Low power consumption and advanced power management enable battery lifetimes up to several months on AA batteries.

Wi-Fi Communication is compliant with the Wi-Fi Alliance specifications for Wi-Fi 6 including the following protocols: IEEE 802.1lax/ac/n/a/g/b/e/i/k/v/w.

Bluetooth LE connectivity is compliant with Bluetooth 5.3, enabling Long Range. ISP5261 Bluetooth LE section can be used either in Peripheral or Central roles and can handle up to 16 simultaneous central/peripheral connections.

802.15.4-2015 radio at 2.4 GHz offers support of Matter over Thread and 128-bit AES security.

The MCU offers the TrustZone technology and is protected by a PUF (Physically Unclonable Function).

ISP5261 block diagram

2. Specifications

2.1. General Notice

The electrical specifications of the module are directly related to the RW612 tri-radio wireless MCU NXP's chip. Below information is only a summary of the main parameters. For more detailed information, especially about current consumption, please refer to the up-to-date specification of the chipset available on NXP's website.

2.2. Absolute Maximum Ratings

Parameter	Min	Тур	Max	Unit
Input Supply Voltage			3.96	V
USB Supply Voltage respect to ground – VBUS			5.25	V
1.8V IO Pin Voltage			2.16	V
3.3V IO Pin Voltage			3.96	V
Maximum Input Level / Wi-Fi 2.4GHz OFDM			-5	dBm
Maximum Input Level / Wi-Fi 5GHz OFDM			-7	dBm
Maximum Input Level / BLE (1)			-3	dBm
Maximum Input Level / 802.15.4			+3	dBm
Storage Temperature	-55		+125	°C
Moisture Sensitivity Level			3	-
Flash Endurance		100000		cycles

(1) For data rate from 500Kbps to 1Mbps

ATTENTION

CONSERVE PRECAUTION FOR HANDLING ELECTROSTATIC SENSITIVE DEVICES Human Body Model Class 3A

2.3. Operating Conditions

Parameter	Min	Тур	Max	Unit
Input Supply Voltage	3.14	3.30	3.46	V
1.8V Operating Input Voltage IO Pins	1.71	1.80	1.89	V
3.3V Operating Input Voltage IO Pins	2.97	3.30	3.46	V
VBUS Supply Voltage	4.75		5.25	V
Operating Temperature Range	-40		+85	°C

2.4. Current Consumption

The figures below are given as an indication of overall current consumption. These figures will be updated after measurements during the qualification phase of development.

Mode	Conditions	Typ (3)	Unit		
Wi-Fi mode					
Wi-Fi in sleep mode	0.23	mA			
Wi-Fi idle mode	2.4GHz, Rx, 802.11ax, 20MHz, listening	45	mA		
WI-FI Idle Mode	5GHz, Rx, 802.11ax, 20MHz, listening	60	mA		
Wi-Fi Rx mode	2.4GHz, 802.11ax, 20MHz, MCS9	67	mA		
WI-FIRX Mode	5GHz, 802.11ax, 20MHz, MCS9	77	mA		
W: F: T.,	2.4GHz, 802.11ax, 20MHz, MCS9 @20dBm	277	mA		
Wi-Fi Tx mode, max power (1)	5GHz, 802.11ax, 20MHz, MCS9 @20dBm	427	mA		
Bluetooth LE only (Wi-Fi powered	down)	•			
BLE in sleep mode (2)	RAM retention	0.15	mA		
BLE Rx mode	BLE Rx mode BLE Rx 1Mbps		mA		
	BLE Tx @0 dBm	56	mA		
BLE Tx mode	BLE Tx @4 dBm	57	mA		
	BLE Tx @15 dBm	105	mA		
802.15.4 radio only (MCU in active	state, Wi-Fi powered down)	•			
802.15.4 Rx mode	Rx	50	mA		
	Tx @0 dBm	56	mA		
802.15.4 Tx mode	Tx @4 dBm	57	mA		
	Tx @15 dBm	93	mA		
Peak current during device initializ	ation				
Peak digital pre-distortion	@25°C	576	mA		

(1) MCU in active state

(2) MCU in deep-sleep mode

2.5. Reference Clock Specifications

Reference clocks	Min	Тур	Max	Unit
Internal High Frequency Clock for RF Stability: 40 MHz Crystal Frequency Tolerance (1)			± 20	ppm
Internal Low Frequency Clock for RTC: 32.768 kHz Crystal Frequency Tolerance (1)			± 20	ppm
Internal RC oscillator 32K			tbc	ppm

⁽¹⁾ Including initial tolerance, drift, frequency pulling and temperature (i.e Over operating T°)

