EPM12V1

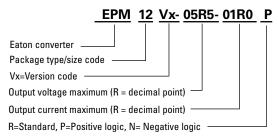
Non-isolated DC-DC converter

Product features

- · Non-isolated DC-DC converter
- 3 14 Vdc input voltage range
- Efficiency up to 89.5%
- Operating ambient temperature from -40 °C to +82 °C
- Short circuit protection and remote ON/OFF function
- Programmable output voltage from 0.9 - 5.5 Vdc
- EN62368 safety approval

Engineering tools

- EPM12V1 Evaluation kit PN: EPM12V1-EVK Includes evaluation board with EPM12V1 sample
- EPM12V1 evaluation board user guide


Applications

- Industrial
 - Automation & testing equipment
 - Displays
 - Lighting
 - loT
 - Power Supply
- Energy
 - · Solar and wind inverters
 - Battery management
- Medical
 - Hospital & home care equipment
 - Inventory tracking
 - Diagnostics
- Telecom
 - Networking and telecommunications
 - Infrastructure

Environmental compliance

Ordering part number

Specifications

	Parameter	Conditions	Minimum	Typical	Maximum	Unit
	Input voltage range		3	12	14	Vdc
	Start-up voltage		3			Vdc
nput	Start-up time				6	ms
	Remote ON/OFF	DC-DC ON DC-DC OFF		Open or 1.6 \\ Short or 0 V	V < Vctrl < 5 V < Vctrl < 0.1 V	
		Vo= 0.9 Vdc		64		%
	Efficiency	Vo= 5 Vdc		89.5		%
		Vo= 5.5 Vdc		90		%
	Output voltage trim ¹		0.9		5.5	Vdc
	Minimum load		0			%
Output	Line regulation	LL-HL			±0.3	%
	Load regulation	10-100% Load			±0.3	%
	Voltage accuracy			±0.3		
	Operating frequency	100% Load at Nominal Vin		800		kHz
	Ripple & Noise ²	20 MHz BW	10		40	mVp-p
	Input current	Remote off mode			1	mA
	Operating temperature	Derating curve	-40		82	°C
nvironment	Storage temperature		-55		125	°C
	Vibration			MIL-STD-202G-5	55	
	Short circuit protection			continuous, au	tomatic recovery	
unction	Safety			EN 62	2368-1	
	MTBF	MIL-HDBK217F	2600			k hours
	Dimension		0.488 (L) x 0.488 (W) x	0.157 (H)	inches
Physical	Weight				1	g
TilySiCai	Case material			Open	frame	
	Cooling method			Free air o	convection	
	EMI	EN 55032		Class A with	external circuit	
:MC	ESD	EN61000-4-2 Air ± 8 kV Contact ± 8 kV		Crite	eria A	
	Fast transient ³	EN 61000-4-4, ±2 kV			eria A	
	Surge ³	EN 61000-4-5, ±2 kV			eria A	

^{1.} The output voltage range is limited by Vin (Vout < Vin * 0.7)

Selection guide

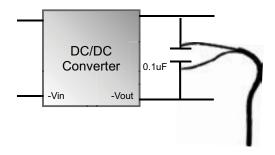
Part number	Input voltage	Output voltage	Output current @ full load	Input current @ no load	Efficiency ¹ typical	Capacitive load² maximum
EPM12V1-05R5-01R0P	3 - 14 Vdc 12 Vdc nominal	0.9 - 5.5 Vdc 5 Vdc nominal	1000 mA	15 mA	89.5%	200 μF

^{1.} The efficiency is test by nominal input and maximum full load at +25 $^{\circ}\text{C}.$

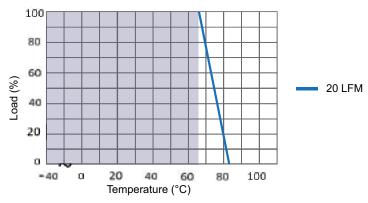
^{2.} The ripple & noise are measured with 0.1 μF capacitor at 20 MHz BW, show at Vout= 1 V.

^{3.} External input capacitor required 2200 $\mu\text{F}/$ 25 V with TVS.