2.6. Transmit Frequency Error

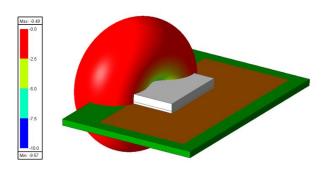
Transmit Frequency Error	Min	Тур	Max	Unit
Wi-Fi mode				
Transmit frequency error / 2.4GHz	-5		+5	ppm
Transmit frequency error / 5GHz	-5		+5	ppm
BLE mode				
Transmit frequency error (includes XTAL error)	-30		+30	kHz
802.15.4 radio mode				
Transmit frequency error	-3.5		+3.5	kHz

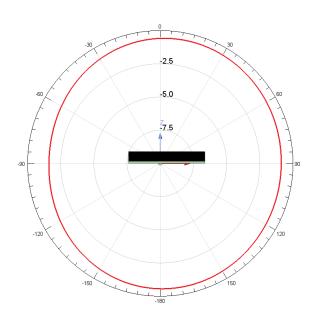
2.7. Radio specifications

Wi-Fi Mode	Conditions	Min	Тур	Max	Unit	
2.4GHz receiver performance						
RF frequency range		2402		2482	MHz	
RF signal bandwidth			20		MHz	
Receiver sensitivity	4x3.2 20MHz MCS0 Nss1 BCC		-92.9		dBm	
802.11ax	4x3.2 20MHz MCS9 Nssl BCC		-67.9		dBm	
5GHz receiver perform	ance	•				
RF frequency range		5170		5895	MHz	
RF signal bandwidth			20		MHz	
Receiver sensitivity	4x3.2 20MHz MCS0 Nss1 BCC		-92.3		dBm	
802.llax	4x3.2 20MHz MCS9 Nss1 BCC		-67.5		dBm	

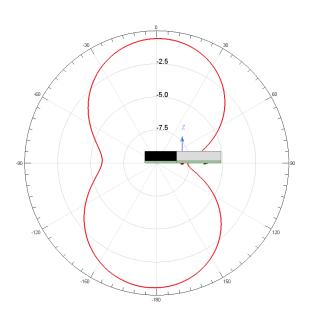
Wi-Fi Mode	Conditions	Min	Тур	Max	Unit		
2.4GHz transmitter performance	2.4GHz transmitter performance						
RF frequency range		2402		2482	MHz		
Max. linear output power with 20MHz bandwidth	802.11ax MCS9		17		dBm		
5GHz transmitter performance	5GHz transmitter performance						
RF frequency range		5170		5895	MHz		
Max. linear output power with	802.11ax MCS0		21				
20MHz bandwidth	802.11ax MCS9		17				
Load Impedance	@2.4 & 5GHz		50		Ohm		
Max. Antenna Gain @2.45GHz				-0.5	dBi		
Max. Antenna Gain @5.5GHz				2.15	dBi		

BLE Mode	Conditions	Min	Тур	Max	Unit
RF frequency range		2400		2483.5	
Receiver sensitivity	BLE 1 Mbps		-100.2		dBm
Receiver sensitivity	BLE 1 Mbps		-97.9		dBm
Receiver sensitivity	BLE 1 Mbps		-108.5		dBm
Receiver sensitivity	BLE 1 Mbps		-101.8		dBm
Maximum transmit power			15		dBm
Load Impedance			50		Ohm
Max. Antenna Gain @2.45GHz				-0.5	dBi

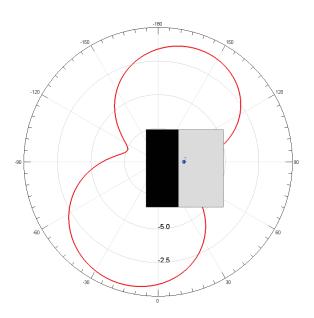

802.15.4 Mode	Conditions	Min	Тур	Max	Unit
RF frequency range		2400		2483.5	
Receiver sensitivity			-105.7		dBm
Maximum transmit power			14.3		dBm
Load Impedance			50		Ohm
Max. Antenna Gain @2.45GHz				-0.5	dBi


2.8. 2.4GHz Dual-band Antenna Performance

The internal antenna has a maximum gain of -0.5dBi @2.45GHz.

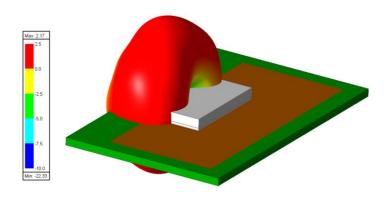

Note that the patterns shown below are for L/W ground aspect ratio that enable best impedance matching conditions combined with quasi-omnidirectional radiating features. Others aspect ratio and too large/small ground planes will tend to degrade impedance matching and to create less omnidirectional pattern.

3D radiation pattern @ 2.45GHz



2D radiation pattern (Theta, Phi =0°)

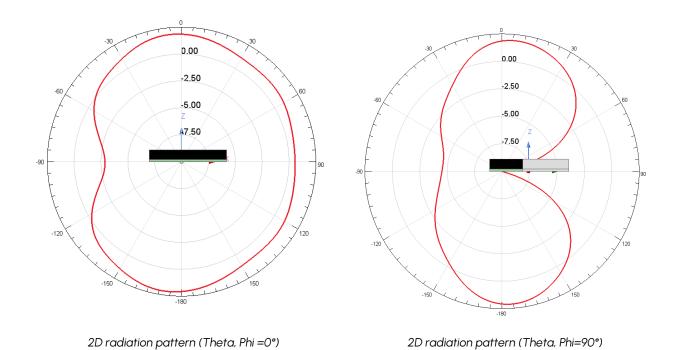
2D radiation pattern (Theta, Phi=90°)

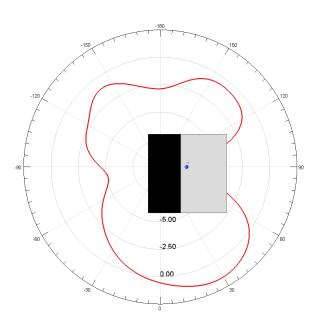


2D radiation pattern (Theta=90°, Phi)

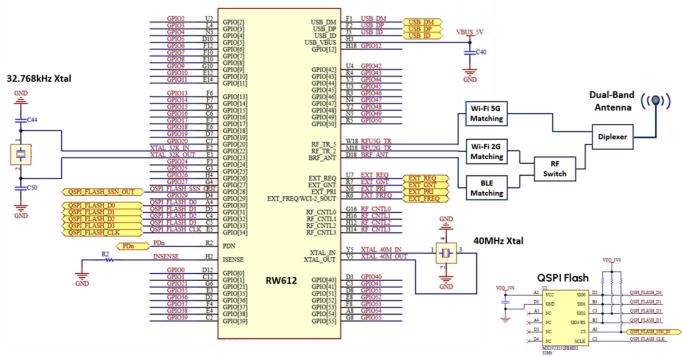
2.9. 5GHz Dual-band Antenna Performance

The internal antenna has a maximum gain of 2.15 dBi @ 5.5GHz.


Note that the patterns shown below are for L/W ground aspect ratio that enable best impedance matching conditions combined with quasi-omnidirectional radiating features. Others aspect ratio and too large/small ground planes will tend to degrade impedance matching and to create less omnidirectional pattern.



3D radiation pattern @5.5GHz



2D radiation pattern (Theta=90°, Phi)

2.10. Electrical Schematic

Schematics of the RW612 chip plus the RF Front-End and the dual-band antenna inside the ISP5261 module.

RW612 chip's Pin description and allocation

Details of power supplies

3. Pin Description

The module uses an LGA format on a 0.50 mm pitch. The pad layout follows the QFN Jedec standard for LGA parts.

Pin	Name	Pin Function	Description
1	GND	Ground	Ground – Must be connected to ground on application PCB
2	VDD_IV8	Power	1.8V output power supply
3	GPIO42	Digital I/O	RW612 general purpose I/O pin
4	EXT_FREQ	Input Signal	RW612 external radio frequency input signal (optional)
5	GPIO50	Digital I/O	RW612 general purpose I/O pin
6	EXT_PRI	Input Signal	RW612 external radio input priority signal (optional)
7	GPIO13	Digital I/O	RW612 general purpose I/O pin
8	EXT_REQ	Input Signal	RW612 request from external radio (mandatory)
9	GPIO14	Digital I/O	RW612 general purpose I/O pin
10	EXT_GNT	Output Signal	RW612 external radio grant output signal (mandatory)
11	GPIO53	Digital I/O	RW612 general purpose I/O pin
12	RF_CNTL2	Output Signal	RW612 Wi-Fi RF front-end control line 2
13	GPIO9	Digital I/O	RW612 general purpose I/O pin
14	RF_CNTL3	Output Signal	RW612 Wi-Fi RF front-end control line 3
15	GND	Ground	Ground – Must be connected to ground on application PCB
16	GND	Ground	Ground – Must be connected to ground on application PCB
17	GND	Ground	Ground – Must be connected to ground on application PCB
18	GND	Ground	Ground – Must be connected to ground on application PCB
19	GND	Ground	Ground – Must be connected to ground on application PCB
20	GND	Ground	Ground – Must be connected to ground on application PCB
21	GND	Ground	Ground – Must be connected to ground on application PCB
22	GND	Ground	Ground – Must be connected to ground on application PCB
23	GND	Ground	Ground – Must be connected to ground on application PCB
24	GND	Ground	Ground – Must be connected to ground on application PCB
25	GPIO7	Digital I/O	RW612 general purpose I/O pin
26	GND	Ground	Ground – Must be connected to ground on application PCB
27	GPIO8	Digital I/O	RW612 general purpose I/O pin
28	GND	Ground	Ground – Must be connected to ground on application PCB
29	GPIO6	Digital I/O	RW612 general purpose I/O pin
30	RF I/O	RF I/O	RF I/O pin of the ISP5261's RFFE Should be connected to ANT I/O for normal operation
31	GPIO10	Digital I/O	RW612 general purpose I/O pin
32	ANT I/O	RF I/O	Internal dual-band antenna RF I/O pin Should be connected to RF I/O for normal operation
33	GND	Ground	Ground – Must be connected to ground on application PCB
34	GND	Ground	Ground – Must be connected to ground on application PCB