External input capacitor required 2200 pr/ 23 v with 1 vs.
 All specifications valid at nominal input voltage, full load and +25 °C after warm-up time unless otherwise stated.

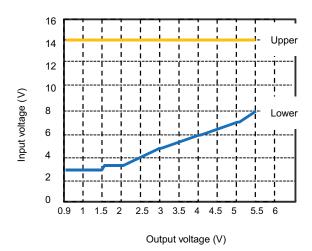

^{5.} The product information and specifications are subject to change without prior notice.

^{2.} The capacitive load is test by minimum input and constant resistive load.

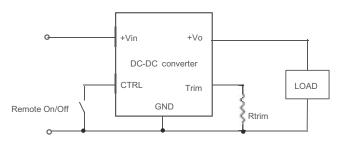

^{3.} All specifications valid at nominal input voltage, full load and +25 °C after warm-up time unless otherwise stated.

^{4.} Special input and output voltage combinations available by request, please contact your local sales representative.

Measure method



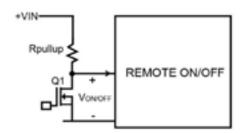
Derating curve


The derating curve was measured at 12 V input and 5 V output.

Output voltage vs. input voltage

Application information

Output voltage trim

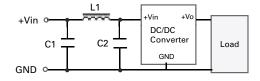


Trim resistor equation

$$Rtrim(k\Omega) = (\frac{49.1355}{Ve - 0.896}) - 10.7$$

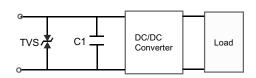
Output voltage	Calculated Rtrim (kΩ)
5.5 V	0
5 V	1.3
3.3 V	9.8
2.5 V	20.2
1.8 V	44.2
1.5 V	71.3
1.2 V	150
0.895 V	∞ (Open)

Remote On/OFF

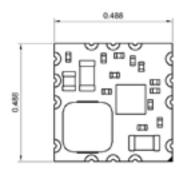


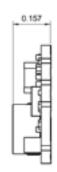
Logic type active mode: DC/DC ON : Q1 OFF

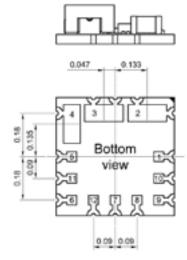
DC/DC OFF: Q1 ON


The output voltage may be adjusted over a limited range by connection an external trim resistor (Rtrim) between the trim pin and ground.

EMC filtering circuit


Class	C1	L1	C2
Class A	2.2 µF	10 μΗ	Χ


EFT and surge circuit



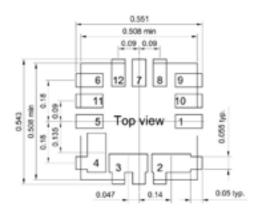
TVS	C1
Eaton 5-0SMDJ22CA	2200 μF

Dimensions - inches

Pad $1\&5\sim12=0.118"\times0.059"$ Pad $2\&4=0.17"\times0.08"$ Pad $3=0.168"\times0.08"$

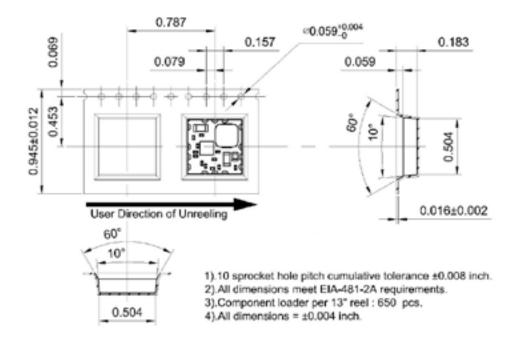
Projection: Third angle projection Tolerance: ± 0.02 Pad $1\&5\sim12=0.04\times0.04$ Pad $2\sim4=0.16\times0.07$