Pin	Name	Pin Function	Description	
35	GND	Ground	Ground – Must be connected to ground on application PCB	
36	RF_CNTL1	Output Signal	RW612 Wi-Fi RF front-end control line 1	
37	GPIO12	Digital I/O	RW612 general purpose I/O pin	
38	GND	Ground	Ground – Must be connected to ground on application PCB	
39	GPIO11	Digital I/O	RW612 general purpose I/O pin	
40	GND	Ground	Ground – Must be connected to ground on application PCB	
41	GPIO0	Digital I/O	RW612 general purpose I/O pin	
42	RF_CNTLO	Output Signal	RW612 Wi-Fi RF front-end control line 0	
43	GPIO5	Digital I/O	RW612 general purpose I/O pin	
44	GND	Ground	Ground – Must be connected to ground on application PCB	
45	GPIO16	Digital I/O	RW612 general purpose I/O pin	
46	GND	Ground	Ground – Must be connected to ground on application PCB	
47	GPIO54	Digital I/O	RW612 general purpose I/O pin	
48	GND	Ground	Ground – Must be connected to ground on application PCB	
49	GPIO52	Digital I/O	RW612 general purpose I/O pin	
50	GND	Ground	Ground – Must be connected to ground on application PCB	
51	GPIO51	Digital I/O	RW612 general purpose I/O pin	
52	GND	Ground	Ground – Must be connected to ground on application PCB	
53	GPIO1	Digital I/O	RW612 general purpose I/O pin	
54	GND	Ground	Ground – Must be connected to ground on application PCB	
55	GND	Ground	Ground – Must be connected to ground on application PC	
56	GND	Ground	Ground – Must be connected to ground on application PC	
57	GND	Ground	Ground – Must be connected to ground on application PCI	
58	QSPI_FLASH_D0	Digital I/O	Data bit 0 for RW612's FlexSPI flash	
59	GPIO17	Digital I/O	RW612 general purpose I/O pin	
60	QSPI_FLASH_DI	Digital I/O	Data bit 1 for RW612's FlexSPI flash	
61	GPIO18	Digital I/O	RW612 general purpose I/O pin	
62	QSPI_FLASH_D2	Digital I/O	Data bit 2 for RW612's FlexSPI flash	
63	GPIO19	Digital I/O	RW612 general purpose I/O pin	
64	QSPI_FLASH_D3	Digital I/O	Data bit 3 for RW612's FlexSPI flash	
65	GPIO20	Digital I/O	RW612 general purpose I/O pin	
66	QSPI_FLASH_CLK	Digital I/O	Input/Output clock 0 signal for RW612's FlexSPI flash interface	
67	GPIO15	Digital I/O	RW612 general purpose I/O pin	
68	QSPI_FLASH_SSN_IN	Digital I/O	Chip Select for Macronix Flash Memory	
69	GPIO29	Digital I/O	RW612 general purpose I/O pin	
70	QSPI_FLASH_SSN_OUT	Digital I/O	RW612's FlexSPI flash client select 0	
71	GND	Ground	Ground – Must be connected to ground on application PCB	
72	VDD_IV05	Power	1.05V output power supply	
73	GPIO38	Digital I/O	RW612 general purpose I/O pin	
74	GND	Ground	Ground – Must be connected to ground on application PCB	

Pin	Name	Pin Function	Description	
75	GPIO37	Digital I/O	RW612 general purpose I/O pin	
76	GND	Ground	Ground – Must be connected to ground on application PCB	
77	GPIO39	Digital I/O	RW612 general purpose I/O pin	
78	GPIO35	Digital I/O	RW612 general purpose I/O pin	
79	GPIO40	Digital I/O	RW612 general purpose I/O pin	
80	GPIO41	Digital I/O	RW612 general purpose I/O pin	
81	GPIO36	Digital I/O	RW612 general purpose I/O pin	
82	GPIO24	Digital I/O	RW612 general purpose I/O pin	
83	GND	Ground	Ground – Must be connected to ground on application PCB	
84	GND	Ground	Ground – Must be connected to ground on application PCB	
85	GND	Ground	Ground – Must be connected to ground on application PCB	
86	USB_DP	USB Data	RW612 USB D+	
87	GPIO25	Digital I/O	RW612 general purpose I/O pin	
88	USB_DM	USB Data	RW612 USB D-	
89	GPIO26	Digital I/O	RW612 general purpose I/O pin	
90	USB_ID	USB Data	RW612 USB OTG ID pin	
91	GPIO27	Digital I/O	RW612 general purpose I/O pin	
92	VBUS_5V	Power	RW612 USB-VBUS 5V analog power supply	
93	GPIO3	Digital I/O	RW612 general purpose I/O pin	
94	GPIO4	Digital I/O	RW612 general purpose I/O pin	
95	GPIO49	Digital I/O	RW612 general purpose I/O pin	
96	GPIO46	Digital I/O	RW612 general purpose I/O pin	
97	GPIO47	Digital I/O	RW612 general purpose I/O pin	
98	PDn	Input	RW612 Full Power-Down (Active low)	
99	GPIO43	Digital I/O	RW612 general purpose I/O pin	
100	GPIO2	Digital I/O	RW612 general purpose I/O pin	
101	GPIO21	Digital I/O	RW612 general purpose I/O pin	
102	GPIO48	Digital I/O	RW612 general purpose I/O pin	
103	GPIO55	Digital I/O	RW612 general purpose I/O pin	
104	GPIO45	Digital I/O	RW612 general purpose I/O pin	
105	GND	Ground	Ground – Must be connected to ground on application PCB	
106	GPIO44	Digital I/O	RW612 general purpose I/O pin	
107	VDD_3V3	Power	3.3V External Power Supply for ISP5261	
108	VDD_3V3	Power	3.3V External Power Supply for ISP5261	
109- 120	GND	Ground	Ground – Must be connected to ground on application PCB	

Configuration pins

The following configuration pins require special attention. Following a reset, they will start as inputs and immediately change to their normal function after. The state of these pins read during the reset will provide additional configuration.

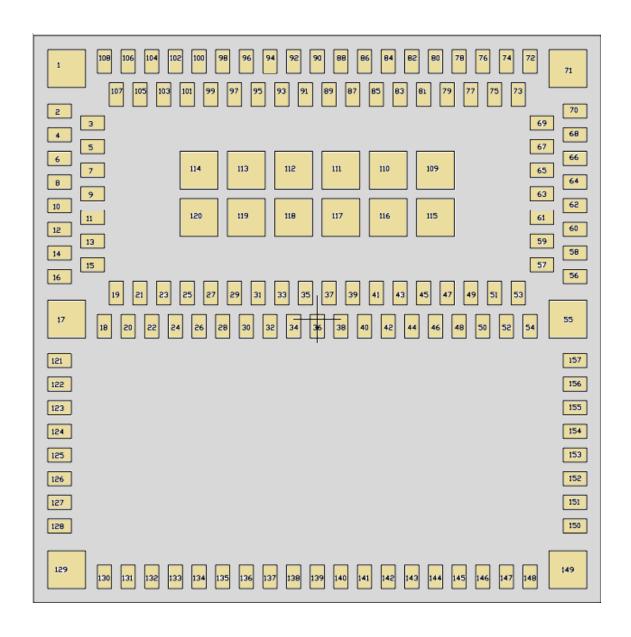
To select 1, leave the pin floating (internal pull-up resistor present). To select 0, add a 51k resistor or less to the ground.

NB: Do not directly connect any of these pins to any reference voltage!

Pin	Name	Configuration Function	Description	
42	RF_CTNLO	Reserved	Leave this pin floating.	
36	RF_CTNL1	Reserved	Leave this pin floating.	
12	RF_CTNL2	CONFIG_DAP_USE_JTAG	Debug interface selection: 0 = DAP uses SWD 1 = DAP uses JTAG (default) The corresponding GPIOs will be set to either SWD or JTAG depending of the state of the pin.	
14	RF_CTNL3	CONFIG_XOSC_SEL	Reference clock frequency selection: 0 = 38.4 MHz 1 = 40 MHz (default) Leave this pin floating as the module is using 40MHz.	
8	EXT_REQ	CONFIG_HOST[0]	Host configuration options. See the table below.	
10	EXT_GNT	CONFIG_HOST[1]	Host configuration options. See the table below.	
6	EXT_PRI	CONFIG_HOST[2]	Host configuration options. See the table below.	
4	EXT_FREQ	CONFIG_HOST[3]	Host configuration options. See the table below.	