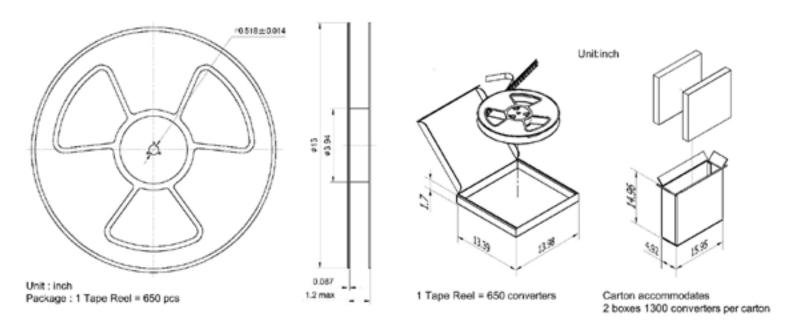
Marking



xxx= lot code

Pin	Function	Pin	Function
1	CTRL	7	GND
2	Vin	8	NC
3	GND	9	NC
4	Vout	10	NC
5	NC	11	GND
6	TRIM	12	NC


NC = no connection


Recommended pad layout

Packaging-Inches

General information

Pick and place

The 1 A open frame modules use an open frame construction and are designed for a fully automated pick and place assembly process.

MSL rating

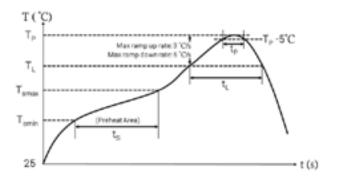
The 1A Open frame modules have a MSL rating of 3.

Storage and handling

The recommended storage environment and handling procedures for moisture-sensitive surface mount packages is detailed in J-STD-033 (Handling, packing, shipping and use of moisture/reflow sensitive surface mount devices).

Moisture barrier bags (MBB) with desiccant are required for MSL ratings of 3 or greater. These sealed packages should not be broken until time of use. Once the original package is broken, the floor life of the product at conditions of 30 °C and 60% relative humidity 168 hours varies according to the MSL rating (see J-STD-033). The shelf life for dry packed SMT packages will be a maximum of 12 months from the bag seal date, when stored at the following conditions: < 40 ° C, < 90% relative humidity.

Post solder cleaning and drying considerations


To avoid contamination on the soldering pads extra care has to be taken when handling the boards. Clean soldering surfaces do not generate as many gases when the flux reduce the metal oxides or react with contaminants during the soldering process.

Nozzle

The module weight has been kept to a minimum by using open frame construction. Variables such as nozzle size, tip style, vacuum pressure and placement speed should be considered to optimize this process.

Lead-free reflow profile

Power systems will comply with J-STD-020 (Moisture/reflow sensitivity classification for nonhermetic solid state surface mount devices) for both Pb-free solder profiles and MSL classification procedures. This standard provides a recommended forced-air-convection reflow profile based on the volume and thickness of the package. The suggested Pb-free solder paste is Sn/Ag/Cu (SAC). The recommended linear reflow profile using Sn/Ag/Cu solder is shown. Soldering outside of the recommended profile requires testing to verify results and performance.

Profile	Pb-free assembly
Average ramp-up rate $(T_{smax} \text{ to } T_p)$	3 °C/s max.
$ \begin{array}{l} \text{Preheat} \\ \text{Temperature min. } (T_{\text{smin}}) \\ \text{Temperature max. } (T_{\text{smax}}) \\ T_{\text{s}} (T_{\text{smin}} \text{ to } T_{\text{smax}}) \end{array} $	150 °C 200 °C 60-120 s
Temperature (T _p)	245°C
Time maintained above Temperature (T_L) Time (t_l)	217°C 60-150 s
Time within 5 °C of the specified Peak temperature (T _p)	20-40 s
Ramp down rate $(T_p \text{ to } T_L)$	6 °C/s max
Time 25 °C to peak temperature	8 minutes max.

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.

Eaton Electronics Division 1000 Eaton Boulevard Cleveland, OH 44122 United States Eaton.com/electronics

© 2021 Eaton All Rights Reserved Printed in USA Publication No. 11182 May 2021

Eaton is a registered trademark.

All other trademarks are property of their respective owners.

Follow us on social media to get the latest product and support information

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Eaton:

EPM12V1-05R5-01R0P