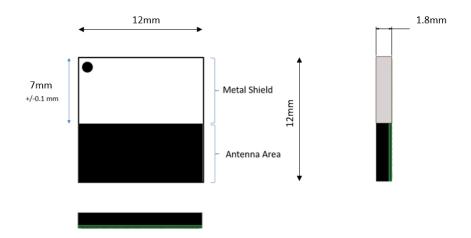
The following table describes all the possible combination of boot options using CONFIG_HOST pins.

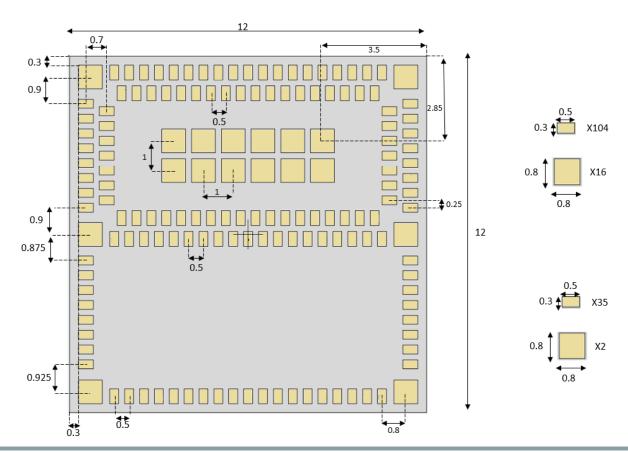
CONFIG_HOST[3:0]	Description	
1111	Boot from FlexSPI Flash (default)	
1110	ISP boot (UART/I2C/SPI/USB)	
1101	Serial boot (UART/I2C/SPI/USB)	
1100	ISP boot (SDIO)	
1011	Serial boot (SDIO)	
1010	Reserved	


In normal operation, the module is supposed to boot from SPI flash (CONFIG_HOST[3:0] = 1111). This is why we recommend using these pins floating.

For more information refer to the RW612 datasheet.

ISP5261 Pinout Top View

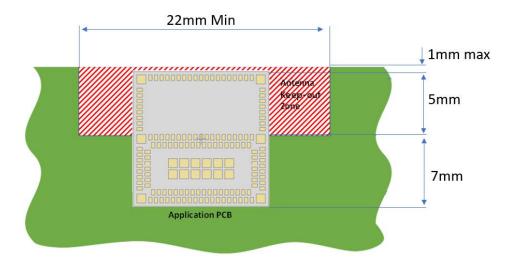



4. Mechanical Outline

4.1. Mechanical Dimensions

Package dimensions (in mm)

Dimensional drawing for 157-Pad LGA Package (in mm)


4.2. SMT Assembly Guidelines

For PCB Land Patterns and Solder Mask layout, Insight SiP recommends the use of the same dimensions as the module pads, i.e. 0.3 x 0.5 mm for standard pads and 0.8 x 0.8 mm for corner pads.

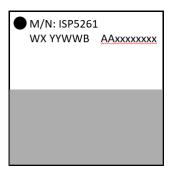
Please contact Insight SiP for more detailed information.

4.3. Antenna Keep-Out Zone

For optimal antenna performance, it is recommended to respect a metal exclusion zone to the edge of the board: no metal, no traces and no components on any application PCB layer except mechanical LGA pads.

4.4. Electromagnetic Interference

Keep this product away from other transmitters and devices generating high frequencies that may interfere with operation.



Package & Ordering Information 5.

5.1. Marking

М	/N	:	I	S	Р	5	2	6	1
Т	Т		Υ	Υ	W	W	R		

ISP5261	Part Number	
TT	2 letters Module Type	
YY	2 digits year number	
ww	2 digits week number	
R	1 letter Hardware revision	
BBBBBBBBBB	10 caracters Build code	

Certification labels for CE, FCC, IC and Telec are printed directly on the module when applicable.

5.2. Package Labelling

A label indicating the Module Part Number, Quantity, Date Code, Lot Code and Country of Origin is applied to the bag, the reel and the box, whichever is applicable.

Information is available with bar code 1D according to Code 39 and bar code 2D according to Data Matrix ECC 200 from ECIA standard.

(1P) Supplier P/N: ISP5261-WX (Q) Quantity: 500 (10D) Date Code: 2436

(1T) Lot Code: XXXXXXXXXX (4L) Country of Origin: FR

Insight SiP

A second label on the bag is present to indicate the MSL level and packaging date.

CAUTION

This bag contains MOISTURE SENSITIVE DEVICES LEVEL 3

- Calculated shelf life in sealed bag: 12 months at <40°C and <90% relative humidity (RH)
- Peak package body temperature: 260 +0/-5°C
 After baking, devices that will be subject to reflow solder or other high temperature process
- (i) Mounted within 168 hours of factory conditions < 30°C / 60% RH, or (ii) stored at < 10% RH Devices require bake, before mounting, if: a) Humidity Indicator Card reads >10% for level 2a - 5a devices or >60% for level 2 devices when read at $23\pm5^{\circ}$ C b) 3a or 3b are not met
- If baking is required, devices may be backed for 24 hours at 125 ± 5°C

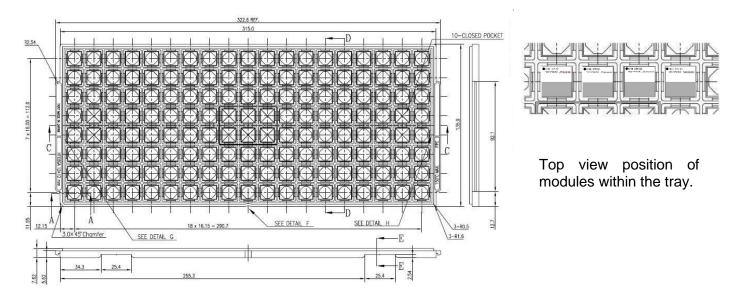
Bag Seal Date:

Note: Level and body temperature defined by IPC/JEDEC J-STD-020

5.3. Prototype Packaging

For engineering samples and prototype quantities up to 99 units, deliveries are provided in thermoformed trays or cut tapes.

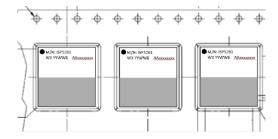
They are delivered in sealed pack with desiccant pack and humidity sensors. Please see section 6.2 for more information on moisture sensitivity.


Please order with "ST" code packaging suffix.

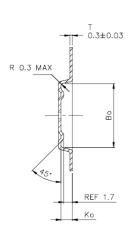
5.4. Jedec Trays

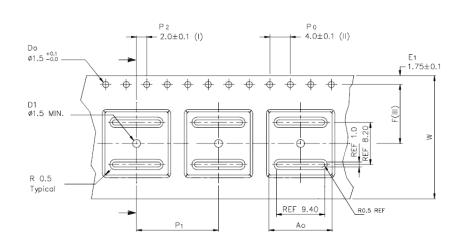
For pre-production volumes, ISP2053 are available in Jedec trays. They are delivered in sealed pack with desiccant pack and humidity sensors. These Jedec trays are also suitable for further baking at 125°C. Please see section 6.2 for more information on moisture sensitivity. Please order with "JT" code packaging suffix.

Refer to tray sizes below. Complete information on Jedec trays is available on request.

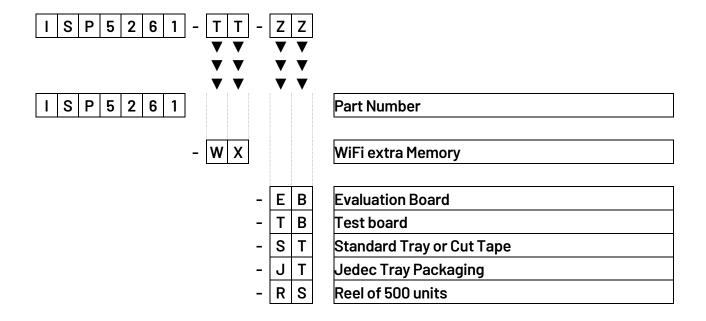


5.5. Tape and Reel


ISP5261 are also available in Tape & Reel. They are delivered in sealed pack with desiccant pack and humidity sensors. Reels are proposed in standard quantities of 500 units (180mm / 7" reel). Please order with "RS" code packaging suffix for 500-unit reel.


This packaging is not suitable for high temperature baking. Should it be necessary to recover MSL level, low temperature baking at 40° C as per Jedec-J-STD-033 is recommended.

Top view position of modules within the reel.

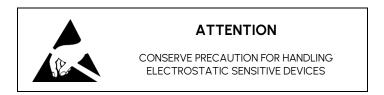


Ao	12.35 +/-0.1
Во	12.35 +/-0.1
Ko	2.20 +/-0.1
F	11.50 +/-0.1
P1	16.00 +/-0.1
W	24.15 +/-0.1

- Measured from centreline of sprocket hole (1)
- to centreline of pocket. Cumulative tolerance of 10 sprocket holes is \pm 0.20 .
- (III) Measured from centreline of sprocket hole to centreline of pocket.
 (IV) Other material available.

ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATE

5.6. Ordering Information



6. Storage and Soldering Information

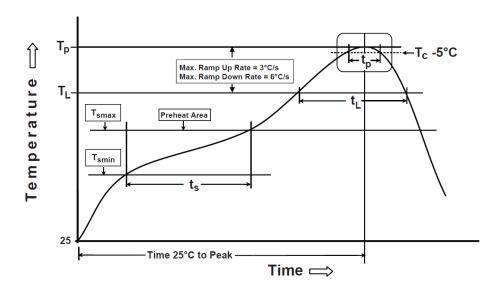
6.1. Storage and Handling

- Keep this product away from other high frequency devices which may interfere with operation such as other transmitters and devices generating high frequencies.
- Do not expose the module to the following conditions:
 - Corrosive gasses such as Cl2, H2S, NH3, SO2, or NOX
 - Extreme humidity or salty air
 - Prolonged exposure to direct Sunlight
 - Temperatures beyond those specified for storage
- Do not apply mechanical stress.
- Do not drop or shock the module.
- Avoid static electricity, ESD and high voltage as these may damage the module.

6.2. Moisture Sensitivity

All plastic packages absorb moisture. During typical solder reflow operations when SMDs are mounted onto a PCB, the entire PCB and device population are exposed to a rapid change in ambient temperature. Any absorbed moisture is quickly turned into superheated steam. This sudden change in vapor pressure can cause the package to swell. If the pressure exerted exceeds the flexural strength of the plastic mold compound, then it is possible to crack the package. Even if the package does not crack, interfacial delamination can occur.

Since the device package is sensitive to moisture absorption, it is recommended to bake the product before assembly. The baking process for dry packing is 24 hours at 125°C.


The product is qualified to MSL 3.

6.3. Soldering information

Recommendation for RoHS reflow process is according to Jedec J-STD-020 and 033 standard profiles.

Preheat/Soak Temperature Min (T _{smin}) Temperature Max (T _{smax}) Time (t _s) from (T _{smin} to T _{smax})	150 °C 200 °C 60-120 sec
Ramp-up rate (T_L to T_p)	3 °C/sec max
Liquidous temperature (T _L) Time (t _L) maintained above T _L	217 °C 60-150 sec

Peak package body temperature (T _p)	260°C	
reak package body remperature (Tp)	(+0/-5°C)	
Classification Temperature (T _c)	260 °C	
Time (t_p) maintained above T_c -5 °C	30 sec	
Ramp-down rate $(T_p \text{ to } T_L)$	6 °C/sec max	
Time 25 °C to peak temperature	8 mn max	

7. Quality and User information

7.1. Certifications

- CE Certification pending
- FCC Certification pending
- IC Certification pending
- TELEC Certification pending
- Bluetooth SIG Certification pending
- RoHS3 compliant
- Reach compliant
- Minerals responsible initiative compliant

Further paragraphs will be added to this data sheet once the product is fully certified.

7.2. Discontinuity

Normally a product will continue to be manufactured as long as all of the following are true:

- The manufacturing method is still available.
- There are no replacement products.
- There is demand for it in the market.

In case of obsolescence, Insight SiP will follow Jedec Standard JSD-48. A Product Discontinuation Notice (PDN) will be sent to all distributors and made available on our website. After this, the procedure goes as follows:

- Last Order Date will be 6 months after the PDN was published.
- Last Shipment Date will be 6 months after Last Order Date, i.e. 12 months after PDN.

7.3. Disclaimer

Insight SiP's products are designed and manufactured for general consumer applications, so testing and use of the product shall be conducted at customer's own risk and responsibility. Please conduct validation and verification and sufficient reliability evaluation of the products in actual condition of mounting and operating environment before commercial shipment of the equipment. Please also pay attention (i) to apply soldering method that don't deteriorate reliability, (ii) to minimize any mechanical vibration, shock, exposure to any static electricity, (iii) not to overstress the product during and after the soldering process.

The products are not designed for use in any application which requires especially high reliability where malfunction of these products can reasonably be expected to result in personal injury or damage to the third party's life, body or property, including and not limited to (i) aircraft equipment, (ii) aerospace equipment, (iii) undersea equipment, (iv) power plant control equipment, (v) medical equipment, (vi)

transportation equipment, (vii) traffic signal equipment, (viii) disaster prevention / crime prevention equipment.

The only warranty that Insight SiP provides regarding the products is its conformance to specifications provided in datasheets. Insight SiP hereby disclaims all other warranties regarding the products, express or implied, including without limitation any warranty of fitness for a particular purpose, that they are defect-free, or against infringement of intellectual property rights. Insight SiP customers agree to indemnify and defend Insight SiP against all claims, damages, costs and expenses that may be incurred, including without any limitation, attorney fees and costs, due to the use of products.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Insight SiP:

ISP5261-WX-RS